Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 264
Filtrar
1.
Int J Mol Sci ; 25(9)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38732179

RESUMO

The evolution of the translation system is a fundamental issue in the quest for the origin of life. A feasible evolutionary scenario necessitates the autonomous emergence of a protoribosome capable of catalyzing the synthesis of the initial peptides. The peptidyl transferase center (PTC) region in the modern ribosomal large subunit is believed to retain a vestige of such a prebiotic non-coded protoribosome, which would have self-assembled from random RNA chains, catalyzed peptide bond formation between arbitrary amino acids, and produced short peptides. Recently, three research groups experimentally demonstrated that several distinct dimeric constructs of protoribosome analogues, derived predicated on the approximate 2-fold rotational symmetry inherent in the PTC region, possess the ability to spontaneously fold, dimerize, and catalyze the formation of peptide bonds and of short peptides. These dimers are examined, aiming at retrieving information concerned with the characteristics of a prebiotic protoribosome. The analysis suggests preconditions for the laboratory re-creation of credible protoribosome analogues, including the preference of a heterodimer protoribosome, contradicting the common belief in the precedence of homodimers. Additionally, it derives a dynamic process which possibly played a role in the spontaneous production of the first bio-catalyzed peptides in the prebiotic world.


Assuntos
Ribossomos , Ribossomos/metabolismo , Ribossomos/química , Peptídeos/química , Origem da Vida , Peptidil Transferases/metabolismo , Peptidil Transferases/química , Biossíntese de Proteínas
2.
Nat Commun ; 15(1): 2432, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503735

RESUMO

Arrest peptides containing RAPP (ArgAlaProPro) motifs have been discovered in both Gram-positive and Gram-negative bacteria, where they are thought to regulate expression of important protein localization machinery components. Here we determine cryo-EM structures of ribosomes stalled on RAPP arrest motifs in both Bacillus subtilis and Escherichia coli. Together with molecular dynamics simulations, our structures reveal that the RAPP motifs allow full accommodation of the A-site tRNA, but prevent the subsequent peptide bond from forming. Our data support a model where the RAP in the P-site interacts and stabilizes a single hydrogen atom on the Pro-tRNA in the A-site, thereby preventing an optimal geometry for the nucleophilic attack required for peptide bond formation to occur. This mechanism to short circuit the ribosomal peptidyltransferase activity is likely to operate for the majority of other RAPP-like arrest peptides found across diverse bacterial phylogenies.


Assuntos
Peptidil Transferases , Peptidil Transferases/metabolismo , Antibacterianos/metabolismo , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas/genética , Biossíntese de Proteínas , Ribossomos/metabolismo , Peptídeos/metabolismo , RNA de Transferência/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo
3.
Nature ; 627(8003): 445-452, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38383785

RESUMO

Reversible modification of target proteins by ubiquitin and ubiquitin-like proteins (UBLs) is widely used by eukaryotic cells to control protein fate and cell behaviour1. UFM1 is a UBL that predominantly modifies a single lysine residue on a single ribosomal protein, uL24 (also called RPL26), on ribosomes at the cytoplasmic surface of the endoplasmic reticulum (ER)2,3. UFM1 conjugation (UFMylation) facilitates the rescue of 60S ribosomal subunits (60S) that are released after ribosome-associated quality-control-mediated splitting of ribosomes that stall during co-translational translocation of secretory proteins into the ER3,4. Neither the molecular mechanism by which the UFMylation machinery achieves such precise target selection nor how this ribosomal modification promotes 60S rescue is known. Here we show that ribosome UFMylation in vivo occurs on free 60S and we present sequential cryo-electron microscopy snapshots of the heterotrimeric UFM1 E3 ligase (E3(UFM1)) engaging its substrate uL24. E3(UFM1) binds the L1 stalk, empty transfer RNA-binding sites and the peptidyl transferase centre through carboxy-terminal domains of UFL1, which results in uL24 modification more than 150 Å away. After catalysing UFM1 transfer, E3(UFM1) remains stably bound to its product, UFMylated 60S, forming a C-shaped clamp that extends all the way around the 60S from the transfer RNA-binding sites to the polypeptide tunnel exit. Our structural and biochemical analyses suggest a role for E3(UFM1) in post-termination release and recycling of the large ribosomal subunit from the ER membrane.


Assuntos
Retículo Endoplasmático , Processamento de Proteína Pós-Traducional , Subunidades Ribossômicas Maiores de Eucariotos , Ubiquitina-Proteína Ligases , Sítios de Ligação , Biocatálise , Microscopia Crioeletrônica , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Membranas Intracelulares/química , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestrutura , Peptidil Transferases/química , Peptidil Transferases/metabolismo , Peptidil Transferases/ultraestrutura , Ligação Proteica , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/ultraestrutura , Subunidades Ribossômicas Maiores de Eucariotos/química , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/ultraestrutura , RNA de Transferência/metabolismo , Especificidade por Substrato , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/ultraestrutura
4.
Nature ; 627(8003): 437-444, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38383789

RESUMO

Stalled ribosomes at the endoplasmic reticulum (ER) are covalently modified with the ubiquitin-like protein UFM1 on the 60S ribosomal subunit protein RPL26 (also known as uL24)1,2. This modification, which is known as UFMylation, is orchestrated by the UFM1 ribosome E3 ligase (UREL) complex, comprising UFL1, UFBP1 and CDK5RAP3 (ref. 3). However, the catalytic mechanism of UREL and the functional consequences of UFMylation are unclear. Here we present cryo-electron microscopy structures of UREL bound to 60S ribosomes, revealing the basis of its substrate specificity. UREL wraps around the 60S subunit to form a C-shaped clamp architecture that blocks the tRNA-binding sites at one end, and the peptide exit tunnel at the other. A UFL1 loop inserts into and remodels the peptidyl transferase centre. These features of UREL suggest a crucial function for UFMylation in the release and recycling of stalled or terminated ribosomes from the ER membrane. In the absence of functional UREL, 60S-SEC61 translocon complexes accumulate at the ER membrane, demonstrating that UFMylation is necessary for releasing SEC61 from 60S subunits. Notably, this release is facilitated by a functional switch of UREL from a 'writer' to a 'reader' module that recognizes its product-UFMylated 60S ribosomes. Collectively, we identify a fundamental role for UREL in dissociating 60S subunits from the SEC61 translocon and the basis for UFMylation in regulating protein homeostasis at the ER.


Assuntos
Retículo Endoplasmático , Processamento de Proteína Pós-Traducional , Subunidades Ribossômicas Maiores de Eucariotos , Ubiquitina-Proteína Ligases , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sítios de Ligação , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/ultraestrutura , Microscopia Crioeletrônica , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Homeostase , Membranas Intracelulares/metabolismo , Peptidil Transferases/química , Peptidil Transferases/metabolismo , Peptidil Transferases/ultraestrutura , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/ultraestrutura , RNA de Transferência/metabolismo , Canais de Translocação SEC/química , Canais de Translocação SEC/metabolismo , Canais de Translocação SEC/ultraestrutura , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/ultraestrutura , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/ultraestrutura , Subunidades Ribossômicas Maiores de Eucariotos/química , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/ultraestrutura
5.
Angew Chem Int Ed Engl ; 63(14): e202316777, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38366985

RESUMO

Topological transformations and permutations of proteins have attracted significant interest as strategies to generate new protein functionalities or stability. These efforts have mainly been inspired by naturally occurring post-translational modifications, such as head-to-tail cyclization, circular permutation, or lasso-like entanglement. Such approaches can be realized experimentally via genetic encoding, in the case of circular permutation, or via enzymatic processing, in the case of cyclization. Notably, these previously described strategies leave the polypeptide backbone orientation unaltered. Here we describe an unnatural protein permutation, the protein domain inversion, whereby a C-terminal portion of a protein is enzymatically inverted from the canonical N-to-C to a C-to-C configuration with respect to the N-terminal part of the protein. The closest conceptually analogous biological process is perhaps the inversion of DNA segments as catalyzed by recombinases. We achieve these inversions using an engineered sortase A, a widely used transpeptidase. Our reactions proceed efficiently under mild conditions at 4-25 °C and are compatible with entirely heterologously-produced protein substrates.


Assuntos
Aminoaciltransferases , Peptidil Transferases , Domínios Proteicos , Peptídeos/química , Proteínas de Bactérias/metabolismo , Aminoaciltransferases/química , Peptidil Transferases/metabolismo , DNA , Catálise
6.
Microbiol Spectr ; 11(4): e0521722, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37255442

RESUMO

Peptidoglycan is an essential component of the bacterial cell envelope that sustains the turgor pressure of the cytoplasm, determines cell shape, and acts as a scaffold for the anchoring of envelope polymers such as lipoproteins. The final cross-linking step of peptidoglycan polymerization is performed by classical d,d-transpeptidases belonging to the penicillin-binding protein (PBP) family and by l,d-transpeptidases (LDTs), which are dispensable for growth in most bacterial species and whose physiological functions remain elusive. In this study, we investigated the contribution of LDTs to cell envelope synthesis in Pseudomonas aeruginosa grown in planktonic and biofilm conditions. We first assigned a function to each of the three P. aeruginosa LDTs by gene inactivation in P. aeruginosa, heterospecific gene expression in Escherichia coli, and, for one of them, direct determination of its enzymatic activity. We found that the three P. aeruginosa LDTs catalyze peptidoglycan cross-linking (LdtPae1), the anchoring of lipoprotein OprI to the peptidoglycan (LdtPae2), and the hydrolysis of the resulting peptidoglycan-OprI amide bond (LdtPae3). Construction of a phylogram revealed that LDTs performing each of these three functions in various species cannot be assigned to distinct evolutionary lineages, in contrast to what has been observed with PBPs. We showed that biofilm, but not planktonic bacteria, displayed an increase proportion of peptidoglycan cross-links formed by LdtPae1 and a greater extent of OprI anchoring to peptidoglycan, which is controlled by LdtPae2 and LdtPae3. Consistently, deletion of each of the ldt genes impaired biofilm formation and potentiated the bactericidal activity of EDTA. These results indicate that LDTs contribute to the stabilization of the bacterial cell envelope and to the adaptation of peptidoglycan metabolism to growth in biofilm. IMPORTANCE Active-site cysteine LDTs form a functionally heterologous family of enzymes that contribute to the biogenesis of the bacterial cell envelope through formation of peptidoglycan cross-links and through the dynamic anchoring of lipoproteins to peptidoglycan. Here, we report the role of three P. aeruginosa LDTs that had not been previously characterized. We show that these enzymes contribute to resistance to the bactericidal activity of EDTA and to the adaptation of cell envelope polymers to conditions that prevail in biofilms. These results indicate that LDTs should be considered putative targets in the development of drug-EDTA associations for the control of biofilm-related infections.


Assuntos
Peptidil Transferases , Peptidil Transferases/genética , Peptidil Transferases/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Peptidoglicano/metabolismo , Ácido Edético , Proteínas de Ligação às Penicilinas/genética , Proteínas de Ligação às Penicilinas/metabolismo , Escherichia coli/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
7.
Nucleic Acids Res ; 51(2): 744-764, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36610750

RESUMO

Ribosomes are ribozymes, hence correct folding of the rRNAs during ribosome biogenesis is crucial to ensure catalytic activity. RNA helicases, which can modulate RNA-RNA and RNA/protein interactions, are proposed to participate in rRNA tridimensional folding. Here, we analyze the biochemical properties of Dbp6, a DEAD-box RNA helicase required for the conversion of the initial 90S pre-ribosomal particle into the first pre-60S particle. We demonstrate that in vitro, Dbp6 shows ATPase as well as annealing and clamping activities negatively regulated by ATP. Mutations in Dbp6 core motifs involved in ATP binding and ATP hydrolysis are lethal and impair Dbp6 ATPase activity but increase its RNA binding and RNA annealing activities. These data suggest that correct regulation of these activities is important for Dbp6 function in vivo. Using in vivo cross-linking (CRAC) experiments, we show that Dbp6 interacts with 25S rRNA sequences located in the 5' domain I and in the peptidyl transferase center (PTC), and also crosslinks to snoRNAs hybridizing to the immature PTC. We propose that the ATPase and RNA clamping/annealing activities of Dbp6 modulate interactions of snoRNAs with the immature PTC and/or contribute directly to the folding of this region.


Assuntos
RNA Helicases DEAD-box , Ribossomos , Proteínas de Saccharomyces cerevisiae , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Peptidil Transferases/genética , Peptidil Transferases/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , RNA Helicases/genética , RNA Ribossômico/metabolismo , RNA Nucleolar Pequeno/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Biochemistry ; 61(20): 2241-2247, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36178262

RESUMO

The peptidyl transferase center (PTC) in the large subunit of the ribosome plays a critical role in protein synthesis by catalyzing the formation of peptide bonds with an astounding speed of about 15 to 20 peptide bonds per second. The ribosome coordinates the nucleophilic attack and deprotonation in the rate-limiting step at the PTC. However, the details of peptide bond formation within the ribosome, particularly the precise role of the two water molecules in the PTC, remain unclear. Here, we propose a novel stepwise "proton shuttle" mechanism which corroborates all the reported experimental measurements so far. In this mechanism, a water molecule close to A76 of peptidyl-tRNA 2'- and 3'-O stabilizes the transition state. The other one adjacent to the carbonyl oxygen of peptidyl-tRNA actively participates in the proton shuttle, playing the catalytic role of ribosome-catalyzed peptide bond formation.


Assuntos
Peptidil Transferases , Oxigênio/metabolismo , Peptídeos/metabolismo , Peptidil Transferases/metabolismo , Prótons , Ribossomos/metabolismo , Água/química
9.
FEMS Microbiol Lett ; 369(1)2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-35998313

RESUMO

In this study, we analyzed the srtE gene from Corynebacterium glutamicum ATCC 13032, which codes for class E sortase, a transpeptidase involved in attaching surface proteins to the cell wall peptidoglycan. The surface proteins contain an N-terminal leader sequence and a C-terminal sorting signal which consist of a LAXTG motif, a transmembrane region, and a few positively charged amino acids. Sortase E deletion or its overexpression alters the attachment of the surface proteins to the cell wall peptidoglycan; however, the effects on morphology and bacterial physiology have not been studied. Thus, we constructed three C. glutamicum derivatives such as srtE deletion mutant, complemented and overexpressed strains to monitor the possible impact of the gene on cell growth, morphology, and physiological changes. Interestingly, deletion of the gene did not show any change in growth or morphology in C. glutamicum but showed a decrease in cell surface hydrophobicity and heat stress. However, the cells overexpressing the protein not only showed elongated cell morphology and a reduction in hydrophobicity when compared to wild-type and complemented strain, but also showed an increased sensitivity to heat. These results suggest that C. glutamicum sortase E deletion or overexpression causes sorting intermediates to accumulate, altering cellular morphology and physiology and adversely impacting the membrane integrity.


Assuntos
Corynebacterium glutamicum , Peptidil Transferases , Aminoácidos/metabolismo , Aminoaciltransferases , Proteínas de Bactérias/metabolismo , Corynebacterium glutamicum/metabolismo , Cisteína Endopeptidases , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Peptidoglicano/metabolismo , Peptidil Transferases/metabolismo
10.
Nucleic Acids Res ; 50(13): 7669-7679, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35766409

RESUMO

Ribosome serves as a universal molecular machine capable of synthesis of all the proteins in a cell. Small-molecule inhibitors, such as ribosome-targeting antibiotics, can compromise the catalytic versatility of the ribosome in a context-dependent fashion, preventing transpeptidation only between particular combinations of substrates. Classic peptidyl transferase center inhibitor chloramphenicol (CHL) fails to inhibit transpeptidation reaction when the incoming A site acceptor substrate is glycine, and the molecular basis for this phenomenon is unknown. Here, we present a set of high-resolution X-ray crystal structures that explain why CHL is unable to inhibit peptide bond formation between the incoming glycyl-tRNA and a nascent peptide that otherwise is conducive to the drug action. Our structures reveal that fully accommodated glycine residue can co-exist in the A site with the ribosome-bound CHL. Moreover, binding of CHL to a ribosome complex carrying glycyl-tRNA does not affect the positions of the reacting substrates, leaving the peptide bond formation reaction unperturbed. These data exemplify how small-molecule inhibitors can reshape the A-site amino acid binding pocket rendering it permissive only for specific amino acid residues and rejective for the other substrates extending our detailed understanding of the modes of action of ribosomal antibiotics.


Assuntos
Cloranfenicol , Peptidil Transferases , Aminoácidos/metabolismo , Antibacterianos/química , Antibacterianos/farmacologia , Sítios de Ligação , Cloranfenicol/farmacologia , Glicina , Peptídeos/química , Peptidil Transferases/metabolismo , RNA de Transferência/metabolismo
11.
Mol Oral Microbiol ; 37(5): 206-217, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35289506

RESUMO

Actinomyces oris plays an important role in oral biofilm development. Like many gram-positive bacteria, A. oris produces a sizable number of surface proteins that are anchored to bacterial peptidoglycan by a conserved transpeptidase named the housekeeping sortase SrtA; however, the biological role of many A. oris surface proteins in biofilm formation is largely unknown. Here, we report that the glycoprotein GspA-a genetic suppressor of srtA deletion lethality-not only promotes biofilm formation but also maintains cell membrane integrity under cation stress. In comparison to wild-type cells, under elevated concentrations of mono- and divalent cations the formation of mono- and multi-species biofilms by mutant cells devoid of gspA was significantly diminished, although planktonic growth of both cell types in the presence of cations was indistinguishable. Because gspA overexpression is lethal to cells lacking gspA and srtA, we performed a genetic screen to identify GspA determinants involving cell viability. DNA sequencing and biochemical characterizations of viable clones revealed that mutations of two critical cysteine residues and a serine residue severely affected GspA glycosylation and biofilm formation. Furthermore, mutant cells lacking gspA were markedly sensitive to sodium dodecyl sulfate, a detergent that solubilizes the cytoplasmic membranes, suggesting the cell envelope of the gspA mutant was altered. Consistent with this observation, the gspA mutant exhibited increased membrane permeability, independent of GspA glycosylation, compared to the wild-type strain. Altogether, the results support the notion that the cell wall-anchored glycoprotein GspA provides a defense mechanism against cation stress in biofilm development promoted by A. oris.


Assuntos
Cisteína , Peptidil Transferases , Actinomyces , Proteínas de Bactérias/metabolismo , Biofilmes , Cátions Bivalentes/metabolismo , Parede Celular/metabolismo , Cisteína/metabolismo , Detergentes/metabolismo , Proteínas de Membrana/genética , Peptidoglicano/metabolismo , Peptidil Transferases/metabolismo , Serina/metabolismo , Dodecilsulfato de Sódio/metabolismo
12.
Nucleic Acids Res ; 50(4): 2258-2269, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35150281

RESUMO

The ribosome is a fundamental biomolecular complex that synthesizes proteins in cells. Nascent proteins emerge from the ribosome through a tunnel, where they may interact with the tunnel walls or small molecules such as antibiotics. These interactions can cause translational arrest with notable physiological consequences. Here, we studied the arrest caused by the regulatory peptide VemP, which is known to form α-helices inside the ribosome tunnel near the peptidyl transferase center under specific conditions. We used all-atom molecular dynamics simulations of the entire ribosome and circular dichroism spectroscopy to study the driving forces of helix formation and how VemP causes the translational arrest. To that aim, we compared VemP dynamics in the ribosome tunnel with its dynamics in solution. We show that the VemP peptide has a low helical propensity in water and that the propensity is higher in mixtures of water and trifluorethanol. We propose that helix formation within the ribosome is driven by the interactions of VemP with the tunnel and that a part of VemP acts as an anchor. This anchor might slow down VemP progression through the tunnel enabling α-helix formation, which causes the elongation arrest.


Assuntos
Peptidil Transferases , Ribossomos , Peptídeos/metabolismo , Peptidil Transferases/metabolismo , Biossíntese de Proteínas , Dobramento de Proteína , Estrutura Secundária de Proteína , Proteínas/metabolismo , Ribossomos/metabolismo , Água/metabolismo
13.
Sci Rep ; 11(1): 24061, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34911999

RESUMO

Peptide bond formation on the ribosome requires that aminoacyl-tRNAs and peptidyl-tRNAs are properly positioned on the A site and the P site of the peptidyl transferase center (PTC) so that nucleophilic attack can occur. Here we analyse some constraints associated with the induced-fit mechanism of the PTC, that promotes this positioning through a compaction around the aminoacyl ester orchestrated by U2506. The physical basis of PTC decompaction, that allows the elongated peptidyl-tRNA to free itself from that state and move to the P site of the PTC, is still unclear. From thermodynamics considerations and an analysis of published ribosome structures, the present work highlights the rational of this mechanism, in which the free-energy released by the new peptide bond is used to kick U2506 away from the reaction center. Furthermore, we show the evidence that decompaction is impaired when the nascent peptide is not yet anchored inside the exit tunnel, which may contribute to explain why the first rounds of elongation are inefficient, an issue that has attracted much interest for about two decades. Results in this field are examined in the light of the present analysis and a physico-chemical correlation in the genetic code, which suggest that elementary constraints associated with the size of the side-chain of the amino acids penalize early elongation events.


Assuntos
Modelos Moleculares , Elongação Traducional da Cadeia Peptídica , Peptidil Transferases/química , Peptidil Transferases/metabolismo , Conformação Proteica , Ribossomos/metabolismo , Aminoácidos/química , Sítios de Ligação , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Biossíntese de Proteínas , Relação Estrutura-Atividade
14.
Biochemistry (Mosc) ; 86(9): 1122-1127, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34565315

RESUMO

Class I release factors (RFs) recognize stop codons in the sequences of mRNAs and are required for the hydrolysis of peptidyl-tRNA in the ribosomal P site during the final step of protein synthesis in bacteria, resulting in the release of a complete polypeptide chain from the ribosome. A key role in this process belongs to the highly conserved GGQ motif in RFs. Mutations in this motif can reduce the hydrolysis rate or even completely inhibit the reaction. Previously, it was hypothesized that the amino acid residues of GGQ (especially glutamine) are essential for the proper coordination of the water molecule for subsequent hydrolysis of the ester bond. However, available structures of the 70S ribosome termination complex do not allow unambiguous identification of the exact orientation of the carbonyl group in peptidyl-tRNA relative to the GGQ, as well as of the position of the catalytic water molecule in the peptidyl transferase center (PTC). This mini-review summarizes key facts and hypotheses on the role of GGQ in the catalysis of peptide release, as well as suggests and discusses future experiments aimed to produce high-quality structural data for deciphering the precise mechanism of RF-mediated catalysis.


Assuntos
Ésteres/metabolismo , Aminoacil-RNA de Transferência/metabolismo , Motivos de Aminoácidos , Biocatálise , Hidrólise , Terminação Traducional da Cadeia Peptídica , Peptídeos/metabolismo , Peptidil Transferases/metabolismo , Biossíntese de Proteínas , Ribossomos/química , Ribossomos/metabolismo
15.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34187885

RESUMO

The carbapenem family of ß-lactam antibiotics displays a remarkably broad spectrum of bactericidal activity, exemplified by meropenem's phase II clinical trial success in patients with pulmonary tuberculosis, a devastating disease for which ß-lactam drugs historically have been notoriously ineffective. The discovery and validation of l,d-transpeptidases (Ldts) as critical drug targets of bacterial cell-wall biosynthesis, which are only potently inhibited by the carbapenem and penem structural classes, gave an enzymological basis for the effectiveness of the first antitubercular ß-lactams. Decades of study have delineated mechanisms of ß-lactam inhibition of their canonical targets, the penicillin-binding proteins; however, open questions remain regarding the mechanisms of Ldt inhibition that underlie programs in drug design, particularly the optimization of kinetic behavior and potency. We have investigated critical features of mycobacterial Ldt inhibition and demonstrate here that the covalent inhibitor meropenem undergoes both reversible reaction and nonhydrolytic off-loading reactions from the cysteine transpeptidase LdtMt2 through a high-energy thioester adduct. Next-generation carbapenem optimization strategies should minimize adduct loss from unproductive mechanisms of Ldt adducts that reduce effective drug concentration.


Assuntos
Antibacterianos/farmacologia , Meropeném/farmacologia , Peptidil Transferases/metabolismo , Antibacterianos/química , Lactonas/química , Lactonas/farmacologia , Meropeném/química , Testes de Sensibilidade Microbiana
16.
Mol Cell ; 81(14): 2914-2928.e7, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34107307

RESUMO

Molecular chaperones assist with protein folding by interacting with nascent polypeptide chains (NCs) during translation. Whether the ribosome can sense chaperone defects and, in response, abort translation of misfolding NCs has not yet been explored. Here we used quantitative proteomics to investigate the ribosome-associated chaperone network in E. coli and the consequences of its dysfunction. Trigger factor and the DnaK (Hsp70) system are the major NC-binding chaperones. HtpG (Hsp90), GroEL, and ClpB contribute increasingly when DnaK is deficient. Surprisingly, misfolding because of defects in co-translational chaperone function or amino acid analog incorporation results in recruitment of the non-canonical release factor RF3. RF3 recognizes aberrant NCs and then moves to the peptidyltransferase site to cooperate with RF2 in mediating chain termination, facilitating clearance by degradation. This function of RF3 reduces the accumulation of misfolded proteins and is critical for proteostasis maintenance and cell survival under conditions of limited chaperone availability.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Chaperonas Moleculares/metabolismo , Biossíntese de Proteínas/fisiologia , Aminoácidos/metabolismo , Sobrevivência Celular/fisiologia , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Fatores de Terminação de Peptídeos/metabolismo , Peptidil Transferases/metabolismo , Ligação Proteica/fisiologia , Dobramento de Proteína , Proteômica/métodos , Proteostase/fisiologia , Ribossomos/metabolismo
17.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33941679

RESUMO

The gram-negative bacterial cell envelope is made up of an outer membrane (OM), an inner membrane (IM) that surrounds the cytoplasm, and a periplasmic space between the two membranes containing peptidoglycan (PG or murein). PG is an elastic polymer that forms a mesh-like sacculus around the IM, protecting cells from turgor and environmental stress conditions. In several bacteria, including Escherichia coli, the OM is tethered to PG by an abundant OM lipoprotein, Lpp (or Braun's lipoprotein), that functions to maintain the structural and functional integrity of the cell envelope. Since its discovery, Lpp has been studied extensively, and although l,d-transpeptidases, the enzymes that catalyze the formation of PG-Lpp linkages, have been earlier identified, it is not known how these linkages are modulated. Here, using genetic and biochemical approaches, we show that LdtF (formerly yafK), a newly identified paralog of l,d-transpeptidases in E. coli, is a murein hydrolytic enzyme that catalyzes cleavage of Lpp from the PG sacculus. LdtF also exhibits glycine-specific carboxypeptidase activity on muropeptides containing a terminal glycine residue. LdtF was earlier presumed to be an l,d-transpeptidase; however, our results show that it is indeed an l,d-endopeptidase that hydrolyzes the products generated by the l,d-transpeptidases. To summarize, this study describes the discovery of a murein endopeptidase with a hitherto unknown catalytic specificity that removes the PG-Lpp cross-links, suggesting a role for LdtF in the regulation of PG-OM linkages to maintain the structural integrity of the bacterial cell envelope.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Lipoproteínas/metabolismo , Peptidoglicano/metabolismo , Peptidil Transferases/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Carboxipeptidases/genética , Carboxipeptidases/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Glicina/metabolismo , Lipoproteínas/genética , Espectrometria de Massas/métodos , Mutação , Peptidil Transferases/genética
18.
Biophys J ; 120(12): 2425-2435, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33932440

RESUMO

Force-sensitive arrest peptides regulate protein biosynthesis by stalling the ribosome as they are translated. Synthesis can be resumed when the nascent arrest peptide experiences a pulling force of sufficient magnitude to break the stall. Efficient stalling is dependent on the specific identity of a large number of amino acids, including amino acids that are tens of angstroms away from the peptidyl transferase center (PTC). The mechanism of force-induced restart and the role of these essential amino acids far from the PTC is currently unknown. We use hundreds of independent molecular dynamics trajectories spanning over 120 µs in combination with kinetic analysis to characterize multiple barriers along the force-induced restart pathway for the arrest peptide SecM. We find that the essential amino acids far from the PTC play a major role in controlling the transduction of applied force. In successive states along the stall-breaking pathway, the applied force propagates up the nascent chain until it reaches the C-terminus of SecM and the PTC, inducing conformational changes that allow for restart of translation. A similar mechanism of force propagation through multiple states is observed in the VemP stall-breaking pathway, but secondary structure in VemP allows for heterogeneity in the order of transitions through intermediate states. Results from both arrest peptides explain how residues that are tens of angstroms away from the catalytic center of the ribosome impact stalling efficiency by mediating the response to an applied force and shielding the amino acids responsible for maintaining the stalled state of the PTC.


Assuntos
Peptidil Transferases , Ribossomos , Cinética , Peptídeos/metabolismo , Peptidil Transferases/metabolismo , Biossíntese de Proteínas , Estrutura Secundária de Proteína , Ribossomos/metabolismo
19.
Cell Chem Biol ; 28(9): 1321-1332.e5, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-33826941

RESUMO

Effective treatment of tuberculosis is frequently hindered by the emerging antimicrobial resistance of Mycobacterium tuberculosis. The present study evaluates monocyclic ß-lactam compounds targeting the mycobacterial cell wall remodeling. Novel N-thio-ß-lactams were designed, synthesized, and characterized on the L,D-transpeptidase-2, a validated target in M. tuberculosis. The candidates were evaluated in biochemical assays identifying five compounds presenting target-specific kinetic constants equal or superior to meropenem, a carbapenem currently considered for tuberculosis therapy. Mass spectrometry in line with the crystal structures of five target-ligand complexes revealed that the N-thio-ß-lactams act via an unconventional mode of adduct formation, transferring the thio-residues from the lactam ring to the active-site cysteine of LdtMt2. The resulting stable adducts lead to a long-term inactivation of the target protein. Finally, the candidates were evaluated in vitro against a drug-susceptible and multidrug-resistant clinical isolates of M. tuberculosis, confirming the antimycobacterial effect of these novel compounds.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Peptidil Transferases/antagonistas & inibidores , beta-Lactamas/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Mycobacterium tuberculosis/enzimologia , Peptidil Transferases/metabolismo , beta-Lactamas/síntese química , beta-Lactamas/química
20.
mBio ; 12(1)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33622730

RESUMO

Cargo proteins of the type IX secretion system (T9SS) in human pathogens from the Bacteroidetes phylum invariably possess a conserved C-terminal domain (CTD) that functions as a signal for outer membrane (OM) translocation. In Porphyromonas gingivalis, the CTD of cargos is cleaved off after translocation, and anionic lipopolysaccharide (A-LPS) is attached. This transpeptidase reaction anchors secreted proteins to the OM. PorZ, a cell surface-associated protein, is an essential component of the T9SS whose function was previously unknown. We recently solved the crystal structure of PorZ and found that it consists of two ß-propeller moieties, followed by a CTD. In this study, we performed structure-based modeling, suggesting that PorZ is a carbohydrate-binding protein. Indeed, we found that recombinant PorZ specifically binds A-LPS in vitro Binding was blocked by monoclonal antibodies that specifically react with a phosphorylated branched mannan in the anionic polysaccharide (A-PS) component of A-LPS, but not with the core oligosaccharide or the lipid A endotoxin. Examination of A-LPS derived from a cohort of mutants producing various truncations of A-PS confirmed that the phosphorylated branched mannan is indeed the PorZ ligand. Moreover, purified recombinant PorZ interacted with the PorU sortase in an A-LPS-dependent manner. This interaction on the cell surface is crucial for the function of the "attachment complex" composed of PorU, PorZ, and the integral OM ß-barrel proteins PorV and PorQ, which is involved in posttranslational modification and retention of T9SS cargos on the bacterial surface.IMPORTANCE Bacteria have evolved multiple systems to transport effector proteins to their surface or into the surrounding milieu. These proteins have a wide range of functions, including attachment, motility, nutrient acquisition, and toxicity in the host. Porphyromonas gingivalis, the human pathogen responsible for severe gum diseases (periodontitis), uses a recently characterized type IX secretion system (T9SS) to translocate and anchor secreted virulence effectors to the cell surface. Anchorage is facilitated by sortase, an enzyme that covalently attaches T9SS cargo proteins to a unique anionic lipopolysaccharide (A-LPS) moiety of P. gingivalis Here, we show that the T9SS component PorZ interacts with sortase and specifically binds A-LPS. Binding is mediated by a phosphorylated branched mannan repeat in A-LPS polysaccharide. A-LPS-bound PorZ interacts with sortase with significantly higher affinity, facilitating modification of cargo proteins by the cell surface attachment complex of the T9SS.


Assuntos
Aminoaciltransferases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/metabolismo , Cisteína Endopeptidases/metabolismo , Lipopolissacarídeos/metabolismo , Peptidil Transferases/metabolismo , Porphyromonas gingivalis/genética , Sistemas de Secreção Bacterianos/genética , Peptidil Transferases/genética , Porphyromonas gingivalis/enzimologia , Porphyromonas gingivalis/metabolismo , Ligação Proteica , Processamento de Proteína Pós-Traducional , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA