Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 307
Filtrar
1.
Metallomics ; 16(2)2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38244228

RESUMO

How do pathogens affecting the same host interact with each other? We evaluated here the types of microbe-microbe interactions taking place between Streptomyces scabiei and Phytophthora infestans, the causative agents of common scab and late blight diseases in potato crops, respectively. Under most laboratory culture conditions tested, S. scabiei impaired or completely inhibited the growth of P. infestans by producing either soluble and/or volatile compounds. Increasing peptone levels correlated with increased inhibition of P. infestans. Comparative metabolomics showed that production of S. scabiei siderophores (desferrioxamines, pyochelin, scabichelin, and turgichelin) increased with the quantity of peptone, thereby suggesting that they participate in the inhibition of the oomycete growth. Mass spectrometry imaging further uncovered that the zones of secreted siderophores and of P. infestans growth inhibition coincided. Moreover, either the repression of siderophore production or the neutralization of their iron-chelating activity led to a resumption of P. infestans growth. Replacement of peptone by natural nitrogen sources such as ammonium nitrate, sodium nitrate, ammonium sulfate, and urea also triggered siderophore production in S. scabiei. Interestingly, nitrogen source-induced siderophore production also inhibited the growth of Alternaria solani, the causative agent of the potato early blight. Overall, our work further emphasizes the importance of competition for iron between microorganisms that colonize the same niche. As common scab never alters the vegetative propagation of tubers, we propose that S. scabiei, under certain conditions, could play a protective role for its hosts against much more destructive pathogens through exploitative iron competition and volatile compound production.


Assuntos
Sideróforos , Solanum tuberosum , Ferro , Peptonas
2.
Compr Rev Food Sci Food Saf ; 23(1): e13288, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38284584

RESUMO

Whey protein derived bioactives, including α-lactalbumin, ß-lactoglobulin, bovine serum albumin, lactoferrin, transferrin, and proteose-peptones, have exhibited wide ranges of functional, biological and therapeutic properties varying from anticancer, antihypertensive, and antimicrobial effects. In addition, their functional properties involve gelling, emulsifying, and foaming abilities. For these reasons, this review article is framed to understand the relationship existed in between those compound levels and structures with their main functional, biological, and therapeutic properties exhibited either in vitro or in vivo. The impacts of hydrolysis mechanism and separation techniques in enhancing those properties are likewise discussed. Furthermore, special emphasize is given to multifunctional effects of whey derived bioactives and their future trends in ameliorating further food, pharmaceutical, and nutraceutical products. The underlying mechanism effects of those properties are still remained unclear in terms of activity levels, efficacy, and targeted effectiveness. For these reasons, some important models linking to functional properties, thermal properties and cell circumstances are established. Moreover, the coexistence of radical trapping groups, chelating groups, sulfhydryl groups, inhibitory groups, and peptide bonds seemed to be the key elements in triggering those functions and properties. Practical Application: Whey proteins are the byproducts of cheese processing and usually the exploitation of these food waste products has increasingly getting acceptance in many countries, especially European countries. Whey proteins share comparable nutritive values to milk products, particularly on their richness on important proteins that can serve immune protection, structural, and energetic roles. The nutritive profile of whey proteins shows diverse type of bioactive molecules like α-lactalbumin, ß-lactoglobulin, lactoferrin, transferrin, immunoglobulin, and proteose peptones with wide biological importance to the living system, such as in maintaining immunological, neuronal, and signaling roles. The diversification of proteins of whey products prompted scientists to exploit the real mechanisms behind of their biological and therapeutic effects, especially in declining the risk of cancer, tumor, and further complications like diabetes type 2 and hypertension risk effects. For these reasons, profiling these types of proteins using different proteomic and peptidomic approaches helps in determining their biological and therapeutic targets along with their release into gastrointestinal tract conditions and their bioavailabilities into portal circulation, tissue, and organs. The wide applicability of those protein fractions and their derivative bioactive products showed significant impacts in the field of emulsion and double emulsion stabilization by playing roles as emulsifying, surfactant, stabilizing, and foaming agents. Their amphoteric properties helped them to act as excellent encapsulating agents, particularly as vehicle for delivering important vitamins and bioactive compounds. The presence of ferric elements increased their transportation to several metal-ions in the same time increased their scavenging effects to metal-transition and peroxidation of lipids. Their richness with almost essential and nonessential amino acids makes them as selective microbial starters, in addition their richness in sulfhydryl amino acids allowed them to act a cross-linker in conjugating further biomolecules. For instance, conjugating gold-nanoparticles and fluorescent materials in targeting diseases like cancer and tumors in vivo is considered the cutting-edges strategies for these versatile molecules due to their active diffusion across-cell membrane and the presence of specific transporters to these therapeutic molecules.


Assuntos
Neoplasias , Peptidomiméticos , Eliminação de Resíduos , Humanos , Proteínas do Soro do Leite/metabolismo , Lactalbumina/metabolismo , Proteínas do Leite/química , Proteínas do Leite/metabolismo , Proteínas do Leite/farmacologia , Lactoferrina/metabolismo , Peptonas/metabolismo , Hidrólise , Emulsões , Proteômica , Lactoglobulinas/química , Lactoglobulinas/metabolismo , Aminoácidos
3.
Artigo em Inglês | MEDLINE | ID: mdl-37436807

RESUMO

The diversity of bacteria associated with biopsy material obtained from patients with colorectal cancer was investigated using culture techniques. A novel bacterium, strain CC70AT, was isolated by diluting a sample of homogenized tissue in anaerobic medium, and then plating to yield a pure culture. Strain CC70AT was a Gram-positive, strictly anaerobic, motile, rod-shaped bacterium. Formate, but not acetate, was a fermentative end-product from growth in peptone-yeast extract and peptone-yeast-glucose broth. The G+C content of DNA from strain CC70AT was 34.9 mol%. 16S rRNA gene sequence analysis revealed that the isolate was part of the phylum Bacillota. The closest described relatives of strain CC70AT were Cellulosilyticum lentocellum (93.3 %) and Cellulosilyticum ruminicola (93.3 and 91.9% sequence similarity across 16S rRNA gene, respectively). According to the data obtained in this work, strain CC70AT represents a novel bacterium belonging to a new genus for which the name Holtiella tumoricola gen. nov., sp. nov. is proposed. The type strain for our described novel species is CC70AT (=DSM 27931T= JCM 30568T).


Assuntos
Ácidos Graxos , Peptonas , Humanos , Ácidos Graxos/química , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Análise de Sequência de DNA , Composição de Bases , Filogenia , Técnicas de Tipagem Bacteriana , Bactérias Gram-Positivas
4.
Braz J Biol ; 83: e270316, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37162094

RESUMO

Ganoderma lucidum is a medicinal mushroom widely recognized as a source of biomolecules with pharmacological properties, however, little is known about the factors that influence the synthesis of bioactive proteins by this fungus when cultivated under submerged fermentation. The objective of this work was to evaluate the production of mycelial biomass and intracellular proteases and protease inhibitors by G. lucidum cultivated under different submerged fermentation conditions. The cultivation was carried out in a medium composed of glucose (10 or 20 g.L-1), soy peptone (2.5 or 5 g.L-1) and yeast extract (5 g.L-1), with incubation under agitation (120 rpm) and non-agitation, totaling 8 experimental conditions. Biomass production was determined from the dry weight, while glucose consumption was estimated by quantification of reducing sugars. The proteins were extracted in NaCl (0.15 M), and the protein extracts were submitted to protein quantification by the Bradford method, total proteolytic activity using azocasein, caseinolytic and fibrinolytic activity in Petri dishes, activity of serine (trypsin and chymotrypsin) and cysteine (papain) protease inhibitors. Cultivation in agitated condition showed higher biomass production with a maximum value of 7 g.L-1, in addition to higher activities of trypsin, chymotrypsin and papain inhibitors, with 154 IU.mg-1, 153 IU.mg-1 e 343 IU.mg-1 of protein, respectively. The non-agitated condition showed a greater potential for obtaining proteins, total proteases, caseinolytic and fibrinolytic enzymes, with maximum values of 433 mg.g-1 of extract, 71 U.mL-1 of extract, 63.62 mm2 and 50.27 mm2, respectively. Thus, a medium composed of soy peptone, yest extract and glucose in a 1:2:4 proportion is recommended, under agitation to produce protease inhibitors, and the non-agitated condition when the target is, mainly caseinolytic and fibrinolytic enzymes.


Assuntos
Peptídeo Hidrolases , Reishi , Fermentação , Inibidores de Proteases/farmacologia , Tripsina , Papaína , Quimotripsina , Peptonas , Biomassa
5.
Appl Biochem Biotechnol ; 195(9): 5280-5298, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35606635

RESUMO

4-Chlorophenol (4-CP) is a persistent organic pollutant commonly found in petrochemical effluents. It causes toxic, carcinogenic and mutagenic effects on human beings and aquatic lives. Therefore, an environmentally benign and cost-effective approach is needed against such pollutants. In this direction, the chlorophenol degrading bacterial consortium consisting of Bacillus flexus GS1 IIT (BHU) and Bacillus cereus GS2 IIT (BHU) was isolated from a refinery site. A composite biocarrier namely polypropylene-polyurethane foam (PP-PUF) was developed for bacterial cells immobilization purpose. A lab-scale moving bed biofilm reactor (MBBR) packed with Bacillus sp. immobilized PP-PUF biocarrier was employed to analyse the effect of peptone on biodegradation of 4-CP. The statistical tool, i.e. response surface methodology (RSM), was used to optimize the process variables (4-CP concentration, peptone concentration and hydraulic retention time). The higher values of peptone concentration and hydraulic retention time were found to be favourable for maximum removal of 4-CP. At the optimized process conditions, the maximum removals of 4-CP and chemical oxygen demand (COD) were obtained to be 91.07 and 75.29%, respectively. In addition, three kinetic models, i.e. second-order, Monod and modified Stover-Kincannon models, were employed to investigate the behaviour of MBBR during 4-CP biodegradation. The high regression coefficients obtained by the second-order and modified Stover-Kincannon models showed better accuracy for estimating substrate degradation kinetics. The phytotoxicity study supported that the Vigna radiata seeds germinated in treated wastewater showed higher growth (i.e. radicle and plumule) than the untreated wastewater.


Assuntos
Clorofenóis , Águas Residuárias , Humanos , Eliminação de Resíduos Líquidos/métodos , Cinética , Biofilmes , Peptonas , Reatores Biológicos , Clorofenóis/metabolismo
6.
Int J Syst Evol Microbiol ; 72(10)2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36288087

RESUMO

Two strictly anaerobic, Gram-stain-positive, non-motile bacteria (strains OPF53T and TOC12T) were isolated from mouse intestines. Strains OPF53T and TOC12T grew at pH 5.5-9.0 and 5.0-9.0, respectively, and at temperatures of 30-45 °C. The cell morphologies of these strains were short rods and rods, respectively, and the cells possessed intracellular granules. The major cellular fatty acids of OPF53T were C18  :  1 cis 9 and C18  :  1 cis 9 dimethyl acetal, whereas those of TOC12T were C18  :  0 and C18  :  1 cis 9. In OPF53T, the main end-products of modified peptone-yeast extract-glucose (PYG) fermentation were lactate, formate and butyrate, whereas, in addition to these acids, TOC12T also produced hydrogen. The genomes of OPF53T and TOC12T were respectively 2.2 and 2.0 Mbp in size with a DNA G+C contents of 69.1 and 58.7 %. The 16S rRNA gene sequences of OPF53T and TOC12T showed the highest similarity to members of the family Atopobiaceae, namely, Olsenella phocaeensis Marseille-P2936T (94.3 %) and Olsenella umbonata KCTC 15140T (93.2 %), respectively. Phylogenetic analyses revealed that both isolates formed distinct lineages from other genera of the family Atopobiaceae. In addition, the two strains were characterized by relatively low 16S rRNA gene sequence similarity (93.4 %) and can be distinguished by their distinctive traits (including cell shape, DNA G+C content, and major fatty acids profiles). On the basis of their polyphasic taxonomic properties, these isolates represent two noel species of two novel genera within the family Atopobiaceae, for which the names Granulimonas faecalis gen. nov., sp. nov. (OPF53T=JCM 35015T=KCTC 25474T) and Leptogranulimonas caecicola gen. nov., sp. nov. (TOC12T=JCM 35017T=KCTC 25472T) are proposed.


Assuntos
Ácido Láctico , Peptonas , Animais , Camundongos , RNA Ribossômico 16S/genética , Filogenia , Composição de Bases , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , Ácidos Graxos/química , Hidrogênio , Formiatos , Butiratos , Glucose , Intestinos
7.
Microb Cell Fact ; 21(1): 151, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35907859

RESUMO

BACKGROUND: The complexity, toxicity and abundance of frying oil waste (FOW) render it difficult to be degraded biologically. The aim of the present work was to valorize FOW and investigate the potential use of the produced biosurfactant by Serratia marcescens N2 (Whole Genome sequencing accession ID SPSG00000000) as a biodetergent. RESULTS: Serratia marcescens N2 demonstrated efficient valorization of FOW, using 1% peptone, 20% FOW and 8% inoculum size. Gene annotation showed the presence of serrawettin synthetase indicating that the produced biosurfactant was serrawettin. Zeta potential and Fourier Transform Infrared (FTIR) spectroscopy indicate that the biosurfactant produced was a negatively charged lipopeptide. The biosurfactant reduced the surface tension of water from 72 to 25.7 mN/m; its emulsification index was 90%. The valorization started after 1 h of incubation and reached a maximum of 83.3%. Gamma radiation was used to increase the biosurfactant yield from 9.4 to 19.2 g/L for non-irradiated and 1000 Gy irradiated cultures, respectively. It was noted that the biorecovery took place immediately as opposed to overnight storage required in conventional biosurfactant recovery. Both chemical and functional characteristics of the radiation induced biosurfactant did not change at low doses. The produced biosurfactant was used to wash oil stain; the highest detergency reached was 87% at 60 °C under stirring conditions for 500 Gy gamma assisted biorecovery. Skin irritation tests performed on experimental mice showed no inflammation. CONCLUSION: This study was able to obtain a skin friendly effective biodetergent from low worth FOW using Serratia marcescens N2 with 83% efficient valorization using only peptone in the growth media unlike previous studies using complex media. Gamma radiation was for the first time experimented to assist biosurfactant recovery and doubling the yield without affecting the efficiency.


Assuntos
Serratia marcescens , Tensoativos , Animais , Lipopeptídeos/metabolismo , Camundongos , Peptonas/metabolismo , Serratia marcescens/química , Tensão Superficial , Tensoativos/metabolismo
8.
Bioengineered ; 13(3): 7659-7669, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35264062

RESUMO

In this study, olive oil mill wastewater (OOMW), an important waste in the Mediterranean basin, was evaluated to produce bacterial cellulose (BC). For this purpose, the effects of different ratios of OOMW fractions (25-100%) and some additional nutrients (yeast extract, peptone and Hestrin-Schramm medium (HS) components) on BC productions were investigated. Unsupplemented OOMW medium (75% and 100%) yielded as much as BC obtained in HS medium (0.65 g/L), while enrichment of OOMW medium (%100) with yeast extract (5 g/L) and peptone (5 g/L) increased the amount of BC by 5.5 times, reaching to 5.33 g/L. In addition, produced BCs were characterized by FT-IR, TGA, XRD and SEM analyses. BC from OOMW medium (100% OOMW with supplementation) has a high thermal decomposition temperature (316.8°C), whereas it has lower crystallinity index (57%). According to the FT-IR analysis, it was observed that the components of OOMW might be absorbed by BCs. Thus, higher yield productions of BCs from OOMW media compared to BC obtained from HS medium indicate that olive oil industry wastes can be integrated into BC production for industrial applications.


Assuntos
Celulose , Águas Residuárias , Meios de Cultura , Azeite de Oliva , Peptonas , Espectroscopia de Infravermelho com Transformada de Fourier
9.
J Microbiol Biotechnol ; 32(5): 630-637, 2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35354766

RESUMO

The objective of this study was to optimize industrial-grade media for improving the biomass production of Weissella cibaria JW15 (JW15) using a statistical approach. Eleven variables comprising three carbon sources (glucose, fructose, and sucrose), three nitrogen sources (protease peptone, yeast extract, and soy peptone), and five mineral sources (K2HPO4, potassium citrate, L-cysteine phosphate, MgSO4, and MnSO4) were screened by using the Plackett-Burman design. Consequently, glucose, sucrose, and soy peptone were used as significant variables in response surface methodology (RSM). The composition of the optimal medium (OM) was 22.35 g/l glucose, 15.57 g/l sucrose, and 10.05 g/l soy peptone, 2.0 g/l K2HPO4, 5.0 g/l sodium acetate, 0.1 g/l MgSO4·7H2O, 0.05 g/l MnSO4·H2O, and 1.0 g/l Tween 80. The OM significantly improved the biomass production of JW15 over an established commercial medium (MRS). After fermenting OM, the dry cell weight of JW15 was 4.89 g/l, which was comparable to the predicted value (4.77 g/l), and 1.67 times higher than that of the MRS medium (3.02 g/l). Correspondingly, JW15 showed a rapid and increased production of lactic and acetic acid in the OM. To perform a scale-up validation, batch fermentation was executed in a 5-l bioreactor at 37°C with or without a pH control at 6.0 ± 0.1. The biomass production of JW15 significantly improved (1.98 times higher) under the pH control, and the cost of OM was reduced by two-thirds compared to that in the MRS medium. In conclusion, OM may be utilized for mass producing JW15 for industrial use.


Assuntos
Peptonas , Probióticos , Biomassa , Meios de Cultura/química , Fermentação , Glucose , Indicadores e Reagentes , Sacarose , Weissella
10.
J Sci Food Agric ; 102(12): 5321-5332, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35318677

RESUMO

BACKGROUND: Food grade Streptococcus thermophilus produces biological exopolysaccharides (EPSs) with great potential with respect to catering for higher health-promoting demands; however, how S. thermophilus regulates the biosynthesis of EPS is not completely understood, decelerating the application of these polymers. In our previous study, maltose, soy peptone and initial pH were three key factors of enhancing EPS yield in S. thermophilus CS6. Therefore, we aimed to investigate the regulating mechanisms of EPS biosynthesis in S. thermophilus CS6 via the method of comparative transcriptome and differential carbohydrate metabolism. RESULTS: Soy peptone addition (58.6 g L-1 ) and a moderate pH (6.5) contributed to a high bacterial biomass and a high EPS yield (407 mg L-1 ). Maltose, soy peptone and initial pH greatly influenced lactose utilization in CS6. Soy peptone addition induced a high accumulation of mannose and arabinose in intracellular CS6, differential monosaccharide composition (mannose, glucose and arabinose) in EPS and high radical [2,2-diphenyl-1-picrylhydrazyl, superoxide and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)] scavenging activities. Carbohydrate transportation, sugar activation and eps cluster-associated genes were differentially expressed to regulate EPS biosynthesis. Correlation analysis indicated high production of EPSs depended on high expression of lacS, galPMKUTE, pgm, gt2-5&4-1 and epsLM. CONCLUSION: The production of antioxidant EPS in S. thermophilus CS6 depended on the regulation of galactose metabolism cluster and eps cluster. The present study recommends a new approach for enhancing EPS production by transcriptomic regulation for further food and health application of EPS. © 2022 Society of Chemical Industry.


Assuntos
Streptococcus thermophilus , Transcriptoma , Antioxidantes/metabolismo , Arabinose , Perfilação da Expressão Gênica , Maltose , Manose/metabolismo , Peptonas/metabolismo , Polissacarídeos Bacterianos/química , Streptococcus thermophilus/genética , Streptococcus thermophilus/metabolismo
11.
Bioprocess Biosyst Eng ; 44(4): 809-818, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33389167

RESUMO

The lipolytic yeast Yarrowia lipolytica produces cell-wall-associated lipases, namely Lip7p and Lip8p, that could have interesting properties as catalyst either in free (released lipase fraction-RLF) or cell-associated (cell-bound lipase fraction-CBLF) forms. Herein, a mixture of waste soybean frying oil, yeast extract and bactopeptone was found to favor the enzyme production. Best parameters for lipase activation and release from the cell wall by means of acoustic wave treatment were defined as: 26 W/cm2 for 1 min for CBLF and 52 W/cm2 for 2 min for RLF. Optimal pH and temperature values for lipase activity together with storage conditions were similar for both the free enzyme and cell-associated one: pH 7.0; T = 37 °C; and > 70% residual activity for 60 days at 4, - 4 °C and for 15 days at 30 °C.


Assuntos
Parede Celular/enzimologia , Microbiologia Industrial/métodos , Lipase/química , Óleo de Soja/química , Eliminação de Resíduos Líquidos/métodos , Yarrowia/enzimologia , Concentração de Íons de Hidrogênio , Ácido Oleico/química , Peptonas/química , Glycine max , Especificidade por Substrato , Temperatura , Fatores de Tempo , Ultrassom
12.
Bioprocess Biosyst Eng ; 44(4): 661-671, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33211199

RESUMO

Bacterial cellulose produced from soybean oil refinery effluent is a good immobilization carrier because of the large pores in its fiber network, its high water-holding capacity, and its good biocompatibility. In this study, it was applied to immobilization of oleaginous yeasts for treating soybean oil refinery effluent. The immobilization percentage reached 50%, and the removal of chemical oxygen demand and oil content reached 92.1% and 93.1%, respectively, during dynamic immobilization using a mass percentage of bacterial cellulose of 30% and an immobilization time of 24 h, which were significantly higher than those of free oleaginous yeasts or yeasts immobilized by bacterial cellulose from rich medium. The immobilized oleaginous yeasts facilitated the recovery of the yeasts and effectively treated three batches of soybean oil refinery effluent. The immobilized oleaginous yeasts recovered after soybean oil refinery effluent treatment were pyrolyzed to produce bio-oil, which contributed to more alkanes and a higher calorific value of bio-oil in the pyrolysis products as compared to those of free oleaginous yeasts. As bacterial cellulose used as an oleaginous yeast cell carrier is produced from soybean oil refinery effluent, no waste of immobilization materials is involved and an efficient waste-into-oil bioprocess is developed.


Assuntos
Bactérias/metabolismo , Celulose/química , Glycine max/metabolismo , Pirólise , Eliminação de Resíduos Líquidos/instrumentação , Purificação da Água/instrumentação , Análise da Demanda Biológica de Oxigênio , Meios de Cultura , Fermentação , Glucose/química , Resíduos Industriais , Microscopia Eletrônica de Varredura , Indústria de Petróleo e Gás , Peptonas/química , Temperatura , Termogravimetria , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Leveduras
13.
Arch Microbiol ; 202(6): 1407-1417, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32173773

RESUMO

Pseudomonas spp. are the main producers of rhamnolipids. These products have applications in pharmaceuticals, cosmetics, food industry and bioremediation. The biosynthesis of rhamnolipids is influenced by nutrient composition, pH and temperature. In this study, the impact of nutrients on the expression levels of rhamnolipid synthesis genes was evaluated in P. aeruginosa ATCC 15442. Glucose and glycerol were used as carbon sources; while, NaNO3, NH4NO3 and yeast extract/peptone were employed as nitrogen sources. The effect of different concentrations of Fe2+ and Fe3+ on rhamnolipid synthesis genes was also evaluated. Highest biosurfactant production was obtained in minimal medium supplemented with glucose, NaNO3 and Fe2+. Two rhamnolipid synthesis genes, rhlA and rhlB, were amplified with PCR. CapLC ESI-Ion trap-MS/MS detected only mono-rhamnolipid Rha-C10-C10 in the extract. Although similar induction levels were recorded in the presence of 0.05 g/L iron ions, the presence of Fe2+ resulted in higher expression levels than Fe3+ at concentrations equivalent to 0.025 and 0.075 g/L.


Assuntos
Carbono/metabolismo , Glicolipídeos/biossíntese , Ferro/metabolismo , Nitrogênio/metabolismo , Pseudomonas aeruginosa/metabolismo , Glucose/metabolismo , Glicerol/metabolismo , Íons/metabolismo , Nitratos/metabolismo , Peptonas/metabolismo , Pseudomonas aeruginosa/genética , Tensoativos/química , Tensoativos/metabolismo , Espectrometria de Massas em Tandem
14.
J Microbiol Methods ; 170: 105853, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31978532

RESUMO

The major functions of Exopolysaccharide (EPS) include, preventing bacterial cells from desiccating and biofilm production to increase the colonization of bacterial cells. In the current study, a bacterial strain was isolated to produce EPS. Phylogenetic analysis of the isolated strain indicated it was related to Bacillus subtilis. The bacterium showed the ability to produce a new EPS using very cheap date seeds as a carbon source. Different conditions were studied to enhance exopolysaccharide production. Maximum total sugars (exopolysaccharide) were reached to 0.87 mM) at 20 g/lAjwadates seed (ADS). The maximum production was found to be 3.46 mM by addition of peptone as the main source of nitrogen with a concentration of 1.5 g/L. The optimal parameter values were temperature 37 °C, pH 6, incubation time 72 h and inoculum concentration 1 mL. The crude exopolysaccharide was purified by removing the cells, then the protein, then dialysis and finally ethanol precipitation of the exopolysaccharide. This method modification increased exopolysaccharide production to 0.6 g/L. The exopolysaccharide produced showed antitumor activity against Erlich tumor cells. It is promising for application on a large scale for different types of cancer cell lines.


Assuntos
Bacillus subtilis/metabolismo , Polissacarídeos Bacterianos/metabolismo , Carbono/metabolismo , Linhagem Celular Tumoral , Meios de Cultura/química , Indústria Alimentícia , Humanos , Nitrogênio/metabolismo , Peptonas/metabolismo
15.
Sci Rep ; 9(1): 19126, 2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31836782

RESUMO

Gold nanoparticles of different sizes, shapes, and decorations exert a variety of effects on biological systems. We report a novel mechanism of action of chemically modified, tryptone-stabilized gold nanoparticles (T-GNPs) in the triple-negative breast cancer (TNBC) cell line, MDA-MB-231. The T-GNPs, synthesized using HAuCl4.3H2O and tryptone and characterized by an assortment of spectroscopy techniques combined with high-resolution electron microscopy, demonstrated strong antiproliferative and anti-clonogenic potential against MDA-MB-231 cells, arresting them at the G1 phase of the cell cycle and promoting apoptosis. The molecular mechanism of action of these particles involved induction of unipolar clustering and hyper amplification of the supernumerary centrosomes (a distinctive feature of many tumour cells, including TNBC cells). The clustering was facilitated by microtubules with suppressed dynamicity. Mass spectrometry-assisted proteomic analysis revealed that the T-GNP-induced G1 arrest was facilitated, at least in part, by downregulation of ribosome biogenesis pathways. Due to the presence of supernumerary centrosomes in many types of tumour cells, we propose chemical induction of their unipolar clustering as a potential therapeutic strategy.


Assuntos
Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Centrossomo/química , Ouro/química , Nanopartículas Metálicas/química , Peptonas/química , Neoplasias de Mama Triplo Negativas/genética , Apoptose , Linhagem Celular Tumoral , Sobrevivência Celular , Fase G1/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial , Microscopia Eletrônica , Proteômica , Espécies Reativas de Oxigênio , Espectrofotometria
16.
J Biol Inorg Chem ; 24(7): 999-1007, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31388822

RESUMO

Gold nanoparticles (GNPs) of different sizes and shapes have been investigated extensively for their therapeutic potential against several diseases including cancer. However, the mechanisms with which they affect the cells are yet to be fully comprehended. In this study, we report the strong antiproliferative potential of novel, star-shaped ("stellate") GNPs that target tubulin-the building-block protein of the cytoskeletal filaments called microtubules-and disrupt microtubule network integrity. The stellate GNPs ("sGNPs") were synthesized from tryptone-stabilized GNPs ("tGNPs") and characterized by various spectroscopy methods combined with high-resolution transmission electron microscopy. Among a panel of cancer cell lines tested, they showed strong antiproliferative and anti-clonogenic efficacy against MDA-MB-231 cells. The antiproliferative mechanism of the sGNPs involves perturbation of the secondary and tertiary conformation of tubulin as evidenced by far-UV circular dichroism and anilinonaphthalene sulphate-binding assays. The structural perturbation of tubulin retarded its assembly competence as evidenced by polymer mass analysis and electron microscopy imaging of tubulin assembled in vitro and by immunofluorescence visualization of the cellular microtubules. The treated cells also induced cell cycle arrest at G1 phase. Taken together, our data suggest that sGNPs are potent, tubulin-targeted antiproliferative particles that can be evaluated further for their anticancer potential.


Assuntos
Neoplasias da Mama/patologia , Ouro/química , Ouro/farmacologia , Nanopartículas Metálicas/química , Tubulina (Proteína)/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Peptonas/química
17.
Int J Biol Macromol ; 124: 1186-1196, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30521923

RESUMO

To contribute towards effective exploitation and utilization of natural antioxidants, response surface methodology (RSM) was employed to optimize the medium composition for the production of exopolysaccharides from the medicinal mushroom Ganoderma lingzhi (GLEPS). An optimal medium for GLEPS production was gave through Plackett-Burman design, path of steepest ascent, and Box-Behnken design as follows: glucose (59.62 g/L), yeast extract (10.03 g/L), CaCO3 (0.2 g/L), thiamine (45.13 mg/L), KH2PO4 (1.0 g/L), peptone (1.5 g/L), Tween 80 (10.26 mL/L), ZnSO4 (0.3 g/L), mannitol (1.5 g/L), MgSO4 (0.5 g/L), and aspartate (8.86 g/L). The GLEPS yield obtained was 3.57 ±â€¯0.21 g/L-3.16-fold higher than that produced in basal medium alone. The resulting GLEPS rich in uronic acid, d-mannose, l-rhamnose, and d-glucose, was a heteropolysaccharide with high-molecular weights (475,000 kDa and 21.6 kDa, 87.97%). It was demonstrated that the GLEPS with higher carbohydrate and uronic acid contents exhibited strong in vitro antioxidant activities via radical scavenging, reductive capacity, and chelation of transition metal catalysis. These findings indicated that RSM is an efficient tool to predict the composition of culture medium required for maximizing GLEPS yield, and GLEPS had potent antioxidant activities and could be explored as a novel natural antioxidant in functional food or medicine.


Assuntos
Antioxidantes/química , Meios de Cultura/química , Polissacarídeos Fúngicos/química , Ganoderma/química , Antioxidantes/isolamento & purificação , Antioxidantes/metabolismo , Ácido Aspártico/química , Ácido Aspártico/farmacologia , Benzotiazóis/antagonistas & inibidores , Benzotiazóis/química , Compostos de Bifenilo/antagonistas & inibidores , Compostos de Bifenilo/química , Meios de Cultura/farmacologia , Análise Fatorial , Polissacarídeos Fúngicos/biossíntese , Polissacarídeos Fúngicos/isolamento & purificação , Ganoderma/efeitos dos fármacos , Ganoderma/metabolismo , Glucose/química , Glucose/farmacologia , Radical Hidroxila/antagonistas & inibidores , Radical Hidroxila/química , Manitol/química , Manitol/farmacologia , Manose/química , Manose/farmacologia , Peptonas/química , Peptonas/farmacologia , Picratos/antagonistas & inibidores , Picratos/química , Polissorbatos/química , Polissorbatos/farmacologia , Ramnose/química , Ramnose/farmacologia , Ácidos Sulfônicos/antagonistas & inibidores , Ácidos Sulfônicos/química , Superóxidos/antagonistas & inibidores , Superóxidos/química , Tiamina/química , Tiamina/farmacologia
18.
New Microbiol ; 41(4): 296-301, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30311625

RESUMO

Oral Candida infections can be life-threatening in medically compromised patients. In particular non-albicans Candida strains are virulent. However, our knowledge is sparse on how proteolytic these strains are in patients with oral cancer. Our study aimed to investigate differences in proteolytic activity of non-albicans Candida and Candida albicans isolated from oral cancer patients. The hypothesis was based on anticipated different invasive capacity of the strains. Clinical and reference yeast samples from our laboratory were used for analyses. Candida strains were grown in yeast peptone glucose and the activity of Candida proteinases of broken cell fractions were analysed by MDPF-gelatin zymography. Fluorometric assay was used to compare activities of proteolytic enzymes and degradation assays were performed using CLDN 4 and plasma fibronectin. Clear differences were seen in the proteolytic activity between the studied non-albicans Candida and C. albicans strains. C. tropicalis had the highest proteolytic activity followed by strains of C. krusei and C. glabrata. The results confirmed our study hypothesis by showing differences between the non-albicans Candida and Candida albicans strains studied. Higher proteolytic activity may thus have an effect on the virulence of non-albicans Candida strains in oral cancer patients.


Assuntos
Candida albicans/enzimologia , Candida/enzimologia , Candidíase Bucal , Neoplasias Bucais/microbiologia , Peptídeo Hidrolases/metabolismo , Candida/patogenicidade , Candida albicans/patogenicidade , Candidíase Bucal/microbiologia , Glucose/metabolismo , Humanos , Peptonas/metabolismo , Virulência
19.
World J Microbiol Biotechnol ; 34(9): 129, 2018 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-30094643

RESUMO

Phenazine-1-carboxamide (PCN) is one of the major biocontrol agents produced by plant growth-promoting rhizosphere (PGPR) pseudomonads including Pseudomonas chlororaphis. In this study, a combined strategy of genetic modification and statistical experimental designs was applied to obtain mutants of P. chlororaphis strains with high-yield PCN production. To achieve this, the lon gene was knocked out in wild-type P. chlororaphis HT66 and the breeding mutant P3 strain with a non-scar deletion strategy. The resulting HT66Δlon and P3Δlon mutants produced a significantly higher PCN production in shake-flask cultures which was 5- and  9-folds greater than their native counterparts. The potential ability of strain P3Δlon for PCN production was further optimized by statistical designs. A two-level Plackett-Burman (PB) experimental design with six variables was employed to scrutinize medium components that significantly influence PCN production. Notably, glycerol, tryptone, and soy peptone were identified to be the most significant factors (p < 0.05). Response surface methodology (RSM) based on the central composite design (CCD) was adopted to determine these factors optimal levels and their interactive effects between culture components for PCN production. The predicted maximum PCN production was 9002 mg/L, whereas an actual PCN production of 9174 mg/L was recorded in the validation experiments using the optimal medium containing glycerol 37.08 mL/L, tryptone 20.00 g/L, and soy peptone 25.03 g/L, which was nearly threefolds higher than without optimization and 20-folds higher than the wild-type strain. In conclusion, the results revealed that P. chlororaphis display a high potential for industrial-scale production for phenazine biopesticides.


Assuntos
Engenharia Genética/métodos , Fenazinas/metabolismo , Pseudomonas chlororaphis/genética , Pseudomonas chlororaphis/metabolismo , Projetos de Pesquisa , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Meios de Cultura/química , DNA Bacteriano/genética , Fermentação , Deleção de Genes , Técnicas de Silenciamento de Genes/métodos , Genes Bacterianos/genética , Glicerol , Modelos Teóricos , Peptonas , Controle Biológico de Vetores
20.
Biotechnol Prog ; 34(5): 1298-1307, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29882320

RESUMO

This manuscript summarizes the effect of certain cell culture medium additives on antibody drug substance coloration and acidic charge variants. It has been shown previously that B-vitamins and iron in the cell culture medium could significantly impact color intensity. In this manuscript, we detail the effect of several other cell culture components that have been shown to impact coloration. It is shown that if cystine is used instead of cysteine in the cell culture medium, coloration was reduced. Hydrocortisone has been shown to reduce coloration and boost specific productivity. The effect of a peptone/hydrolysate on coloration was investigated in cell culture experiments, which showed its use can lead to reduced coloration. Mechanisms by which these compounds influence coloration will be briefly discussed. Since it has been previously shown that antibody oxidation could potentially lead to coloration, the current effort was focused on screening for specific antioxidant additives to the culture medium to reduce coloration. An in-vitro incubation model was used to screen antioxidant compounds, several of which were found to significantly reduce antibody color, while some led to significantly increased color. Hypotaurine and carboxymethylcysteine, which had the most significant color reducing effect in the incubation study, were further tested in small-scale bioreactor cell culture experiments. These studies demonstrated that these compounds lead to reduced coloration in cell culture without affecting cell growth and titer. Hypotaurine, hydrocortisone, peptone, and cystine were also shown to reduce the acidic charge variant levels, which was previously shown to correlate with color. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018 © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:1298-1307, 2018.


Assuntos
Anticorpos Monoclonais/química , Meios de Cultura/química , Animais , Antioxidantes/farmacologia , Técnicas de Cultura Celular por Lotes , Reatores Biológicos , Células CHO , Cricetinae , Cricetulus , Cistina/farmacologia , Hidrocortisona/farmacologia , Peptonas/farmacologia , Pigmentação/efeitos dos fármacos , Taurina/análogos & derivados , Taurina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA