Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 11(1): 3613, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32680994

RESUMO

Common fragile sites (CFSs) are regions susceptible to replication stress and are hotspots for chromosomal instability in cancer. Several features were suggested to underlie CFS instability, however, these features are prevalent across the genome. Therefore, the molecular mechanisms underlying CFS instability remain unclear. Here, we explore the transcriptional profile and DNA replication timing (RT) under mild replication stress in the context of the 3D genome organization. The results reveal a fragility signature, comprised of a TAD boundary overlapping a highly transcribed large gene with APH-induced RT-delay. This signature enables precise mapping of core fragility regions in known CFSs and identification of novel fragile sites. CFS stability may be compromised by incomplete DNA replication and repair in TAD boundaries core fragility regions leading to genomic instability. The identified fragility signature will allow for a more comprehensive mapping of CFSs and pave the way for investigating mechanisms promoting genomic instability in cancer.


Assuntos
Sítios Frágeis do Cromossomo/genética , Período de Replicação do DNA/genética , Genoma Humano , Instabilidade Genômica , Afidicolina/farmacologia , Linhagem Celular , Sequenciamento de Cromatina por Imunoprecipitação , Mapeamento Cromossômico/métodos , DNA/química , Período de Replicação do DNA/efeitos dos fármacos , Fibroblastos , Redes Reguladoras de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias/genética , Conformação de Ácido Nucleico , Sensibilidade e Especificidade , Transcrição Gênica/efeitos dos fármacos
2.
BMC Cancer ; 10: 230, 2010 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-20497575

RESUMO

BACKGROUND: Aberrations of allelic replication timing are epigenetic markers observed in peripheral blood cells of cancer patients. The aberrant markers are non-cancer-type-specific and are accompanied by increased levels of sporadic aneuploidy. The study aimed at following the epigenetic markers and aneuploidy levels in cells of patients with haematological malignancies from diagnosis to full remission, as achieved by allogeneic stem cell transplantation (alloSCT). METHODS: TP53 (a tumor suppressor gene assigned to chromosome 17), AML1 (a gene assigned to chromosome 21 and involved in the leukaemia-abundant 8;21 translocation) and the pericentomeric satellite sequence of chromosome 17 (CEN17) were used for replication timing assessments. Aneuploidy was monitored by enumerating the copy numbers of chromosomes 17 and 21. Replication timing and aneuploidy were detected cytogenetically using fluorescence in situ hybridization (FISH) technology applied to phytohemagglutinin (PHA)-stimulated lymphocytes. RESULTS: We show that aberrant epigenetic markers are detected in patients with hematological malignancies from the time of diagnosis through to when they are scheduled to undergo alloSCT. These aberrations are unaffected by the clinical status of the disease and are displayed both during accelerated stages as well as in remission. Yet, these markers are eradicated completely following stem cell transplantation. In contrast, the increased levels of aneuploidy (irreversible genetic alterations) displayed in blood lymphocytes at various stages of disease are not eliminated following transplantation. However, they do not elevate and remain unchanged (stable state). A demethylating anti-cancer drug, 5-azacytidine, applied in vitro to lymphocytes of patients prior to transplantation mimics the effect of transplantation: the epigenetic aberrations disappear while aneuploidy stays unchanged. CONCLUSIONS: The reversible nature of the replication aberrations may serve as potential epigenetic blood markers for evaluating the success of transplant or other treatments and for long-term follow up of the patients who have overcome a hematological malignancy.


Assuntos
Período de Replicação do DNA , Epigênese Genética , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/cirurgia , Linfócitos/patologia , Transplante de Células-Tronco , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Aneuploidia , Azacitidina/farmacologia , Células Cultivadas , Criança , Pré-Escolar , Cromossomos Humanos Par 17 , Cromossomos Humanos Par 21 , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Metilases de Modificação do DNA/antagonistas & inibidores , Metilases de Modificação do DNA/metabolismo , Período de Replicação do DNA/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Epigênese Genética/efeitos dos fármacos , Feminino , Neoplasias Hematológicas/diagnóstico , Neoplasias Hematológicas/patologia , Humanos , Hibridização in Situ Fluorescente , Linfócitos/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Fatores de Tempo , Transplante Homólogo , Resultado do Tratamento , Proteína Supressora de Tumor p53/genética , Adulto Jovem
3.
Nat Cell Biol ; 6(7): 648-55, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15220931

RESUMO

Timing of DNA replication initiation is dependent on S-phase-promoting kinase (SPK) activity at discrete origins and the simultaneous function of many replicons. DNA damage prevents origin firing through the ATM- and ATR-dependent inhibition of Cdk2 and Cdc7 SPKs. Here, we establish that modulation of ATM- and ATR-signalling pathways controls origin firing in the absence of DNA damage. Inhibition of ATM and ATR with caffeine or specific neutralizing antibodies, or upregulation of Cdk2 or Cdc7, promoted rapid and synchronous origin firing; conversely, inhibition of Cdc25A slowed DNA replication. Cdk2 was in equilibrium between active and inactive states, and the concentration of replication protein A (RPA)-bound single-stranded DNA (ssDNA) correlated with Chk1 activation and inhibition of origin firing. Furthermore, ATM was transiently activated during ongoing replication. We propose that ATR and ATM regulate SPK activity through a feedback mechanism originating at active replicons. Our observations establish that ATM- and ATR-signalling pathways operate during an unperturbed cell cycle to regulate initiation and progression of DNA synthesis, and are therefore poised to halt replication in the presence of DNA damage.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Período de Replicação do DNA/genética , Retroalimentação Fisiológica/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/genética , Proteínas de Xenopus , Animais , Anticorpos/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia , Quinases relacionadas a CDC2 e CDC28/genética , Quinases relacionadas a CDC2 e CDC28/metabolismo , Cafeína/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Extratos Celulares , Sistema Livre de Células , Quinase 1 do Ponto de Checagem , Quinase 2 Dependente de Ciclina , Dano ao DNA/genética , Período de Replicação do DNA/efeitos dos fármacos , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Humanos , Oócitos , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteína de Replicação A , Proteínas Supressoras de Tumor , Xenopus laevis , Fosfatases cdc25/antagonistas & inibidores , Fosfatases cdc25/genética , Fosfatases cdc25/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA