Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
1.
Chem Biol Drug Des ; 98(3): 305-322, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34047462

RESUMO

Bacterial infections can cause serious problems that threaten public health over a long period of time. Moreover, the continuous emergence of drug-resistant bacteria necessitates the development of novel antibacterial agents. D-alanyl-D-alanine ligase (Ddl) is an indispensable adenosine triphosphate-dependent bacterial enzyme involved in the biosynthesis of peptidoglycan precursor, which catalyzes the ligation of two D-alanine molecules into one D-alanyl-D-alanine dipeptide. This dipeptide is an essential component of the intracellular peptidoglycan precursor, uridine diphospho-N-acetylmuramic acid (UDP-MurNAc)-pentapeptide, that maintains the integrity of the bacterial cell wall by cross-linking the peptidoglycan chain, and is crucial for the survival of pathogens. Consequently, Ddl is expected to be a promising target for the development of antibacterial agents. In this review, we present a brief introduction regarding the structure and function of Ddl, as well as an overview of the various Ddl inhibitors currently being used as antibacterial agents, specifically highlighting their inhibitory activities, structure-activity relationships and mechanisms of action.


Assuntos
Antibacterianos/química , Descoberta de Drogas , Inibidores Enzimáticos/química , Peptídeo Sintases/química , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Compostos Bicíclicos com Pontes/química , Compostos Bicíclicos com Pontes/metabolismo , Compostos Bicíclicos com Pontes/farmacologia , Inibidores Enzimáticos/metabolismo , Compostos Heterocíclicos com 1 Anel/química , Compostos Heterocíclicos com 1 Anel/metabolismo , Compostos Heterocíclicos com 1 Anel/farmacologia , Peptídeo Sintases/metabolismo , Peptidoglicano/biossíntese , Relação Estrutura-Atividade
2.
Mol Microbiol ; 116(1): 126-139, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33560537

RESUMO

Small RNAs (sRNAs) are universal posttranscriptional regulators of gene expression and hundreds of sRNAs are frequently found in each and every bacterium. In order to coordinate cellular processes in response to ambient conditions, many sRNAs are differentially expressed. Here, we asked how these small regulators are regulated using Agrobacterium tumefaciens as a model system. Among the best-studied sRNAs in this plant pathogen are AbcR1 regulating numerous ABC transporters and PmaR, a regulator of peptidoglycan biosynthesis, motility, and ampicillin resistance. We report that the LysR-type regulator VtlR (also known as LsrB) controls expression of AbcR1 and PmaR. A vtlR/lsrB deletion strain showed growth defects, was sensitive to antibiotics and severely compromised in plant tumor formation. Transcriptome profiling by RNA-sequencing revealed more than 1,200 genes with altered expression in the mutant. Consistent with the function of VtlR/LsrB as regulator of AbcR1, many ABC transporter genes were affected. Interestingly, the transcription factor did not only control the expression of AbcR1 and PmaR. In the mutant, 102 sRNA genes were significantly up- or downregulated. Thus, our study uncovered VtlR/LsrB as the master regulator of numerous sRNAs. Thereby, the transcriptional regulator harnesses the regulatory power of sRNAs to orchestrate the expression of distinct sub-regulons.


Assuntos
Agrobacterium tumefaciens/genética , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica/genética , RNA Bacteriano/biossíntese , Pequeno RNA não Traduzido/biossíntese , Fatores de Transcrição/genética , Transportadores de Cassetes de Ligação de ATP/biossíntese , Transportadores de Cassetes de Ligação de ATP/genética , Agrobacterium tumefaciens/efeitos dos fármacos , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Proteínas de Transporte/metabolismo , Deleção de Genes , Peptidoglicano/biossíntese , Fatores de Transcrição/metabolismo , Transcrição Gênica/genética , Ativação Transcricional/genética
3.
Genome Biol Evol ; 12(9): 1528-1548, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32761170

RESUMO

Bacteria of the Planctomycetes phylum have many unique cellular features, such as extensive membrane invaginations and the ability to import macromolecules. These features raise intriguing questions about the composition of their cell envelopes. In this study, we have used microscopy, phylogenomics, and proteomics to examine the composition and evolution of cell envelope proteins in Tuwongella immobilis and other members of the Planctomycetes. Cryo-electron tomography data indicated a distance of 45 nm between the inner and outer membranes in T. immobilis. Consistent with the wide periplasmic space, our bioinformatics studies showed that the periplasmic segments of outer-membrane proteins in type II secretion systems are extended in bacteria of the order Planctomycetales. Homologs of two highly abundant cysteine-rich cell wall proteins in T. immobilis were identified in all members of the Planctomycetales, whereas genes for peptidoglycan biosynthesis and cell elongation have been lost in many members of this bacterial group. The cell wall proteins contain multiple copies of the YTV motif, which is the only domain that is conserved and unique to the Planctomycetales. Earlier diverging taxa in the Planctomycetes phylum contain genes for peptidoglycan biosynthesis but no homologs to the YTV cell wall proteins. The major remodeling of the cell envelope in the ancestor of the Planctomycetales coincided with the emergence of budding and other unique cellular phenotypes. The results have implications for hypotheses about the process whereby complex cellular features evolve in bacteria.


Assuntos
Proteínas de Bactérias/genética , Evolução Biológica , Planctomycetales/genética , Planctomycetales/ultraestrutura , Peptidoglicano/biossíntese , Domínios Proteicos
4.
Nat Microbiol ; 5(11): 1390-1402, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32747796

RESUMO

Obligate intracellular bacteria such as Chlamydia trachomatis undergo a complex developmental cycle between infectious, non-replicative elementary-body and non-infectious, replicative reticulate-body forms. Elementary bodies transform to reticulate bodies shortly after entering a host cell, a crucial process in infection, initiating chlamydial replication. As Chlamydia fail to replicate outside the host cell, it is unknown how the replicative part of the developmental cycle is initiated. Here we show, using a cell-free approach in axenic media, that the uptake of glutamine by the bacteria is crucial for peptidoglycan synthesis, which has a role in Chlamydia replication. The increased requirement for glutamine in infected cells is satisfied by reprogramming the glutamine metabolism in a c-Myc-dependent manner. Glutamine is effectively taken up by the glutamine transporter SLC1A5 and metabolized via glutaminase. Interference with this metabolic reprogramming limits the growth of Chlamydia. Intriguingly, Chlamydia failed to produce progeny in SLC1A5-knockout organoids and mice. Thus, we report on the central role of glutamine for the development of an obligate intracellular pathogenic bacterium and the reprogramming of host glutamine metabolism, which may provide a basis for innovative anti-infection strategies.


Assuntos
Infecções por Chlamydia/metabolismo , Chlamydia trachomatis/fisiologia , Glutamina/metabolismo , Peptidoglicano/biossíntese , Sistema ASC de Transporte de Aminoácidos/genética , Sistema ASC de Transporte de Aminoácidos/metabolismo , Animais , Linhagem Celular , Infecções por Chlamydia/microbiologia , Chlamydia trachomatis/crescimento & desenvolvimento , Chlamydia trachomatis/metabolismo , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Camundongos , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais
5.
mBio ; 11(4)2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32636250

RESUMO

In Escherichia coli, FtsEX coordinates peptidoglycan (PG) synthesis and hydrolysis at the septum. It acts on FtsA in the cytoplasm to promote recruitment of septal PG synthetases and recruits EnvC, an activator of septal PG hydrolases, in the periplasm. Following recruitment, ATP hydrolysis by FtsEX is thought to regulate both PG synthesis and hydrolysis, but how it does this is not well understood. Here, we show that an ATPase mutant of FtsEX blocks septal PG synthesis similarly to cephalexin, suggesting that ATP hydrolysis by FtsEX is required throughout septation. Using mutants that uncouple the roles of FtsEX in septal PG synthesis and hydrolysis, we find that recruitment of EnvC to the septum by FtsEX, but not ATP hydrolysis, is required to promote cell separation when the NlpD-mediated cell separation system is present. However, ATP hydrolysis by FtsEX becomes necessary for efficient cell separation when the NlpD system is inactivated, suggesting that the ATPase activity of FtsEX is required for optimal activity of EnvC. Importantly, under conditions that suppress the role of FtsEX in cell division, disruption of the FtsEX-FtsA interaction delays cell separation, highlighting the importance of this interaction in coupling the cell separation system with the septal PG synthetic complex.IMPORTANCE Cytokinesis in Gram-negative bacteria requires coordinated invagination of the three layers of the cell envelope; otherwise, cells become sensitive to hydrophobic antibiotics and can even undergo cell lysis. InE. coli, the ABC transporter FtsEX couples the synthesis and hydrolysis of the stress-bearing peptidoglycan layer at the septum by interacting with FtsA and EnvC, respectively. ATP hydrolysis by FtsEX is critical for its function, but the reason why is not clear. Here, we find that in the absence of ATP hydrolysis, FtsEX blocks septal PG synthesis similarly to cephalexin. However, an FtsEX ATPase mutant, under conditions where it cannot block division, rescues ftsEX phenotypes as long as a partially redundant cell separation system is present. Furthermore, we find that the FtsEX-FtsA interaction is important for efficient cell separation.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Proteínas de Escherichia coli/metabolismo , Peptidoglicano/biossíntese , Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Ciclo Celular/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Hidrólise , N-Acetil-Muramil-L-Alanina Amidase
6.
Genes (Basel) ; 11(4)2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32316316

RESUMO

Nitrogen-fixing Actinobacteria of the genus Frankia can be subdivided into four phylogenetically distinct clades; members of clusters one to three engage in nitrogen-fixing root nodule symbioses with actinorhizal plants. Mur enzymes are responsible for the biosynthesis of the peptidoglycan layer of bacteria. The four Mur ligases,MurC, MurD, MurE, and MurF, catalyse the addition of a short polypeptide to UDP-N-acetylmuramic acid. Frankia strains of cluster-2 and cluster-3 contain two copies of murC, while the strains of cluster-1 and cluster-4 contain only one. Phylogenetically, the protein encoded by the murC gene shared only by cluster-2 and cluster-3, termed MurC1, groups with MurC proteins of other Actinobacteria. The protein encoded by the murC gene found in all Frankia strains, MurC2, shows a higher similarity to the MurC proteins of plants than of Actinobacteria. MurC2 could have been either acquired via horizontal gene transfer or via gene duplication and convergent evolution, while murC1 was subsequently lost in the cluster-1 and cluster-4 strains. In the nodules induced by the cluster-2 strains, the expression levels of murC2 were significantly higher than those of murC1. Thus, there is clear sequence divergence between both types of Frankia MurC, and Frankia murC1 is in the process of being replaced by murC2, indicating selection in favour of murC2. Nevertheless, protein modelling showed no major structural differences between the MurCs from any phylogenetic group examined.


Assuntos
Proteínas de Bactérias/metabolismo , Frankia/crescimento & desenvolvimento , Família Multigênica , Peptidoglicano/biossíntese , Rhamnaceae/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Proteínas de Bactérias/genética , Frankia/classificação , Fixação de Nitrogênio , Filogenia , Rhamnaceae/genética , Rhamnaceae/microbiologia , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/microbiologia , Simbiose
7.
PLoS Pathog ; 15(10): e1008078, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31622442

RESUMO

The antibiotic, fosmidomycin (FSM) targets the methylerythritol phosphate (MEP) pathway of isoprenoid synthesis by inhibiting the essential enzyme, 1-deoxy-D-xylulose 5-phosphate reductoisomerase (Dxr) and is lethal to intracellular parasites and bacteria. The obligate intracellular bacterial pathogen, Chlamydia trachomatis, alternates between two developmental forms: the extracellular, infectious elementary body (EB), and the intracellular, replicative form called the reticulate body (RB). Several stressful growth conditions including iron deprivation halt chlamydial cell division and cause development of a morphologically enlarged, but viable form termed an aberrant body (AB). This phenotype constitutes the chlamydial developmental state known as persistence. This state is reversible as removal of the stressor allows the chlamydiae to re-enter and complete the normal developmental cycle. Bioinformatic analysis indicates that C. trachomatis encodes a homolog of Dxr, but its function and the requirement for isoprenoid synthesis in chlamydial development is not fully understood. We hypothesized that chlamydial Dxr (DxrCT) is functional and that the methylerythritol phosphate (MEP) pathway is required for normal chlamydial development. Thus, FSM exposure should be lethal to C. trachomatis. Overexpression of chlamydial Dxr (DxrCT) in Escherichia coli under FSM exposure and in a conditionally lethal dxr mutant demonstrated that DxrCT functions similarly to E. coli Dxr. When Chlamydia-infected cultures were exposed to FSM, EB production was significantly reduced. However, titer recovery assays, electron microscopy, and peptidoglycan labeling revealed that FSM inhibition of isoprenoid synthesis is not lethal to C. trachomatis, but instead induces persistence. Bactoprenol is a critical isoprenoid required for peptidoglycan precursor assembly. We therefore conclude that FSM induces persistence in Chlamydia by preventing bactoprenol production necessary for peptidoglycan precursor assembly and subsequent cell division.


Assuntos
Antibacterianos/farmacologia , Chlamydia trachomatis/efeitos dos fármacos , Fosfomicina/análogos & derivados , Peptidoglicano/biossíntese , Terpenos/metabolismo , Aldose-Cetose Isomerases/antagonistas & inibidores , Aldose-Cetose Isomerases/genética , Aldose-Cetose Isomerases/metabolismo , Linhagem Celular Tumoral , Infecções por Chlamydia/patologia , Chlamydia trachomatis/enzimologia , Chlamydia trachomatis/fisiologia , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Fosfomicina/farmacologia , Células HeLa , Humanos
8.
Int J Med Microbiol ; 309(6): 151335, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31378704

RESUMO

The type VI secretion system (T6SS) injects effector proteins into neighboring bacteria and host cells. Effector translocation is driven by contraction of a tubular sheath in the cytoplasm that expels an inner needle across the cell envelope. The AAA + ATPase ClpV disassembles and recycles the contracted sheath. While ClpV-1-GFP of the Burkholderia T6SS-1, which targets prokaryotic cells, assembles into randomly localized foci, ClpV-5-GFP of the virulence-associated T6SS-5 displays a polar distribution. The mechanisms underlying the localization of T6SSs to a particular site in the bacterial cell are currently unknown. We recently showed that ClpV-5-GFP retains its polar localization in the absence of all T6SS-5 components during infection of host cells. Herein, we set out to identify factors involved in the distribution of ClpV-5 and ClpV-1 in Burkholderia thailandensis. We show that focal assembly and polar localization of ClpV-5-GFP is not dependent on the intracellular host cell environment, known to contain the signal to induce T6SS-5 gene expression. In contrast to ClpV-5-GFP, localization of ClpV-1-GFP was dependent on the cognate T6SS. Foci formation of both ClpV5-GFP and ClpV-1-GFP was decreased by D cycloserine-mediated inhibition of peptidoglycan synthesis while treatment of B. thailandensis with A22 blocking the cytoskeletal protein MreB did not affect assembly of ClpV-5 and ClpV-1 into single discrete foci. Furthermore, we found that surface contact promotes but is not essential for localization of ClpV-5-GFP to the pole whereas expression of clpV-1-gfp appears to be induced by surface contact. In summary, the study provides novel insights into the localization of ClpV ATPases of T6SSs targeting prokaryotic and eukaryotic cells.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Burkholderia/fisiologia , Sistemas de Secreção Tipo VI/metabolismo , Fatores de Virulência/metabolismo , Aderência Bacteriana , Burkholderia/efeitos dos fármacos , Burkholderia/genética , Ciclosserina/farmacologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Células HeLa , Humanos , Peptidoglicano/biossíntese , Peptidoglicano/efeitos dos fármacos , Transporte Proteico/fisiologia , Deleção de Sequência , Sistemas de Secreção Tipo VI/genética
9.
Sci Rep ; 9(1): 4656, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30874582

RESUMO

Peptidoglycan is a major component of the bacterial cell wall and thus a major determinant of cell shape. Its biosynthesis is initiated by several sequential reactions catalyzed by cytoplasmic Mur enzymes. Mur ligases (MurC, -D, -E, and -F) are essential for bacteria, metabolize molecules not present in eukaryotes, and are structurally and biochemically tractable. However, although many Mur inhibitors have been developed, few have shown promising antibacterial activity, prompting the hypothesis that within the cytoplasm, Mur enzymes could exist as a complex whose architecture limits access of small molecules to their active sites. This suggestion is supported by the observation that in many bacteria, mur genes are present in a single operon, and pairs of these genes often are fused to generate a single polypeptide. Here, we explored this genetic arrangement in the human pathogen Bordetella pertussis and show that MurE and MurF are expressed as a single, bifunctional protein. EM, small angle X-ray scattering (SAXS), and analytical centrifugation (AUC) revealed that the MurE-MurF fusion displays an elongated, flexible structure that can dimerize. Moreover, MurE-MurF interacted with the peripheral glycosyltransferase MurG, which formed discrete oligomers resembling 4- or 5-armed stars in EM images. The oligomeric structure of MurG may allow it to play a bona fide scaffolding role for a potential Mur complex, facilitating the efficient conveyance of peptidoglycan-building blocks toward the inner membrane leaflet. Our findings shed light on the structural determinants of a peptidoglycan formation complex involving Mur enzymes in bacterial cell wall formation.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Bordetella pertussis/genética , Bordetella pertussis/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Antibacterianos/farmacologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/fisiologia , Proteínas de Bactérias/metabolismo , Sítios de Ligação/fisiologia , Bordetella pertussis/patogenicidade , Domínio Catalítico/fisiologia , Parede Celular/metabolismo , Citoplasma/metabolismo , Glicosiltransferases/metabolismo , Glicosiltransferases/fisiologia , Humanos , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/fisiologia , Peptídeo Sintases/metabolismo , Peptidoglicano/biossíntese , Peptidoglicano/metabolismo , Ligação Proteica/fisiologia , Espalhamento a Baixo Ângulo , Difração de Raios X/métodos
10.
mBio ; 9(6)2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30425148

RESUMO

Small regulatory RNAs play an important role in the adaptation to changing conditions. Here, we describe a differentially expressed small regulatory RNA (sRNA) that affects various cellular processes in the plant pathogen Agrobacterium tumefaciens Using a combination of bioinformatic predictions and comparative proteomics, we identified nine targets, most of which are positively regulated by the sRNA. According to these targets, we named the sRNA PmaR for peptidoglycan biosynthesis, motility, and ampicillin resistance regulator. Agrobacterium spp. are long known to be naturally resistant to high ampicillin concentrations, and we can now explain this phenotype by the positive PmaR-mediated regulation of the beta-lactamase gene ampC Structure probing revealed a spoon-like structure of the sRNA, with a single-stranded loop that is engaged in target interaction in vivo and in vitro Several riboregulators have been implicated in antibiotic resistance mechanisms, such as uptake and efflux transporters, but PmaR represents the first example of an sRNA that directly controls the expression of an antibiotic resistance gene.IMPORTANCE The alphaproteobacterium Agrobacterium tumefaciens is able to infect various eudicots causing crown gall tumor formation. Based on its unique ability of interkingdom gene transfer, Agrobacterium serves as a crucial biotechnological tool for genetic manipulation of plant cells. The presence of hundreds of putative sRNAs in this organism suggests a considerable impact of riboregulation on A. tumefaciens physiology. Here, we characterized the biological function of the sRNA PmaR that controls various processes crucial for growth, motility, and virulence. Among the genes directly targeted by PmaR is ampC coding for a beta-lactamase that confers ampicillin resistance, suggesting that the sRNA is crucial for fitness in the competitive microbial composition of the rhizosphere.


Assuntos
Agrobacterium/genética , Parede Celular/genética , Resistência Microbiana a Medicamentos/genética , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano/genética , Pequeno RNA não Traduzido/genética , Agrobacterium/efeitos dos fármacos , Agrobacterium/crescimento & desenvolvimento , Ampicilina/farmacologia , Proteínas de Bactérias/genética , Parede Celular/fisiologia , Biologia Computacional , Peptidoglicano/biossíntese , Peptidoglicano/genética , Plantas/microbiologia , Proteômica , Rizosfera , beta-Lactamases/genética
11.
ACS Synth Biol ; 7(10): 2423-2435, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30138558

RESUMO

Bacillus subtilis is a typical industrial microorganism and is widely used in industrial biotechnology, particularly for nutraceutical production. There are many studies on the static metabolic engineering of B. subtilis, whereas there are few reports on dynamic metabolic engineering due to the lack of appropriate elements. Here, we established a dynamic reprogramming strategy for reconstructing metabolic networks in B. subtilis, using a typical nutraceutical, N-acetylglucosamine (GlcNAc), as a model product and the glmS (encoding glucosamine-6-phosphate synthase) ribozyme as an engineering element. First, a trp terminator was introduced to effectively release the glmS ribozyme feedback inhibition. Further, we engineered the native glucosamine-6-phosphate (GlcN6P) responsive glmS ribozyme switch to dynamically control the metabolic flux in B. subtilis for overproduction of GlcNAc. With GlcN6P as a ligand, the native sensor glmS ribozyme is integrated at the 5'- of phosphoglucosamine mutase and 6-phosphofructokinase genes to decrease the flux dynamically toward the peptidoglycan synthesis and glycolysis pathway, respectively. The glmS ribozyme mutant M5 ( glmS ribozyme cleavage site AG → GG) with decreased ribozyme activity is integrated at the 5'- of glucose-6-phosphate isomerase gene to increase the flux dynamically toward the GlcNAc synthesis pathway. This strategy increased the GlcNAc titer from 9.24 to 18.45 g/L, and the specific GlcNAc productivity from 0.53 to 1.21 g GlcNAc/g cell. Since GlcN6P is involved in the biosynthesis of various products, here the developed strategy for multiple target dynamic engineering of metabolic pathways can be generally used in B. subtilis and other industrial microbes for chemical production.


Assuntos
Acetilglucosamina/metabolismo , Bacillus subtilis/metabolismo , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/genética , Engenharia Metabólica/métodos , RNA Catalítico/genética , Acetilglucosamina/análise , Bacillus subtilis/genética , Cromatografia Líquida de Alta Pressão , Glucosamina/análogos & derivados , Glucosamina/metabolismo , Glucose-6-Fosfato/análogos & derivados , Glucose-6-Fosfato/metabolismo , Glucose-6-Fosfato Isomerase/genética , Glucose-6-Fosfato Isomerase/metabolismo , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/metabolismo , Peptidoglicano/biossíntese , RNA Catalítico/metabolismo
12.
Mol Microbiol ; 109(6): 826-844, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29995990

RESUMO

Peptidoglycan synthesis is an important target for antibiotics and relies on intermediates derived from central metabolism. As a result, alterations of metabolism may affect antibiotic sensitivity. An aspB mutant is auxotrophic for aspartate (Asp) and asparagine (Asn) and lyses when grown in Difco sporulation medium (DSM), but not in LB medium. Genetic and physiological studies, supported by amino acid analysis, reveal that cell lysis in DSM results from Asp limitation due to a relatively low Asp and high glutamate (Glu) concentrations, with Glu functioning as a competitive inhibitor of Asp uptake by the major Glu/Asp transporter GltT. Lysis can be specifically suppressed by supplementation with 2,6-diaminopimelate (DAP), which is imported by two different cystine uptake systems. These studies suggest that aspartate limitation depletes the peptidoglycan precursor meso-2,6-diaminopimelate (mDAP), inhibits peptidoglycan synthesis, upregulates the cell envelope stress response mediated by σM and eventually leads to cell lysis. Aspartate limitation sensitizes cells to antibiotics targeting late steps of PG synthesis, but not steps prior to the addition of mDAP into the pentapeptide sidechain. This work highlights the ability of perturbations of central metabolism to sensitize cells to peptidoglycan synthesis inhibitors.


Assuntos
Antibacterianos/farmacologia , Aspartato Aminotransferases/genética , Ácido Aspártico/metabolismo , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/metabolismo , Peptidoglicano/biossíntese , Asparagina/metabolismo , Bacillus subtilis/genética , Parede Celular/metabolismo , Ácido Diaminopimélico/metabolismo , Ácido Glutâmico/metabolismo
13.
Curr Opin Struct Biol ; 53: 45-58, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29885610

RESUMO

The bacterial cell wall is a complex polymeric structure with essential roles in defence, survival and pathogenesis. Common to both Gram-positive and Gram-negative bacteria is the mesh-like peptidoglycan sacculus that surrounds the outer leaflet of the cytoplasmic membrane. Recent crystallographic studies of enzymes that comprise the peptidoglycan biosynthetic pathway have led to significant new understanding of all stages. These include initial multi-step cytosolic formation of sugar-pentapeptide precursors, transfer of the precursors to activated polyprenyl lipids at the membrane inner leaflet and flippase mediated relocalization of the resulting lipid II precursors to the outer leaflet where glycopolymerization and subsequent peptide crosslinking are finalized. Additional, species-specific enzymes allow customized peptidoglycan modifications and biosynthetic regulation that are important to bacterial virulence and survival. These studies have reinforced the unique and specific catalytic mechanisms at play in cell wall biogenesis and expanded the atomic foundation to develop novel, structure guided, antibacterial agents.


Assuntos
Proteínas de Bactérias , Parede Celular/metabolismo , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Peptidoglicano , Ácidos Teicoicos/biossíntese , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Bactérias Gram-Negativas/enzimologia , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas/enzimologia , Bactérias Gram-Positivas/metabolismo , Proteínas de Membrana/química , Monossacarídeos/biossíntese , Oligopeptídeos/biossíntese , Peptidoglicano/biossíntese , Peptidoglicano/metabolismo , Estrutura Quaternária de Proteína , Uridina Difosfato Ácido N-Acetilmurâmico/análogos & derivados , Uridina Difosfato Ácido N-Acetilmurâmico/biossíntese
14.
Drug Discov Today ; 23(7): 1426-1435, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29778697

RESUMO

The rapid growth of antibiotic-resistant bacterial infections is of major concern for human health. Therefore, it is of great importance to characterize novel targets for the development of antibacterial drugs. One promising protein target is MraY (UDP-N-acetylmuramyl-pentapeptide: undecaprenyl phosphate N-acetylmuramyl-pentapeptide-1-phosphate transferase or MurNAc-1-P-transferase), which is essential for bacterial cell wall synthesis. Here, we summarize recent breakthroughs in structural studies of bacterial MraYs and the closely related human GPT (UDP-N-acetylglucosamine: dolichyl phosphate N-acetylglucosamine-1-phosphate transferase or GlcNAc-1-P-transferase). We present a detailed comparison of interaction modes with the natural product inhibitors tunicamycin and muraymycin D2. Finally, we speculate on possible routes to design an antibacterial agent in the form of a potent and selective inhibitor against MraY.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Proteínas de Bactérias/antagonistas & inibidores , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Peptidoglicano/biossíntese , Transferases/antagonistas & inibidores , Animais , Antibacterianos/síntese química , Bactérias/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana , Inibidores Enzimáticos/síntese química , Humanos , Modelos Moleculares , Nucleosídeos/química , Nucleosídeos/farmacologia , Peptídeos/química , Peptídeos/farmacologia , Conformação Proteica , Relação Estrutura-Atividade , Transferases/química , Transferases/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/antagonistas & inibidores , Transferases (Outros Grupos de Fosfato Substituídos)/química , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Tunicamicina/química , Tunicamicina/farmacologia
15.
Bioorg Med Chem ; 26(12): 3453-3460, 2018 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-29805074

RESUMO

Antibiotic resistance is a serious threat to global public health, and methicillin-resistant Staphylococcus aureus (MRSA) is a poignant example. The macrolactone natural product albocycline, derived from various Streptomyces strains, was recently identified as a promising antibiotic candidate for the treatment of both MRSA and vancomycin-resistant S. aureus (VRSA), which is another clinically relevant and antibiotic resistant strain. Moreover, it was hypothesized that albocycline's antimicrobial activity was derived from the inhibition of peptidoglycan (i.e., bacterial cell wall) biosynthesis. Herein, preliminary mechanistic studies are performed to test the hypothesis that albocycline inhibits MurA, the enzyme that catalyzes the first step of peptidoglycan biosynthesis, using a combination of biological assays alongside molecular modeling and simulation studies. Computational modeling suggests albocycline exists as two conformations in solution, and computational docking of these conformations to an ensemble of simulated receptor structures correctly predicted preferential binding to S. aureus MurA-the enzyme that catalyzes the first step of peptidoglycan biosynthesis-over Escherichia coli (E. coli) MurA. Albocycline isolated from the producing organism (Streptomyces maizeus) weakly inhibited S. aureus MurA (IC50 of 480 µM) but did not inhibit E. coli MurA. The antimicrobial activity of albocycline against resistant S. aureus strains was superior to that of vancomycin, preferentially inhibiting Gram-positive organisms. Albocycline was not toxic to human HepG2 cells in MTT assays. While these studies demonstrate that albocycline is a promising lead candidate against resistant S. aureus, taken together they suggest that MurA is not the primary target, and further work is necessary to identify the major biological target.


Assuntos
Alquil e Aril Transferases/metabolismo , Proteínas de Bactérias/metabolismo , Peptidoglicano/biossíntese , Staphylococcus aureus/enzimologia , Streptomyces/química , Alquil e Aril Transferases/antagonistas & inibidores , Proteínas de Bactérias/antagonistas & inibidores , Sítios de Ligação , Sobrevivência Celular/efeitos dos fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Escherichia coli/enzimologia , Células Hep G2 , Humanos , Concentração Inibidora 50 , Lactonas/química , Lactonas/metabolismo , Lactonas/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Peptidoglicano/química , Ligação Proteica , Estrutura Terciária de Proteína , Staphylococcus aureus/efeitos dos fármacos , Streptomyces/metabolismo
16.
PLoS One ; 12(10): e0186801, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29045498

RESUMO

For clinicians, Pseudomonas aeruginosa is a nightmare pathogen that is one of the top three causes of opportunistic human infections. Therapy of P. aeruginosa infections is complicated due to its natural high intrinsic resistance to antibiotics. Active efflux and decreased uptake of drugs due to cell wall/membrane permeability appear to be important issues in the acquired antibiotic tolerance mechanisms. Bacterial cell wall biosynthesis enzymes have been shown to be essential for pathogenicity of Gram-negative bacteria. However, the role of these targets in virulence has not been identified in P. aeruginosa. Here, we report knockout (k.o) mutants of six cell wall biosynthesis targets (murA, PA4450; murD, PA4414; murF, PA4416; ppiB, PA1793; rmlA, PA5163; waaA, PA4988) in P. aeruginosa PAO1, and characterized these in order to find out whether these genes and their products contribute to pathogenicity and virulence of P. aeruginosa. Except waaA k.o, deletion of cell wall biosynthesis targets significantly reduced growth rate in minimal medium compared to the parent strain. The k.o mutants showed exciting changes in cell morphology and colonial architectures. Remarkably, ΔmurF cells became grossly enlarged. Moreover, the mutants were also attenuated in vivo in a mouse infection model except ΔmurF and ΔwaaA and proved to be more sensitive to macrophage-mediated killing than the wild-type strain. Interestingly, the deletion of the murA gene resulted in loss of virulence activity in mice, and the virulence was restored in a plant model by unknown mechanism. This study demonstrates that cell wall targets contribute significantly to intracellular survival, in vivo growth, and pathogenesis of P. aeruginosa. In conclusion, these findings establish a link between cell wall targets and virulence of P. aeruginosa and thus may lead to development of novel drugs for the treatment of P. aeruginosa infection.


Assuntos
Antibacterianos/farmacologia , Vias Biossintéticas/efeitos dos fármacos , Parede Celular/metabolismo , Técnicas de Silenciamento de Genes , Pseudomonas aeruginosa/citologia , Pseudomonas aeruginosa/genética , Animais , Parede Celular/efeitos dos fármacos , Parede Celular/genética , Contagem de Colônia Microbiana , DNA Bacteriano/genética , Espaço Extracelular/química , Feminino , Genes Bacterianos , Vetores Genéticos/metabolismo , Lactuca/microbiologia , Lipopolissacarídeos/biossíntese , Pulmão/microbiologia , Pulmão/patologia , Macrófagos/microbiologia , Camundongos , Modelos Biológicos , Mutação/genética , Peptidoglicano/biossíntese , Doenças das Plantas/microbiologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/patogenicidade , Doenças Respiratórias/microbiologia , Doenças Respiratórias/patologia , Virulência/efeitos dos fármacos
17.
Artigo em Inglês | MEDLINE | ID: mdl-28893793

RESUMO

Chemotherapy for tuberculosis (TB) is lengthy and could benefit from synergistic adjuvant therapeutics that enhance current and novel drug regimens. To identify genetic determinants of intrinsic antibiotic susceptibility in Mycobacterium tuberculosis, we applied a chemical genetic interaction (CGI) profiling approach. We screened a saturated transposon mutant library and identified mutants that exhibit altered fitness in the presence of partially inhibitory concentrations of rifampin, ethambutol, isoniazid, vancomycin, and meropenem, antibiotics with diverse mechanisms of action. This screen identified the M. tuberculosis cell envelope to be a major determinant of antibiotic susceptibility but did not yield mutants whose increase in susceptibility was due to transposon insertions in genes encoding efflux pumps. Intrinsic antibiotic resistance determinants affecting resistance to multiple antibiotics included the peptidoglycan-arabinogalactan ligase Lcp1, the mycolic acid synthase MmaA4, the protein translocase SecA2, the mannosyltransferase PimE, the cell envelope-associated protease CaeA/Hip1, and FecB, a putative iron dicitrate-binding protein. Characterization of a deletion mutant confirmed FecB to be involved in the intrinsic resistance to every antibiotic analyzed. In contrast to its predicted function, FecB was dispensable for growth in low-iron medium and instead functioned as a critical mediator of envelope integrity.


Assuntos
Antituberculosos/farmacologia , Proteínas de Bactérias/genética , Parede Celular/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/genética , Regulação Bacteriana da Expressão Gênica , Mycobacterium tuberculosis/efeitos dos fármacos , Serina Proteases/genética , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Etambutol/farmacologia , Galactanos/biossíntese , Perfilação da Expressão Gênica , Humanos , Bombas de Íon/deficiência , Bombas de Íon/genética , Isoniazida/farmacologia , Ligases/genética , Ligases/metabolismo , Manosiltransferases/genética , Manosiltransferases/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Meropeném , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Ácidos Micólicos/metabolismo , Peptidoglicano/biossíntese , Rifampina/farmacologia , Serina Proteases/metabolismo , Tienamicinas/farmacologia , Vancomicina/farmacologia
18.
J Am Chem Soc ; 139(39): 13596-13599, 2017 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-28898061

RESUMO

Bacteria have the natural ability to install protective postsynthetic modifications onto its bacterial peptidoglycan (PG), the coat woven into bacterial cell wall. Peptidoglycan O-acetyltransferase B (PatB) catalyzes the O-acetylation of PG in Gram (-) bacteria, which aids in bacterial survival, as it prevents autolysins such as lysozyme from cleaving the PG. We explored the mechanistic details of PatB's acetylation function and determined that PatB has substrate specificity for bioorthgonal short N-acetyl cysteamine (SNAc) donors. A variety of functionality including azides and alkynes were installed on tri-N-acetylglucosamine (NAG)3, a PG mimic, as well as PG isolated from various Gram (+) and Gram (-) bacterial species. The bioorthogonal modifications protect the isolated PG against lysozyme degradation in vitro. We further demonstrate that this postsynthetic modification of PG can be extended to use click chemistry to fluorescently label the mature PG in whole bacterial cells of Bacillus subtilis. Modifying PG postsynthetically can aid in the development of antibiotics and immune modulators by expanding the understanding of how PG is processed by lytic enzymes.


Assuntos
Acetiltransferases/metabolismo , Cisteamina/metabolismo , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas/metabolismo , Peptidoglicano/biossíntese , Acetiltransferases/química , Cisteamina/análogos & derivados , Cisteamina/química , Bactérias Gram-Negativas/química , Bactérias Gram-Positivas/química , Estrutura Molecular , Peptidoglicano/química
19.
Microbiology (Reading) ; 163(7): 1093-1104, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28699879

RESUMO

Non-typeable Haemophilus influenzae (NTHi) is an opportunistic pathogen that plays a major role in a number of respiratory tract infections, including otitis media, cystic fibrosis and chronic obstructive pulmonary disease. Biofilm formation has been implicated in both NTHi colonization and disease, and is responsible for the increased tolerance of this pathogen towards antibiotic treatment. Targeting metabolic pathways that are important in NTHi biofilm formation represents a potential strategy to combat this antibiotic recalcitrance. A previous investigation demonstrated increased expression of a putative d-methionine uptake protein following exposure of NTHi biofilms to the ubiquitous signalling molecule, nitric oxide. We therefore hypothesized that treatment with exogenous d-methionine would impact on NTHi biofilm formation and increase antibiotic sensitivity. Treatment of NTHi during the process of biofilm formation resulted in a reduction in biofilm viability, increased biomass, changes in the overall biofilm architecture and the adoption of an amorphous cellular morphology. Quantitative proteomic analyses identified 124 proteins that were differentially expressed following d-methionine treatment, of which 51 (41 %) were involved in metabolic and transport processes. Nine proteins involved in peptidoglycan synthesis and cell division showed significantly increased expression. Furthermore, d-methionine treatment augmented the efficacy of azithromycin treatment and highlighted the potential of d-methionine as an adjunctive therapeutic approach for NTHi biofilm-associated infections.


Assuntos
Biofilmes , Infecções por Haemophilus/microbiologia , Haemophilus influenzae/crescimento & desenvolvimento , Haemophilus influenzae/metabolismo , Metionina/metabolismo , Peptidoglicano/biossíntese , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Haemophilus influenzae/efeitos dos fármacos , Haemophilus influenzae/genética , Humanos
20.
Mol Microbiol ; 105(1): 98-114, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28383125

RESUMO

Endospore cortex peptidoglycan synthesis is not required for bacterial growth but essential for endospore heat resistance. It therefore constitutes an amenable system for research on peptidoglycan biogenesis. The Bacillus subtilis sporulation-specific class B penicillin-binding protein (PBP) SpoVD and many homologous PBPs contain two conserved cysteine residues of unknown function in the transpeptidase domain - one as residue x in the SxN catalytic site motif and the other in a flexible loop near the catalytic site. A disulfide bond between these residues blocks the function of SpoVD in cortex synthesis. With a combination of experiments with purified proteins and B. subtilis mutant cells, it was shown that in active SpoVD the two cysteine residues most probably interact by hydrogen bonding and that this is important for peptidoglycan synthesis in vivo. It was furthermore demonstrated that the sporulation-specific thiol-disulfide oxidoreductase StoA reduces SpoVD and that requirement of StoA for cortex synthesis can be suppressed by two completely different types of structural alterations in SpoVD. It is concluded that StoA plays a critical role mainly during maturation of SpoVD in the forespore outer membrane. The findings advance our understanding of essential PBPs and redox control of extra-cytoplasmic protein disulfides in bacterial cells.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteína Dissulfeto Redutase (Glutationa)/metabolismo , Sequência de Aminoácidos , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Parede Celular/metabolismo , Dissulfetos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/genética , Oxirredutases/metabolismo , Proteínas de Ligação às Penicilinas/metabolismo , Peptidoglicano/biossíntese , Peptidoglicano/metabolismo , Peptidil Transferases/metabolismo , Esporos Bacterianos/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA