Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 278
Filtrar
1.
Mar Drugs ; 22(7)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39057414

RESUMO

Marine bacterial proteases have rarely been used to produce bioactive peptides, although many have been reported. This study aims to evaluate the potential of the marine bacterial metalloprotease A69 from recombinant Bacillus subtilis in the preparation of peanut peptides (PPs) with antioxidant activity and angiotensin-converting enzyme (ACE)-inhibitory activity. Based on the optimization of the hydrolysis parameters of protease A69, a process for PPs preparation was set up in which the peanut protein was hydrolyzed by A69 at 3000 U g-1 and 60 °C, pH 7.0 for 4 h. The prepared PPs exhibited a high content of peptides with molecular weights lower than 1000 Da (>80%) and 3000 Da (>95%) and contained 17 kinds of amino acids. Moreover, the PPs displayed elevated scavenging of hydroxyl radical and 1,1-diphenyl-2-picryl-hydrazyl radical, with IC50 values of 1.50 mg mL-1 and 1.66 mg mL-1, respectively, indicating the good antioxidant activity of the PPs. The PPs also showed remarkable ACE-inhibitory activity, with an IC50 value of 0.71 mg mL-1. By liquid chromatography mass spectrometry analysis, the sequences of 19 ACE inhibitory peptides and 15 antioxidant peptides were identified from the PPs. These results indicate that the prepared PPs have a good nutritional value, as well as good antioxidant and antihypertensive effects, and that the marine bacterial metalloprotease A69 has promising potential in relation to the preparation of bioactive peptides from peanut protein.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Antioxidantes , Arachis , Bacillus subtilis , Metaloproteases , Peptídeos , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/química , Antioxidantes/farmacologia , Antioxidantes/química , Metaloproteases/química , Metaloproteases/farmacologia , Arachis/química , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/enzimologia , Peptídeos/farmacologia , Peptídeos/química , Hidrólise , Peptidil Dipeptidase A/metabolismo , Peptidil Dipeptidase A/química
2.
Sci Rep ; 14(1): 15991, 2024 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987327

RESUMO

Cardiovascular diseases, including heart failure, stroke, and hypertension, affect 608 million people worldwide and cause 32% of deaths. Combination therapy is required in 60% of patients, involving concurrent Renin-Angiotensin-Aldosterone-System (RAAS) and Neprilysin inhibition. This study introduces a novel multi-target in-silico modeling technique (mt-QSAR) to evaluate the inhibitory potential against Neprilysin and Angiotensin-converting enzymes. Using both linear (GA-LDA) and non-linear (RF) algorithms, mt-QSAR classification models were developed using 983 chemicals to predict inhibitory effects on Neprilysin and Angiotensin-converting enzymes. The Box-Jenkins method, feature selection method, and machine learning algorithms were employed to obtain the most predictive model with ~ 90% overall accuracy. Additionally, the study employed virtual screening of designed scaffolds (Chalcone and its analogues, 1,3-Thiazole, 1,3,4-Thiadiazole) applying developed mt-QSAR models and molecular docking. The identified virtual hits underwent successive filtration steps, incorporating assessments of drug-likeness, ADMET profiles, and synthetic accessibility tools. Finally, Molecular dynamic simulations were then used to identify and rank the most favourable compounds. The data acquired from this study may provide crucial direction for the identification of new multi-targeted cardiovascular inhibitors.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Simulação por Computador , Simulação de Acoplamento Molecular , Neprilisina , Relação Quantitativa Estrutura-Atividade , Neprilisina/antagonistas & inibidores , Neprilisina/química , Neprilisina/metabolismo , Inibidores da Enzima Conversora de Angiotensina/química , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Humanos , Peptidil Dipeptidase A/metabolismo , Peptidil Dipeptidase A/química , Algoritmos , Simulação de Dinâmica Molecular
3.
Food Funct ; 15(15): 7782-7793, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38967438

RESUMO

The stability of bioactive peptides under various food processing conditions is the basis for their use in industrial manufacturing. This study aimed to identify natural ACE inhibitors with excellent stability and investigate their physicochemical properties and putative molecular mechanisms. Five novel ACE inhibitory peptides (QDPLFPL, FPGVSPF, SPAQLLPF, LVPYRP, and WYWPQ) were isolated and identified using RP-HPLC and Nano LC-MS/MS with foxtail millet protein hydrolysates as the raw material. These peptides are non-toxic and exhibit strong ACE inhibitory activity in vitro (IC50 values between 0.13 mg mL-1 and 0.56 mg mL-1). In addition to QDPLFPL, FPGVSPF, SPAQLLPF, LVPYRP, and WYWPQ have excellent human intestinal absorption. Compared to FPGVSPF and SPAQLLPF, the stable helical structure of LVPYRP and WYWPQ allows them to maintain high stability under conditions that mimic gastrointestinal digestion and various food processing (temperatures, pH, sucrose, NaCl, citric acid, sodium benzoate, Cu2+, Zn2+, K+, Mg2+, Ca2+). The results of molecular docking and molecular dynamics simulation suggest that LVPYRP has greater stability and binding capacity to ACE than WYWPQ. LVPYRP might attach to the active pockets (S1, S2, and S1') of ACE via hydrogen bonds and hydrophobic interactions, then compete with Zn2+ in ACE to demonstrate its ACE inhibitory activity. The binding of LVPYRP to ACE enhances the rearrangement of ACE's active structural domains, with electrostatic and polar solvation energy contributing the most energy to the binding. Our findings suggested that LVPYRP derived from foxtail millet protein hydrolysates has the potential to be incorporated into functional foods to provide antihypertensive benefits.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Simulação de Acoplamento Molecular , Peptídeos , Proteínas de Plantas , Hidrolisados de Proteína , Setaria (Planta) , Inibidores da Enzima Conversora de Angiotensina/química , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Setaria (Planta)/química , Hidrolisados de Proteína/química , Hidrolisados de Proteína/farmacologia , Humanos , Peptídeos/química , Peptídeos/farmacologia , Proteínas de Plantas/química , Proteínas de Plantas/farmacologia , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/metabolismo , Espectrometria de Massas em Tandem , Simulação por Computador
4.
Amino Acids ; 56(1): 40, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847939

RESUMO

Pelodiscus sinensis meat is a nutritional food and tonic with angiotensin-converting enzyme (ACE) inhibitory activities. To identify the bioactive substances responsible, several bioinformatics methods were integrated to enable a virtual screening for bioactive peptides in proteins identified within a water-soluble protein fraction of Pelodiscus sinensis meat by Shotgun proteomics. The peptides were generated from the identified proteins by in silico proteolysis using six proteases. A comparison of the numbers of proteins suitable for digestion with each enzyme and the iBAQ (intensity-based absolute quantification) values for these proteins revealed that bromelain and papain were the most suitable proteases for this sample. Next, the water solubility, toxicity, and ADMET (absorption/distribution/metabolism/excretion/toxicity) properties of these peptides were evaluated in silico. Finally, a novel ACE inhibitory peptide IEWEF with an IC50 value of 41.33 µM was identified. The activity of the synthesized peptide was verified in vitro, and it was shown to be a non-competitive ACE inhibitor. Molecular docking revealed that IEWEF could tightly bind to C-ACE, and N-ACE with energies less than 0 kJ mol-1, and the peptide IEWEF can form hydrogen bonds with C-ACE and N-ACE respectively. These results provide evidence that bioactive peptides in the water-soluble protein fraction account for (at least) some of the ACE inhibitory activities observed in Pelodiscus sinensis meat. Furthermore, our research provides a workflow for the efficient identification of novel ACE inhibitory peptides from complex protein mixtures.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Simulação de Acoplamento Molecular , Peptídeos , Hidrolisados de Proteína , Solubilidade , Inibidores da Enzima Conversora de Angiotensina/química , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/metabolismo , Hidrolisados de Proteína/química , Hidrolisados de Proteína/metabolismo , Animais , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/metabolismo , Água/química , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/metabolismo , Papaína/metabolismo , Papaína/antagonistas & inibidores , Papaína/química , Proteínas de Peixes/química , Proteínas de Peixes/metabolismo
5.
Biomolecules ; 14(5)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38785988

RESUMO

Peptides possessing antihypertensive attributes via inhibiting the angiotensin-converting enzyme (ACE) were derived through the enzymatic degradation of Trichiurus lepturus (ribbonfish) using alkaline protease. The resulting mixture underwent filtration using centrifugation, ultrafiltration tubes, and Sephadex G-25 gels. Peptides exhibiting ACE-inhibitory properties and DPPH free-radical-scavenging abilities were isolated and subsequently purified via LC/MS-MS, leading to the identification of over 100 peptide components. In silico screening yielded five ACE inhibitory peptides: FAGDDAPR, QGPIGPR, IFPRNPP, AGFAGDDAPR, and GPTGPAGPR. Among these, IFPRNPP and AGFAGDDAPR were found to be allergenic, while FAGDDAPRR, QGPIGPR, and GPTGPAGP showed good ACE-inhibitory effects. IC50 values for the latter peptides were obtained from HUVEC cells: FAGDDAPRR (IC50 = 262.98 µM), QGPIGPR (IC50 = 81.09 µM), and GPTGPAGP (IC50 = 168.11 µM). Peptide constituents derived from ribbonfish proteins effectively modulated ACE activity, thus underscoring their therapeutic potential. Molecular docking and modeling corroborated these findings, emphasizing the utility of functional foods as a promising avenue for the treatment and prevention of hypertension, with potential ancillary health benefits and applications as substitutes for synthetic drugs.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Anti-Hipertensivos , Células Endoteliais da Veia Umbilical Humana , Peptídeos , Peptidil Dipeptidase A , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/química , Inibidores da Enzima Conversora de Angiotensina/isolamento & purificação , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/química , Anti-Hipertensivos/isolamento & purificação , Animais , Humanos , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/isolamento & purificação , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Peptidil Dipeptidase A/metabolismo , Peptidil Dipeptidase A/química , Simulação de Acoplamento Molecular , Perciformes/metabolismo
6.
J Agric Food Chem ; 72(19): 10909-10922, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38689562

RESUMO

Pumpkin (Cucurbita moschata) seed meal (PSM), the major byproduct of pumpkin seed oil industry, was used to prepare angiotensin-converting enzyme (ACE) inhibitory and angiotensin-converting enzyme 2 (ACE2) upregulating peptides. These peptides were isolated and purified from the PSM hydrolysate prepared using Neutrase 5.0 BG by ultrafiltration, Sephadex G-15 column chromatography, and reversed-phase high-performance liquid chromatography. Two peptides with significant ACE inhibition activity were identified as SNHANQLDFHP and PVQVLASAYR with IC50 values of 172.07 and 90.69 µM, respectively. The C-terminal tripeptides of the two peptides contained Pro, Phe, and Tyr, respectively, and PVQVLASAYR also had Val in its N-terminal tripeptide, which was a favorable structure for ACE inhibition. Molecular docking results declared that the two peptides could interact with ACE through hydrogen bonds and hydrophobic interactions. Furthermore, the two peptides performed protective function on EA.hy926 cells by decreasing the secretion of endothelin-1, increasing the release of nitric oxide, and regulating the ACE2 activity. In vitro simulated gastrointestinal digestion showed the two peptides exhibited good stability against gastrointestinal enzyme digestion. In conclusion, PSM is a promising material for preparing antihypertensive peptides.


Assuntos
Enzima de Conversão de Angiotensina 2 , Inibidores da Enzima Conversora de Angiotensina , Cucurbita , Simulação de Acoplamento Molecular , Peptídeos , Peptidil Dipeptidase A , Sementes , Inibidores da Enzima Conversora de Angiotensina/química , Inibidores da Enzima Conversora de Angiotensina/metabolismo , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Cucurbita/química , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/metabolismo , Sementes/química , Humanos , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/química , Hidrolisados de Proteína/química , Hidrolisados de Proteína/metabolismo , Regulação para Cima/efeitos dos fármacos , Linhagem Celular , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo
7.
Food Chem ; 452: 139540, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38723570

RESUMO

Angiotensin-converting enzyme (ACE), consisting of N-domain and C-domain, is a key regulator of blood pressure. The use of cACE-specific inhibitors helps minimize side effects in clinical applications. Legumes are a good source of proteins containing ACE inhibitory peptides; however, no studies have reported the identification of cACE-specific inhibitory peptides from Fabaceae. In this study, thermal hydrolysates from seeds, sprouts, pods, seedlings, and flowers of legumes were analyzed. Flowers of legumes exhibited a C-domain-preference ACE inhibition and anti-hypertensive effect in rats. Screening the legume peptide library identified a novel cACE inhibitory peptide, SJ-1. This study reported the first identification of cACE inhibitory peptide from Fabaceae foods. SJ-1, identified from the legume flowers, interacted with active site residues of cACE, leading to the inhibition of ACE activity, downregulation of bradykinin levels, and reduction of blood pressure. These findings also suggested the potential of legume proteins as a source of cACE inhibitory peptides.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Fabaceae , Biblioteca de Peptídeos , Peptídeos , Peptidil Dipeptidase A , Proteínas de Plantas , Inibidores da Enzima Conversora de Angiotensina/química , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Fabaceae/química , Animais , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Ratos , Proteínas de Plantas/química , Masculino , Anti-Hipertensivos/química , Anti-Hipertensivos/farmacologia , Humanos , Pressão Sanguínea/efeitos dos fármacos , Hipertensão/tratamento farmacológico , Hipertensão/fisiopatologia , Hipertensão/metabolismo , Ratos Sprague-Dawley
8.
Anal Chem ; 96(19): 7602-7608, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38671546

RESUMO

Molecular imprinting techniques have attracted a lot of attention as a potential biomimetic technology, but there are still challenges in protein imprinting. Herein, multifunctional nanosized molecularly imprinted polymers (nanoMIPs) for human angiotensin-converting enzyme 2 (ACE2) were prepared by epitope imprinting of magnetic nanoparticles-anchored peptide (magNP-P) templates, which were further applied to construct a competitive displacement fluorescence assay toward ACE2. A cysteine-flanked dodecapeptide sequence was elaborately selected as an epitope for ACE2, which was immobilized onto the surface of magnetic nanoparticles and served as a magNP-P template for imprinting. During polymerization, fluorescent monomers were introduced to endow fluorescence responsiveness to the prepared self-signaling nanoMIPs. A competitive displacement fluorescence assay based on the nanoMIPs was established and operated in a washing-free manner, yielding a wide range for ACE2 (0.1-6.0 pg/mL) and a low detection limit (0.081 pg/mL). This approach offers a promising avenue in the preparation of nanoMIPs for macromolecule recognition and expands potential application of an MIP in the detection of proteins as well as peptides.


Assuntos
Enzima de Conversão de Angiotensina 2 , Humanos , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/química , Peptidil Dipeptidase A/metabolismo , Peptidil Dipeptidase A/química , Impressão Molecular , Nanopartículas de Magnetita/química , Polímeros Molecularmente Impressos/química , Limite de Detecção , Peptídeos/química , Peptídeos/metabolismo
9.
J Food Sci ; 89(6): 3603-3617, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38638071

RESUMO

In the study, papain was used to hydrolyze tilapia (Oreochromis mossambicus) skin to obtain a tilapia skin hydrolysate (TSH) with dual angiotensin-converting enzyme (ACE) and dipeptidyl peptidase IV (DPP-IV) inhibitory activities. The resulting TSH was sequentially fractionated by ultrafiltration, size exclusion separation chromatography, and reverse-phase high-performance liquid chromatography. Its inhibitory effects on ACE and DPP-IV were determined by commercial reagent kits. Two peptides purified from TSH were identified as Gly-Pro-Leu-Gly-Ala-Leu (GPLGAL) and Lys-Pro-Ala-Gly-Asn (KPAGN) by the ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Inhibitory concentration (IC50) of GPLGAL on ACE and DPP-IV were 117.20 ± 1.69 and 187.10 ± 2.75 µM, respectively. IC50 of KPAGN on ACE and DPP-IV were 137.40 ± 2.33 and 259.20 ± 2.85 µM, respectively. The molecular simulation demonstrated that the binding affinities of GPLGAL to ACE and DPP-IV proteins were -8.5 and -7.4 kcal/mol, respectively, whereas those of KPAGN to ACE and DPP-IV proteins were -7.9 and -6.7 kcal/mol, respectively. GPLGAL interacted with 21 amino acid residues of the ACE active site, whereas KPAGN engaged with 19 amino acid residues. Additionally, GPLGAL interacted with 10 amino acid residues of the DPP-IV active site, whereas KPAGN engaged with 13 amino acid residues. The two peptides predominantly occupied the active sites of ACE (His513, Tyr523, and Ala354) and DPP-IV (Tyr662 and Arg125) through hydrogen bonding. This leads to the deactivation of ACE and DPP-IV. PRACTICAL APPLICATION: Accelerate tilapia skin development and high-value utilization; provide foundation for preparing the peptides with dual ACE and DPP-IV inhibiting activity.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Dipeptidil Peptidase 4 , Inibidores da Dipeptidil Peptidase IV , Simulação de Acoplamento Molecular , Peptídeos , Peptidil Dipeptidase A , Pele , Tilápia , Animais , Inibidores da Dipeptidil Peptidase IV/farmacologia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/química , Dipeptidil Peptidase 4/metabolismo , Peptidil Dipeptidase A/metabolismo , Peptidil Dipeptidase A/química , Pele/química , Peptídeos/farmacologia , Peptídeos/química , Proteínas de Peixes/química , Proteínas de Peixes/farmacologia , Espectrometria de Massas em Tandem , Sequência de Aminoácidos , Hidrólise , Cromatografia Líquida de Alta Pressão/métodos
10.
Int J Biol Macromol ; 268(Pt 2): 131901, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38677685

RESUMO

Food-derived peptides with low molecular weight, high bioavailability, and good absorptivity have been exploited as angiotensin-converting enzyme (ACE) inhibitors. In the present study, in-vitro inhibition kinetics of peanut peptides, in silico screening, validation of ACE inhibitory activity, molecular dynamics (MD) simulations, and HUVEC cells were performed to systematically identify the inhibitory mechanism of ACE interacting with peanut peptides. The results indicate that FPHPP, FPHY, and FPHFD peptides have good thermal, pH, and digestive stability. MD trajectories elucidate the dynamic correlation between peptides and ACE and verify the specific binding interaction. Noteworthily, FPHPP is the best inhibitor with a strongest binding affinity and significantly increases NO, SOD production, and AT2R expression, and decreases ROS, MDA, ET-1 levels, ACE, and AT1R accumulation in Ang II-injury HUVEC cells.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Arachis , Células Endoteliais da Veia Umbilical Humana , Peptídeos , Peptidil Dipeptidase A , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/química , Inibidores da Enzima Conversora de Angiotensina/metabolismo , Humanos , Peptidil Dipeptidase A/metabolismo , Peptidil Dipeptidase A/química , Arachis/química , Peptídeos/química , Peptídeos/metabolismo , Peptídeos/farmacologia , Simulação de Dinâmica Molecular , Simulação por Computador , Cinética , Ligação Proteica
11.
J Agric Food Chem ; 72(12): 6432-6443, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38470110

RESUMO

Faba bean flour, after in vitro gastrointestinal digestion, showed important antioxidant and angiotensin-converting enzyme (ACE) inhibitory activities. In the present study, 11 faba bean- derived peptides were synthesized to confirm their bioactivities and provide a deeper understanding of their mechanisms of action. The results revealed that 7 peptides were potent antioxidants, namely, NYDEGSEPR, TETWNPNHPEL, TETWNPNHPE, VIPTEPPH, VIPTEPPHA, VVIPTEPPHA, and VVIPTEPPH. Among them, TETWNPNHPEL had the highest activity in the ABTS (EC50 = 0.5 ± 0.2 mM) and DPPH (EC50 = 2.1 ± 0.1 mM) assays (p < 0.05), whereas TETWNPNHPE had the highest activity (p < 0.05) in the ORAC assay (2.84 ± 0.08 mM Trolox equivalent/mM). Synergistic and/or additive effects were found when selected peptides (TETWNPNHPEL, NYDEGSEPR, and VVIPTEPPHA) were combined. Four peptides were potent ACE inhibitors, where VVIPTEPPH (IC50 = 43 ± 1 µM) and VVIPTEPPHA (IC50 = 50 ± 5 µM) had the highest activity (p < 0.05), followed by VIPTEPPH (IC50 = 90 ± 10 µM) and then VIPTEPPHA (IC50 = 123 ± 5 µM) (p < 0.05). These peptides were noncompetitive inhibitors, as supported by kinetic studies and a molecular docking investigation. This study demonstrated that peptides derived from faba beans have multifunctional bioactivities, making them a promising food-functional and nutraceutical ingredient.


Assuntos
Antioxidantes , Vicia faba , Antioxidantes/química , Vicia faba/metabolismo , Simulação de Acoplamento Molecular , Cinética , Peptídeos/química , Digestão , Angiotensinas , Peptidil Dipeptidase A/química
12.
J Sci Food Agric ; 104(11): 6506-6517, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38507298

RESUMO

BACKGROUND: Rice-based distillers' spent cake (RDSC), a by-product of the Chinese liquor (Baijiu) industry, is a potential source of angiotensin-converting enzyme (ACE) inhibitory peptide. Since ACE plays a crucial role in controlling hypertension, inhibition of ACE has been widely emphasized. The ACE inhibitory active peptide derived from by-products of food has been recognized as a safer and cheaper inhibitor. RESULTS: Aimed to discover ACE-inhibiting active peptides in RDSC. Hydrolysis of RDSC by alcalase for 4 h followed by ultrafiltration yielded low-molecular-weight (< 3 kDa) fractions. Subsequently, a comprehensive method using a combination of liquid chromatography quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS) and LC-Q-Exactive-MS to identify the novel short peptides (3-5 amino acids residues; n = 7) and medium-sized peptides (more than 6 amino acids residues; n = 6). In vitro activity assay showed that the peptides KPFFPGL, GFPRPLL, GPPGVF, and VGK exhibited the highest activity with inhibitory concentration of 50% (IC50) of 11.63, 12.34, 19.55, and 33.54 µmol L-1. Molecular docking reveal that the active and inactive sites (Glu123, Asp121, Arg522, and Lys118) play important roles in enhancing the ACE inhibitory activity of peptides. CONCLUSION: Here we report a comprehensive method that effectively extracted and identified the bioactive peptides from RDSC. Four highly active novel peptides may be the most promising candidates for functional foods against hypertension, provide significant information for enhancing value of rice-based distilled by-products. © 2024 Society of Chemical Industry.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Simulação de Acoplamento Molecular , Oryza , Peptídeos , Peptidil Dipeptidase A , Inibidores da Enzima Conversora de Angiotensina/química , Inibidores da Enzima Conversora de Angiotensina/isolamento & purificação , Resíduos Industriais/análise , Oryza/química , Peptídeos/química , Peptídeos/farmacologia , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/metabolismo , Resíduos/análise
13.
Food Funct ; 15(7): 3824-3837, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38511617

RESUMO

In this study, the effects of Lactiplantibacillus plantarum M11 (Lb. plantarum M11) in conjunction with sodium caseinate on the characteristics and angiotensin converting enzyme (ACE) inhibitory activity of yogurt were investigated. ACE inhibitory peptides (ACEIPs) in yogurt were identified by nano-LC-MS/MS and potential ACEIPs were predicted by in silico and molecular docking methods. The results showed that the ACE-inhibitory activity of yogurt was significantly enhanced (p < 0.05), while maintaining the quality characteristics of the yogurt. Thirteen ACEIPs in the improved yogurt (883 + M11-CS group) were identified, which were more abundant than the other yogurt groups (control 883 group, 883 + M11 group and 883-CS group). Two novel peptides with potential ACE inhibitory activity, YPFPGPIH and NILRFF, were screened. The two peptides showed PeptideRanker scores above 0.8, small molecular weight and strong hydrophobicity, and were non-toxic after prediction. Molecular docking results showed that binding energies with ACE were -9.4 kcal mol-1 and -10.7 kcal mol-1, respectively, and could bind to the active site of ACE. These results indicated that yogurt with Lb. plantarum M11 and sodium caseinate has the potential to be utilized as a functional food with antihypertensive properties. The combination of ACEIP-producing strains and casein fortification could be an effective method to promote the release of ACEIPs from yogurt.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Lactobacillus plantarum , Inibidores da Enzima Conversora de Angiotensina/química , Caseínas/química , Simulação de Acoplamento Molecular , Espectrometria de Massas em Tandem , Peptidil Dipeptidase A/química , Iogurte , Peptídeos/química
14.
J Agric Food Chem ; 72(8): 4155-4169, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38366990

RESUMO

In this study, we used traditional laboratory methods, bioinformatics, and cellular models to screen novel ACE inhibitory (ACEI) peptides with strong ACEI activity, moderate absorption rates, and multiple targets from bovine colostrum immunoglobulin G (IgG). The purified fraction of the compound proteinase hydrolysate of IgG showed good ACEI activity. After nano-UPLC-MS/MS identification and in silico analysis, eight peptides were synthesized and verified. Among them, SFYPDY, TSFYPDY, FSWF, WYQQVPGSGL, and GVHTFP were identified as ACEI peptides, as they exhibited strong ACEI activity (with IC50 values of 104.7, 80.0, 121.2, 39.8, and 86.3 µM, respectively). They displayed good stability in an in vitro simulated gastrointestinal digestion assay. In a Caco-2 monolayer model, SFYPDY, FSWF, and WYQQVPGSGL exhibited better absorption rates and lower IC50 values than the other peptides and were thereby identified as novel ACEI peptides. Subsequently, in a H2O2-induced endothelial dysfunction (ED) model based on HUVECs, SFYPDY, FSWF, and WYQQVPGSGL regulated ED by reducing apoptosis and ROS accumulation while upregulating NOS3 mRNA expression. Network pharmacology analysis and RT-qPCR confirmed that they regulated multiple targets. Overall, our results suggest that SFYPDY, FSWF, and WYQQVPGSGL can serve as novel multitarget ACEI peptides.


Assuntos
Imunoglobulina G , Doenças Vasculares , Humanos , Feminino , Gravidez , Animais , Bovinos , Farmacologia em Rede , Espectrometria de Massas em Tandem , Células CACO-2 , Colostro/metabolismo , Peróxido de Hidrogênio , Peptídeos/química , Peptidil Dipeptidase A/química , Hidrolisados de Proteína/química , Simulação de Acoplamento Molecular
15.
Mar Drugs ; 22(2)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38393061

RESUMO

Protein hydrolysates from sea cucumber (Apostichopus japonicus) gonads are rich in active materials with remarkable angiotensin-converting enzyme (ACE) inhibitory activity. Alcalase was used to hydrolyze sea cucumber gonads, and the hydrolysate was separated by the ultrafiltration membrane to produce a low-molecular-weight peptide component (less than 3 kDa) with good ACE inhibitory activity. The peptide component (less than 3 kDa) was isolated and purified using a combination method of ACE gel affinity chromatography and reverse high-performance liquid chromatography. The purified fractions were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and the resulting products were filtered using structure-based virtual screening (SBVS) to obtain 20 peptides. Of those, three noncompetitive inhibitory peptides (DDQIHIF with an IC50 value of 333.5 µmol·L-1, HDWWKER with an IC50 value of 583.6 µmol·L-1, and THDWWKER with an IC50 value of 1291.8 µmol·L-1) were further investigated based on their favorable pharmacochemical properties and ACE inhibitory activity. Molecular docking studies indicated that the three peptides were entirely enclosed within the ACE protein cavity, improving the overall stability of the complex through interaction forces with the ACE active site. The total free binding energies (ΔGtotal) for DDQIHIF, HDWWKER, and THDWWKER were -21.9 Kcal·mol-1, -71.6 Kcal·mol-1, and -69.1 Kcal·mol-1, respectively. Furthermore, a short-term assay of antihypertensive activity in spontaneously hypertensive rats (SHRs) revealed that HDWWKER could significantly decrease the systolic blood pressure (SBP) of SHRs after intravenous administration. The results showed that based on the better antihypertensive activity of the peptide in SHRs, the feasibility of targeted affinity purification and computer-aided drug discovery (CADD) for the efficient screening and preparation of ACE inhibitory peptide was verified, which provided a new idea of modern drug development method for clinical use.


Assuntos
Anti-Hipertensivos , Pepinos-do-Mar , Ratos , Animais , Anti-Hipertensivos/farmacologia , Inibidores da Enzima Conversora de Angiotensina/química , Cromatografia Líquida , Simulação de Acoplamento Molecular , Pepinos-do-Mar/metabolismo , Espectrometria de Massas em Tandem , Peptídeos/química , Ratos Endogâmicos SHR , Cromatografia de Afinidade , Peptidil Dipeptidase A/química , Hidrolisados de Proteína/química , Gônadas/metabolismo , Angiotensinas
16.
Mar Drugs ; 21(10)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37888457

RESUMO

An affinity chromatography filler of CNBr-activated Sepharose 4B-immobilized ACE was used to purify ACE-inhibitory peptides from Takifugu flavidus protein hydrolysate (<1 kDa). Twenty-four peptides with an average local confidence score (ALC) ≥ 80% from bounded components (eluted by 1 M NaCl) were identified by LC-MS/MS. Among them, a novel peptide, TLRFALHGME, with ACE-inhibitory activity (IC50 = 93.5 µmol·L-1) was selected. Molecular docking revealed that TLRFALHGME may interact with the active site of ACE through H-bond, hydrophobic, and electrostatic interactions. The total binding energy (ΔGbinding) of TLRFALHGME was estimated to be -82.7382 kJ·mol-1 by MD simulations, indicating the favorable binding of peptides with ACE. Furthermore, the binding affinity of TLRFALHGME to ACE was determined by surface plasmon resonance (SPR) with a Kd of 80.9 µmol, indicating that there was a direct molecular interaction between them. TLRFALHGME has great potential for the treatment of hypertension.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Takifugu , Animais , Inibidores da Enzima Conversora de Angiotensina/química , Takifugu/metabolismo , Cromatografia Líquida , Simulação de Acoplamento Molecular , Espectrometria de Massas em Tandem , Peptídeos/farmacologia , Cromatografia de Afinidade/métodos , Peptidil Dipeptidase A/química , Hidrolisados de Proteína/química , Angiotensinas
17.
J Agric Food Chem ; 71(33): 12462-12473, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37578765

RESUMO

Inhibition of angiotensin I-converting enzyme (ACE) activity is an effective way to treat hypertension. In the present study, the ability to produce ACE-inhibitory peptides during fermentation of skimmed milk by the Lacticaseibacillus paracasei M3 strain was evaluated, and the inhibitory mechanism and stability were studied by bioinformatics analysis. The results showed that the ACE inhibition activity of fermented milk was 71.94 ± 1.39%. After digestion with gastric juice and pancreatic juice, the ACE inhibitory activities of the fermented milk were 78.40 ± 1.93 and 74.96 ± 1.73%, respectively. After the fermented milk was purified using ultrafiltration and gel chromatography, 11 peptides from milk proteins were identified and sequenced by Nano LC-MS/MS. Molecular docking displayed that peptide PWIQPK had a high affinity, with ACE showing a binding energy of -6.10 kcal/mol. Hydrogen bonds were formed between PWIQPK and Glu384 in the S1 active pocket of ACE and Asp358. In addition, van der Waals forces were observed. In silico proteolysis suggested that PWIQPK could resist the digestion of pepsin and trypsin, indicating that it is relatively stable in the digestive tract. All results indicate that milk fermented by L. paracasei M3 has the potential to be used as a functional food having antihypertensive effects.


Assuntos
Lacticaseibacillus paracasei , Lacticaseibacillus , Inibidores da Enzima Conversora de Angiotensina/química , Simulação de Acoplamento Molecular , Espectrometria de Massas em Tandem , Peptídeos/química , Peptidil Dipeptidase A/química
18.
J Agric Food Chem ; 71(28): 10638-10646, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37406188

RESUMO

This study aimed to identify angiotensin I-converting enzyme (ACE) from in vitro digestion products of pork sausage with partial substitution of NaCl by KCl (PSRK). Peptides from in vitro digestion products of PSRK were identified through liquid chromatography with tandem mass spectrometry analysis coupled with de novo sequencing. Subsequently, the ACE inhibitory peptides LIVGFPAYGH and IVGFPAYGH were screened based on PeptideRanker, in silico absorption, molecular docking, and the determination of ACE inhibitory activity. In addition, the ACE inhibitory peptides LIVGFPAYGH and IVGFPAYGH were mixed-type inhibitors; these peptides' ACE inhibitory activities were expressed as the 50% inhibitory concentration (IC50) values in vitro, which were 196.16 and 150.88 µM, respectively. After 2 h of incubation, LIVGFPAYGH and IVGFPAYGH could be transported through Caco-2 cell monolayers with paracellular passive diffusion. Furthermore, LIVGFPAYGH and IVGFPAYGH significantly increased the levels of ACE2 and nitric oxide while decreasing the levels of ACE, angiotensin II, and endothelin-1 in Ang I-treated human umbilical vein endothelial cells, indicating the ACE inhibitory effect of LIVGFPAYGH and IVGFPAYGH. In summary, LIVGFPAYGH and IVGFPAYGH from PSRK can be used as functional foods with antihypertensive activity.


Assuntos
Carne de Porco , Carne Vermelha , Animais , Humanos , Suínos , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/química , Peptidil Dipeptidase A/química , Cloreto de Sódio , Simulação de Acoplamento Molecular , Células CACO-2 , Células Endoteliais , Peptídeos/farmacologia , Peptídeos/química , Digestão
19.
Peptides ; 167: 171046, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37330111

RESUMO

The pearl garlic (Allium sativum L.) protein (PGP) was digested using pepsin, trypsin, α-chymotrypsin, thermolysin, and simulated gastrointestinal digestion. The α-chymotrypsin hydrolysate showed the highest angiotensin-I-converting enzyme inhibitory (ACEI) activity, with an IC50 value of 190.9 ± 11 µg/mL. A reversed-phase C18 solid-phase extraction (RP-SPE) cartridge was used for the first fractionation, and the S4 fraction from RP-SPE showed the most potent ACEI activity (IC50 =124.1 ± 11 3 µg/mL). The S4 fraction was further fractionated using a hydrophilic interaction liquid chromatography SPE (HILIC-SPE). The H4 fraction from HILIC-SPE showed the highest ACEI activity (IC50 =57.7 ± 3 µg/mL). Four ACEI peptides (DHSTAVW, KLAKVF, KLSTAASF, and KETPEAHVF) were identified from the H4 fraction using liquid chromatography-tandem mass spectrometry (LC-MS/MS), and their biological activities were appraised in silico. Among the identified α-chymotryptic peptides, DHSTAVW (DW7), derived from I lectin partial protein, exhibited the most potent ACEI activity (IC50 value of 2.8 ± 0.1 µM). DW7 was resistant to simulated gastrointestinal digestion, and it was classified as a prodrug-type inhibitor according to the preincubation experiment. The inhibition kinetics indicated that DW7 was a competitive inhibitor, which was rationalized by the molecular docking simulation. The quantities of DW7 in 1 mg of hydrolysate, S4 fraction, and H4 fraction were quantified using LC-MS/MS to give 3.1 ± 0.1, 4.2 ± 0.1, and 13.2 ± 0.1 µg, respectively. The amount of DW7 was significantly increased by 4.2-fold compared with the hydrolysate, which suggested that this method is efficient for active peptide screening.


Assuntos
Alho , Hipertensão , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/química , Hidrolisados de Proteína , Cromatografia Líquida , Simulação de Acoplamento Molecular , Espectrometria de Massas em Tandem , Peptídeos/farmacologia , Peptídeos/química , Peptidil Dipeptidase A/química
20.
J Sci Food Agric ; 103(14): 7153-7163, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37338325

RESUMO

BACKGROUND: Marine bacteria secrete a variety of proteases, which are a good source to explore proteases with application value. However, only a few marine bacterial proteases with a potential in bioactive peptides preparation have been reported. RESULTS: The metalloprotease A69 from the marine bacterium Anoxybacillus caldiproteolyticus 1A02591 was successfully expressed in the food safe bacterium Bacillus subtilis as a secreted enzyme. A technique to efficiently produce protease A69 in a 15-L bioreactor was established, with a production of 8988 U mL-1 . Based on optimizing the hydrolysis parameters of A69 on soybean protein, a process for soybean protein peptides (SPs) preparation was set up, in which soybean protein was hydrolyzed by A69 at 4000 U g-1 and 60 °C for 3 h. The prepared SPs had a high content (> 90%) of peptides with a molecular mass less than 3000 Da and contained 18 amino acids. The prepared SPs showed high angiotensin-converting enzyme (ACE)-inhibitory activity, with an IC50 value of 0.135 mg mL-1 . Moreover, three ACE-inhibitory peptides, RPSYT, VLIVP and LAIPVNKP, were identified from the SPs using liquid chromatography-mass spectrometry analysis. CONCLUSION: The marine bacterial metalloprotease A69 has a promising potential for preparing SPs with good nutritional and potential antihypertensive effects, laying a good foundation for its industrial production and application. © 2023 Society of Chemical Industry.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Glycine max , Glycine max/química , Inibidores da Enzima Conversora de Angiotensina/química , Proteínas de Soja , Peptídeos/química , Peptídeo Hidrolases/química , Endopeptidases/química , Hidrólise , Metaloproteases , Bacillus subtilis/metabolismo , Angiotensinas , Peptidil Dipeptidase A/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA