Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.015
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Waste Manag ; 182: 271-283, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38688046

RESUMO

High water and pharmaceutical and care products (PPCPs) bounded in sludge flocs limit its utilization and disposal. The advanced oxidation process of perxymonosulfate (PMS) catalyzed by iron salts has been widely used in sludge conditioning. In this study, two iron-rich minerals pyrite and siderite were proposed to enhance sludge dewatering performance and remove the target contaminant of triclosan (TCS). The permanent release of Fe2+ in the activation of PMS made siderite more effective in enhancing sludge dewater with capillary suction time (CST) diminishing by 60.5 %, specific resistance to filtration (SRF) decreasing by 79.2 %, and bound water content (BWC) dropping from 37.1 % to 2.6 % at siderite/PMS dosages of 0.36/0.20 mmol/g-TSS after 20 min of pretreatment. Pyrite/PMS performed slightly inferior under the same conditions and the corresponding CST and SRF decreased by 51.5 % and 71.8 % while the BWC only declined to 17.8 %. Rheological characterization was employed to elucidate the changes in sludge dewatering performance, with siderite/PMS treated sludge showing a 48.3 % reduction in thixotropy, higher than 28.4 % of pyrite/PMS. Oscillation and creep tests further demonstrated the significantly weakened viscoelastic behavior of the sludge by siderite/PMS pretreatment. For TCS mineralization removal, siderite/PMS achieved a high removal efficiency of 43.9 %, in comparison with 39.9 % for pyrite/PMS. The reduction in the sludge solids phase contributed the most to the TCS removal. Free radical quenching assays and EPR spectroscopy showed that both siderite/PMS and pyrite/PMS produced SO4-·  and ·OH, with the latter acting as the major radicals. Besides, the dosage of free radicals generated from siderite/PMS exhibited a lower time-dependence, which also allowed it to outperform in destroying EPS matrix, neutralizing the negative Zeta potential of sludge flocs, and mineralizing macromolecular organic matter.


Assuntos
Ferro , Peróxidos , Esgotos , Triclosan , Eliminação de Resíduos Líquidos , Esgotos/química , Triclosan/química , Ferro/química , Eliminação de Resíduos Líquidos/métodos , Peróxidos/química , Poluentes Químicos da Água/química , Minerais/química , Oxirredução
2.
J Colloid Interface Sci ; 668: 88-97, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38669999

RESUMO

Nanotheranostic platforms, which can respond to tumor microenvironments (TME, such as low pH and hypoxia), are immensely appealing for photodynamic therapy (PDT). However, hypoxia in solid tumors harms the treatment outcome of PDT which depends on oxygen molecules to generate cytotoxic singlet oxygen (1O2). Herein, we report the design of TME-responsive smart nanotheranostic platform (DOX/ZnO2@Zr-Ce6/Pt/PEG) which can generate endogenously hydrogen peroxide (H2O2) and oxygen (O2) to alleviate hypoxia for improving photodynamic-chemo combination therapy of tumors. DOX/ZnO2@Zr-Ce6/Pt/PEG nanocomposite was prepared by the synthesis of ZnO2 nanoparticles, in-situ assembly of Zr-Ce6 as typical metal-organic framework (MOF) on ZnO2 surface, in-situ reduction of Pt nanozymes, amphiphilic lipids surface coating and then doxorubicin (DOX) loading. DOX/ZnO2@Zr-Ce6/Pt/PEG nanocomposite exhibits average sizes of ∼78 nm and possesses a good loading capacity (48.8 %) for DOX. When DOX/ZnO2@Zr-Ce6/Pt/PEG dispersions are intratumorally injected into mice, the weak acidic TEM induces the decomposition of ZnO2 core to generate endogenously H2O2, then Pt nanozymes catalyze H2O2 to produce O2 for alleviating tumor hypoxia. Upon laser (630 nm) irradiation, the Zr-Ce6 component in DOX/ZnO2@Zr-Ce6/Pt/PEG can produce cytotoxic 1O2, and 1O2 generation rate can be enhanced by 2.94 times due to the cascaded generation of endogenous H2O2/O2. Furthermore, the generated O2 can suppress the expression of hypoxia-inducible factor α, and further enable tumor cells to become more sensitive to chemotherapy, thereby leading to an increased effectiveness of chemotherapy treatment. The photodynamic-chemo combination therapy from DOX/ZnO2@Zr-Ce6/Pt/PEG nanoplatform exhibits remarkable tumor growth inhibition compared to chemotherapy or PDT. Thus, the present study is a good demonstration of a TME-responsive nanoplatform in a multimodal approach for cancer therapy.


Assuntos
Doxorrubicina , Peróxido de Hidrogênio , Oxigênio , Fotoquimioterapia , Nanomedicina Teranóstica , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Animais , Camundongos , Doxorrubicina/farmacologia , Doxorrubicina/química , Doxorrubicina/administração & dosagem , Oxigênio/química , Oxigênio/metabolismo , Humanos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Tamanho da Partícula , Propriedades de Superfície , Ensaios de Seleção de Medicamentos Antitumorais , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Peróxidos/química , Peróxidos/farmacologia , Nanopartículas/química , Camundongos Endogâmicos BALB C , Zinco/química , Zinco/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/administração & dosagem
3.
Environ Sci Technol ; 58(18): 8096-8108, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38627223

RESUMO

Particulate matter, represented by soot particles, poses a significant global environmental threat, necessitating efficient control technology. Here, we innovatively designed and elaborately fabricated ordered hierarchical macroporous catalysts of Ce0.8Zr0.2O2 (OM CZO) integrated on a catalyzed diesel particulate filter (CDPF) using the self-assembly method. An oxygen-vacancy-enriched ordered macroporous Ce0.8Zr0.2O2 catalyst (VO-OM CZO) integrated CDPF was synthesized by subsequent NaBH4 reduction. The VO-OM CZO integrated CDPF exhibited a markedly enhanced soot oxidation activity compared to OM CZO and powder CZO coated CDPFs (T50: 430 vs 490 and 545 °C, respectively). The well-defined OM structure of the VO-OM CZO catalysts effectively improves the contact efficiency between soot and the catalysts. Meanwhile, oxygen vacancies trigger the formation of a large amount of highly reactive peroxide species (O22-) from molecular oxygen (O2) through electron abstraction from the three adjacent Ce3+ (3Ce3+ + Vö + O2 → 3Ce4+ + O22-), contributing to the efficient soot oxidation. This work demonstrates the fabrication of the ordered macroporous CZO integrated CDPF and reveals the importance of structure and surface engineering in soot oxidation, which sheds light on the design of highly efficient PM capture and removal devices.


Assuntos
Oxirredução , Catálise , Peróxidos/química , Fuligem/química , Filtração , Material Particulado/química , Emissões de Veículos
4.
ACS Nano ; 18(15): 10542-10556, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38561324

RESUMO

Immunotherapy has emerged as a potential approach for breast cancer treatment. However, the rigid stromal microenvironment and low immunogenicity of breast tumors strongly reduce sensitivity to immunotherapy. To sensitize patients to breast cancer immunotherapy, hyaluronic acid-modified zinc peroxide-iron nanocomposites (Fe-ZnO2@HA, abbreviated FZOH) were synthesized to remodel the stromal microenvironment and increase tumor immunogenicity. The constructed FZOH spontaneously generated highly oxidative hydroxyl radicals (·OH) that degrade hyaluronic acid (HA) in the tumor extracellular matrix (ECM), thereby reshaping the tumor stromal microenvironment and enhancing blood perfusion, drug penetration, and immune cell infiltration. Furthermore, FZOH not only triggers pyroptosis through the activation of the caspase-1/GSDMD-dependent pathway but also induces ferroptosis through various mechanisms, including increasing the levels of Fe2+ in the intracellular iron pool, downregulating the expression of FPN1 to inhibit iron efflux, and activating the p53 signaling pathway to cause the failure of the SLC7A11-GSH-GPX4 signaling axis. Upon treatment with FZOH, 4T1 cancer cells undergo both ferroptosis and pyroptosis, exhibiting a strong immunogenic response. The remodeling of the tumor stromal microenvironment and the immunogenic response of the cells induced by FZOH collectively compensate for the limitations of cancer immunotherapy and significantly enhance the antitumor immune response to the immune checkpoint inhibitor αPD-1. This study proposes a perspective for enhancing immune therapy for breast cancer.


Assuntos
Neoplasias da Mama , Neoplasias , Humanos , Feminino , Neoplasias da Mama/terapia , Ácido Hialurônico , Imunoterapia , Peróxidos , Zinco , Microambiente Tumoral , Linhagem Celular Tumoral
5.
Water Res ; 256: 121601, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38640566

RESUMO

Thioether compounds, prevalent in pharmaceuticals, are of growing environmental concern due to their prevalence and potential toxicity. Peroxy chemicals, including peroxymonosulfate (PMS) and peroxyacetic acid (PAA), hold promise for selectively attacking specific thioether moieties. Still, it has been unclear how chemical structures affect the interactions between thioethers and peroxy chemicals. This study addresses this knowledge gap by quantitatively assessing the relationship between the structure of thioethers and intrinsic reaction rates. First, the results highlighted the adverse impact of electron-withdrawing groups on reactivity. Theoretical calculations were employed to locate reactive sites and investigate structural characteristics, indicating a close relationship between thioether charge and reaction rate. Additionally, we established a SMILES-based model for rapidly predicting PMS reactivity with thioether compounds. With this model, we identified 147 thioether chemicals within the high production volume (HPV) and Food and Drug Administration (FDA) approved drug lists that PMS could effectively eliminate with the toxicity (-lg LC50) decreasing. These findings underscore the environmental significance of thioether compounds and the potential for their selective removal by peroxides.


Assuntos
Ácido Peracético , Peróxidos , Sulfetos , Sulfetos/química , Peróxidos/química , Ácido Peracético/química , Poluentes Químicos da Água/química
6.
Nutrients ; 16(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542762

RESUMO

The parenteral nutrition (PN) received by premature newborns is contaminated with peroxides that induce global DNA hypermethylation via oxidative stress. Exposure to peroxides could be an important factor in the induction of chronic diseases such as those observed in adults who were born preterm. As endogenous H2O2 is a major regulator of glucose-lipid metabolism, our hypothesis was that early exposure to PN induces permanent epigenetic changes in H2O2 metabolism. Three-day-old guinea pigs were fed orally (ON), PN or glutathione-enriched PN (PN+GSSG). GSSG promotes endogenous peroxide detoxification. After 4 days, half the animals were sacrificed, and the other half were fed ON until 16 weeks of age. The liver was harvested. DNA methylation and mRNA levels were determined for the SOD2, GPx1, GCLC, GSase, Nrf2 and Keap1 genes. PN induced GPx1 hypermethylation and decreased GPx1, GCLC and GSase mRNA. These findings were not observed in PN+GSSG. PN+GSSG induced Nrf2 hypomethylation and increased Nrf2 and SOD2 mRNA. These observations were independent of age. In conclusion, in neonatal guinea pigs, PN induces epigenetic changes, affecting the expression of H2O2 metabolism genes. These changes persist for at least 15 weeks after PN. This disruption may signify a permanent reduction in the capacity to detoxify peroxides.


Assuntos
Peróxido de Hidrogênio , Fator 2 Relacionado a NF-E2 , Animais , Cobaias , Peróxido de Hidrogênio/metabolismo , Dissulfeto de Glutationa/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Animais Recém-Nascidos , Nutrição Parenteral/efeitos adversos , Glutationa/metabolismo , Peróxidos/metabolismo , Suplementos Nutricionais , Epigênese Genética , RNA Mensageiro/genética
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124142, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38493515

RESUMO

In this work, we investigated the oxidative stress-related biochemical alterations in red blood cells (RBCs) and their membranes with the use of spectroscopic techniques. We aimed to show their great advantage for the in situ detection of lipid classes and secondary structures of proteins without the need for their extraction in the cellular environment. The exposition of the cells to peroxides, t-butyl hydroperoxide (tBOOH) or hydrogen peroxide (H2O2) led to different degradation processes encompassing the changes in the composition of membranes and structural modifications of hemoglobin (Hb). Our results indicated that tBOOH is generally a stronger oxidizing agent than H2O2 and this observation was congruent with the activity of superoxide and glutathione peroxidase. ATR-FTIR and Raman spectroscopies of membranes revealed that tBOOH caused primarily the partial loss and peroxidation of the lipids resulting in loss of the integrity of membranes. In turn, both peroxides induced several kinds of damage in the protein layer, including the partial decrease of their content and irreversible aggregation of spectrin, ankyrin, and membrane-bound globin. These changes were especially pronounced on the membrane surface where stress conditions induced the formation of ß-sheets and intramolecular aggregates, particularly for tBOOH. Interestingly, nano-FTIR spectroscopy revealed the lipid peroxidative damage on the membrane surface in both cases. As far as hemoglobin was concerned, tBOOH and H2O2 caused the increase of the oxyhemoglobin species and conformational alterations of its polypeptide chain into ß-sheets. Our findings confirm that applied spectroscopies effectively track the oxidative changes occurring in the structural components of red blood cells and the simplicity of conducting measurements and sample preparation can be readily applied to pharmacological and clinical studies.


Assuntos
Eritrócitos , Peróxido de Hidrogênio , Humanos , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Eritrócitos/metabolismo , Hemoglobinas/metabolismo , Peróxidos/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Lipídeos , Estresse Oxidativo
8.
Anal Chem ; 96(10): 4213-4223, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38427460

RESUMO

The accurate quantification of cancer-derived exosomes, which are emerging as promising noninvasive biomarkers for liquid biopsies in the early diagnosis of cancer, is becoming increasingly imperative. In our work, we developed a magnetically controlled photothermal, colorimetric, and fluorescence trimode aptasensor for human gastric cancer cell (SGC-7901)-derived exosomes. This sensor relied on CP/Mn-PBA DSNBs nanocomposites, created by decorating copper peroxide (CP) nanodots on polyethyleneimine-modified manganese-containing Prussian blue analogues double-shelled nanoboxes (PEI-Mn-PBA DSNBs). Through self-assembly, we attached CD63 aptamer-labeled CP/Mn-PBA DSNBs (Apt-CP/Mn-PBA DSNBs) to complementary DNA-labeled magnetic beads (cDNA-MB). During exosome incubation, these aptamers preferentially formed complexes with exosomes, and we efficiently removed the released CP/Mn-PBA DSNBs by using magnetic separation. The CP/Mn-PBA DSNBs exhibited high photoreactivity and photothermal conversion efficiency under near-infrared (NIR) light, leading to temperature variations under 808 nm irradiation, correlating with different exosome concentrations. Additionally, colorimetric detection was achieved by monitoring the color change in a 3,3',5,5'-tetramethylbenzidine (TMB) system, facilitated by PEI modification, NIR-enhanced peroxidase-like activity of CP/Mn-PBA DSNBs and their capacity to generate Cu2+ and H2O2 under acidic conditions. Moreover, in the presence of Cu2+ and ascorbic acid (AA), DNA sequences could form dsDNA-templated copper nanoparticles (CuNPs), which emitted strong fluorescence at around 575 nm. Increasing exosome concentrations correlated with decreases in temperature, absorbance, and fluorescence intensity. This trimode biosensor demonstrated satisfactory ability in differentiating gastric cancer patients from healthy individuals using human serum samples.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Exossomos , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/diagnóstico , Cobre , Peróxidos , Peróxido de Hidrogênio , Colorimetria
9.
Food Chem ; 447: 138934, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38461714

RESUMO

To overcome the disadvantages of severe emulsification and difficulty in obtaining free oil during aqueous extraction of peanut oil, the effect of roasting assisted aqueous ethanol extraction on free oil recovery was investigated. When peanut kernels were roasted at 180 °C for 10 min, free oil recovery increased from 57% to 96%, and the acid and peroxide values of the peanut oil met the requirements of good quality. The degree of hydration swelling of proteins in the extract increased, and soluble solids were easier to aggregate, resulting in reduced emulsification and significantly higher free oil recovery. The roasting conditions selected were found to significantly promote protein hydrophilicity, aggregation and fusion of oil bodies, as well as cell rupture, which facilitated the release of free oil but with a lower degree of protein denaturation. This study may promote the practical application of aqueous extraction technology for peanut oil.


Assuntos
Proteínas , Água , Óleo de Amendoim , Peróxidos , Arachis
10.
Environ Sci Technol ; 58(14): 6444-6454, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38551318

RESUMO

Catalyst design with a "Co-N-C" structure at the atomic level has shown great interest for peroxymonosulfate (PMS) activation toward advanced oxidation water treatment. Here, we present an innovative way of producing cobalt hexacyanocobaltate (Co-HCC) with an abundance of atomically isolated CoII-NC sites at the outer surface. This material allows ultraefficient PMS activation to generate plenty of sulfate and hydroxyl radicals, with a turnover frequency much higher than those of most cobalt-based catalysts reported so far and even the homogeneous catalysis by Co2+ ions. We gained fundamental insights on its unprecedently high catalytic performance based on experimental results and computational study. Then, we controlled the growth of Co-HCC on a ceramic membrane to form a confined oxidation environment that utilizes the extended surface area and maximal exposure of short-lived radicals for a fast removal of organic pollutants that enter the pores. As a result, this catalytic membrane achieves complete disruption of micropollutants under a water flux up to 10,000 LMH (merely 0.2 s retention time) and further >90% mineralization of organic pollutants in complex industrial wastewater matrices (<100 s retention time), together with the merits of operational simplicity and great longevity (2 weeks continuous run). Our study elicits a new milestone in "Co-N-C" catalyst structure design for PMS activation and highlights the great interest of producing catalytic membranes for a confined treatment of organic pollutants from partial oxidation to complete mineralization as a new benchmark.


Assuntos
Carcinoma Hepatocelular , Poluentes Ambientais , Neoplasias Hepáticas , Humanos , Cobalto/química , Cianetos , Peróxidos/química , Catálise
11.
J Cosmet Dermatol ; 23(4): 1422-1428, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38404060

RESUMO

BACKGROUND: There are very few cosmetic ingredients that can target oil control and extend the wear time. Fullerenes have been reported to have excellent antioxidant capacity and a variety of biological activities, such as quenching free radicals, inhibiting lipid peroxidation, and promoting lipid flocculation. OBJECTIVE: The purpose of applying foundation makeup on the face is to make the skin color even, but the secretion and oxidation of skin oil will make the makeup mottled and dull. In order to solve this problem, a fullerene composite material that can directionally absorb oil and resist oil oxidation has been developed. METHODS: Fullerenes and hydroxyapatite composite was prepared by high pressure homogenization under alkaline condition. The indicated morphology and structure were characterized by SEM, UV-Vis, Raman, and XRD. The oil absorption capacity was determined by adding the C60-hydroxyapatite composite to a mixed solution of hexane and oil, shaking for 1 h, filtering, analyzed by GC-MS, and calculating the oil absorption by external standard method. Artificial sebum was prepared by adding different mass of water and oleic acid to screen the optimum ratio. C60-hydroxyapatite mixture and C60-hydroxyapatite composite were added to the artificial sebum to test the oil-absorbing capacity of the materials. The hydroxyl radical scavenging ability of C60-hydroxyapatite composite containing different fullerene contents was measured by X-band ESR spectroscopy, and the long-term radical scavenging ability of the composites was tested in comparison with VC. Antioxidant experiment is adding C60-hydroxyapatite composite material, and hydroxyapatite to oleic acid, then the UV light irradiation is aimed to accelerate the oxidation of oleic acid. Oleic acid act as a control group, and make the detection of oleic acid peroxide value after 7 days. The safety of the materials was tested by using culture media to soak the C60-hydroxyapatite composite for 24 h and then used to culture cells. RESULTS: The characterization of SEM, UV-Vis, Raman, and XRD showed that fullerene clusters were dispersed on the surface of hydroxyapatite stably, and they formed a stable composite. The adsorption rates of C60-hydroxyapatite composites for oleic acid, phenyl trimethicone, caprylic capric glyceride, isooctyl palmitate, mineral oil, olive oil, and dimethicone were 60.5%, 9.3%, 9.15%, 5.24%, 2.94%, 1.01%, and 0%, respectively. The flocculation amount of artificial sebum was 5.9 g per gram of C60-hydroxyapatite mixture and 24.2 g per gram of C60-hydroxyapatite composite. C60-hydroxyapatite composites have excellent quenching ability for hydroxyl radicals. When the fullerene content is 1, 2, 3, and 4 mg/kg, the quenching rates are 25.02%, 39.57%, 49.75%, and 62.24%, respectively. The quenching effect was enhanced with the increase of fullerene content, and it had strong long-term antioxidant properties. It can also be proved that C60-hydroxyapatite composites have strong antioxidant capacity through antioxidant experiments. The peroxide value of oleic acid on Day 0 was 2.8, and after 7 days of UV irradiation, the peroxide values of blank control, hydroxyapatite group, C60-hydroxyapatite composite containing 0.5% and 1% fullerenes four groups of materials were 8.02 meq O2/kg, 7.98 meq O2/kg, 7.11 meq O2/kg, and 6.87 meq O2/kg, respectively. The cell activity was 20.94% and 99.2% after the cells were cultured for 24 h using C60-hydroxyapatite composite and hydroxyapatite extracts, respectively, and the addition of fullerene was able to significantly increase the cell activity. CONCLUSION: Fullerene hydroxyapatite complex has excellent directional oil absorption characteristics, which can effectively remove free radicals and reduce skin oil oxidation.


Assuntos
Antioxidantes , Fulerenos , Humanos , Antioxidantes/farmacologia , Fulerenos/química , Ácido Oleico , Radicais Livres , Peróxidos , Hidroxiapatitas
12.
Bioresour Technol ; 396: 130461, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38369082

RESUMO

In this study, pyrolysis and hydrothermal methods were used for Enteromorpha biochar that was co-modified with l-cysteine and barium titanate (LBCBa). It has great environmental tolerance and can remove 93.0 % of atrazine (ATZ, 10 mg·L-1) within 60 mins of ultrasonic treatment. The enhanced hydrophilicity, electron-donating capability, and piezoelectricity of LBCBa are considered to induce excellent performance. The apparent reaction rate of the LBCBa-2/PMS/ATZ system with ultrasonic was 2.87 times that without ultrasonic. The density functional theory points out that, introducing l-cysteine to carbon edges improves the adsorption of ATZ and peroxymonosulfate (PMS), making PMS easier to activate. This work offered unique insights for fabricating effective catalysts and demonstrated the combination of hydrophilic functional groups and piezoelectricity in improving catalytic performance and stability.


Assuntos
Atrazina , Carvão Vegetal , Bário , Cisteína , Peróxidos
13.
ACS Appl Mater Interfaces ; 16(8): 9626-9639, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38372238

RESUMO

The hypoxic microenvironment in osteosarcoma inevitably compromises the antitumor effect and local bone defect repair, suggesting an urgent need for sustained oxygenation in the tumor. The currently reported oxygen-releasing materials have short oxygen-releasing cycles, harmful products, and limited antitumor effects simply by improving hypoxia. Therefore, the PCL/nHA/MgO2/PDA-integrated oxygen-releasing scaffold with a good photothermal therapy effect was innovatively constructed in this work to achieve tumor cell killing and bone regeneration functions simultaneously. The material distributes MgO2 powder evenly on the scaffold material through 3D printing technology and achieves the effect of continuous oxygen release (more than 3 weeks) through its slow reaction with water. The in vitro and in vivo results also indicate that the scaffold has good biocompatibility and sustained-release oxygen properties, which can effectively induce the proliferation and osteogenic differentiation of bone mesenchymal stem cells, achieving excellent bone defect repair. At the same time, in vitro cell experiments and subcutaneous tumorigenesis experiments also confirmed that local oxygen supply can promote osteosarcoma cell apoptosis, inhibit proliferation, and reduce the expression of heat shock protein 60, thereby enhancing the photothermal therapy effect of polydopamine and efficiently eliminating osteosarcoma. Taken together, this integrated functional scaffold provides a unique and efficient approach for antitumor and tumor-based bone defect repair for osteosarcoma treatment.


Assuntos
Neoplasias Ósseas , Compostos de Magnésio , Osteossarcoma , Peróxidos , Humanos , Alicerces Teciduais , Osteogênese , Oxigênio/farmacologia , Óxido de Magnésio , Regeneração Óssea , Osteossarcoma/terapia , Neoplasias Ósseas/tratamento farmacológico , Impressão Tridimensional , Terapia Combinada , Microambiente Tumoral
14.
Sci Total Environ ; 920: 170982, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38367723

RESUMO

The application of iron-doped biochar in peroxymonosulfate (PMS) activation systems has gained increasing attention due to their effectiveness and environmental friendliness in addressing environmental issues. However, the behavioral mechanism of iron doping and the detailed 1O2 generation mechanism in PMS activation systems remain ambiguous. Here, we investigated the effects of three anions (Cl-, NO3-and SO42-) on the process of iron doping into bone char, leading to the synthesis of three iron-doped bone char (Fe-ClBC, Fe-NBC and Fe -SBC). These iron-doped bone char were used to catalyze PMS to degrade acetaminophen (APAP) and exhibited the following activity order: Fe-ClBC > Fe-NBC > Fe-SBC. Characterization results indicated that iron doping primarily occurred through the substitution of calcium in hydroxyapatite within BC. In the course of the impregnation, the binding of SO42- and Ca2+ hindered the exchange of iron ions, resulting in lower catalytic activity of Fe-SBC. The primary reactive oxygen species in the Fe-ClBC/PMS and Fe-NBC/PMS systems were both 1O2. 1O2 is produced through O2•- conversion and PMS self-dissociation, which involves the generation of metastable iron intermediates and electron transfer within iron species. The presence of oxygen vacancies and more carbon defects in the Fe-ClBC catalyst facilitates 1O2 generation, thereby enhancing APAP degradation within the Fe-ClBC/PMS system. This study is dedicated to in-depth exploration of the mechanisms underlying iron doping and defect materials in promoting 1O2 generation.


Assuntos
Acetaminofen , Ferro , Suínos , Animais , Ferro/química , Peróxidos/química , Oxirredução , Oxigênio
15.
Proc Natl Acad Sci U S A ; 121(8): e2317343121, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38359293

RESUMO

Glucose and amino acid metabolism are critical for glioblastoma (GBM) growth, but little is known about the specific metabolic alterations in GBM that are targetable with FDA-approved compounds. To investigate tumor metabolism signatures unique to GBM, we interrogated The Cancer Genome Atlas for alterations in glucose and amino acid signatures in GBM relative to other human cancers and found that GBM exhibits the highest levels of cysteine and methionine pathway gene expression of 32 human cancers. Treatment of patient-derived GBM cells with the FDA-approved single cysteine compound N-acetylcysteine (NAC) reduced GBM cell growth and mitochondrial oxygen consumption, which was worsened by glucose starvation. Normal brain cells and other cancer cells showed no response to NAC. Mechanistic experiments revealed that cysteine compounds induce rapid mitochondrial H2O2 production and reductive stress in GBM cells, an effect blocked by oxidized glutathione, thioredoxin, and redox enzyme overexpression. From analysis of the clinical proteomic tumor analysis consortium (CPTAC) database, we found that GBM cells exhibit lower expression of mitochondrial redox enzymes than four other cancers whose proteomic data are available in CPTAC. Knockdown of mitochondrial thioredoxin-2 in lung cancer cells induced NAC susceptibility, indicating the importance of mitochondrial redox enzyme expression in mitigating reductive stress. Intraperitoneal treatment of mice bearing orthotopic GBM xenografts with a two-cysteine peptide induced H2O2 in brain tumors in vivo. These findings indicate that GBM is uniquely susceptible to NAC-driven reductive stress and could synergize with glucose-lowering treatments for GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Camundongos , Animais , Peróxido de Hidrogênio , Peróxidos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Proteômica , Acetilcisteína/farmacologia , Glucose , Linhagem Celular Tumoral , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética
16.
J Hazard Mater ; 469: 133869, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38422733

RESUMO

Whether it's necessary to extra chemical synthesis steps to modify nZVI in peroxymonosulfate (PMS) activation process are worth to further investigation. The 56 mg/L nZVI/153.65 mg/L PMS and 56 mg/L sulfidated nZVI (S-nZVI) (S/Fe molar ratio = 1:5)/153.65 mg/L PMS) processes could effectively attain 97.7% (with kobs of 3.7817 min-1) and 97.0% (with kobs of 3.4966 min-1) of the degradation of 20 mg/L sulfadiazine (SDZ) in 1 min, respectively. The nZVI/PMS system could quickly achieve 85.5% degradation of 20 mg/L SDZ in 1 min and effectively inactivate 99.99% of coexisting Pseudomonas. HLS-6 (5.81-log) in 30 min. Electron paramagnetic resonance tests and radical quenching experiments determined SO4•-, HO•, 1O2 and O2•- were responsible for SDZ degradation. The nZVI/PMS system could still achieve the satisfactory degradation efficiency of SDZ under the influence of humic acid (exceeded 96.1%), common anions (exceeded 67.3%), synthetic wastewater effluent (exceeded 90.7%) and real wastewater effluent (exceeded 78.7%). The high degradation efficiency of tetracycline (exceeded 98.9%) and five common disinfectants (exceeded 96.3%) confirmed the applicability of the two systems for pollutants removal. It's no necessary to extra chemical synthesis steps to modify nZVI for PMS activation to remove both chemical and biological pollutants.


Assuntos
Poluentes Ambientais , Peróxidos , Poluentes Químicos da Água , Ferro , Sulfadiazina/farmacologia , Águas Residuárias , Poluentes Químicos da Água/análise
17.
Adv Mater ; 36(19): e2310218, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38315577

RESUMO

The common clinical chemotherapy often brings serious side effects to patients, mainly due to the off-target and leakage of toxic drugs. However, this is fatal for some specific clinical tumors, such as brain tumors and neuroma. This study performs a drug-free approach by encapsulating black phosphorus (BP) and calcium peroxide (CaO2) in liposomes with surface-modified triphenylphosphonium (BCLT) to develop mitochondria targeting calcification for cancer therapy without damaging normal cells. BCLT preferentially accumulates inside tumor mitochondria and then is activated by near-infrared (NIR) laser irradiation to produce abundant PO4 3- and Ca2+ to accelerate in situ mitochondrial mineralization, leading to mitochondrial dysfunction and cancer cell death. More importantly, both PO4 3- and Ca2+ are essential components of metabolism in the body, and random gradient diffusion or premature leakage does not cause damage to adjacent normal cells. This achievement promises to be an alternative to conventional chemotherapy in clinical practice for many specific tumor types.


Assuntos
Mitocôndrias , Fósforo , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Fósforo/química , Lipossomos/química , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Biomineralização , Linhagem Celular Tumoral , Animais , Peróxidos/química , Peróxidos/metabolismo , Compostos Organofosforados/química , Compostos de Cálcio/química , Raios Infravermelhos , Camundongos , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
18.
Adv Mater ; 36(15): e2307454, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38299428

RESUMO

The dismal prognosis for glioblastoma multiform (GBM) patients is primarily attributed to the highly invasive tumor residual that remained after surgical intervention. The development of precise intraoperative imaging and postoperative residual removal techniques will facilitate the gross total elimination of GBM. Here, a self-disassembling porphyrin lipoprotein-coated calcium peroxide nanoparticles (PLCNP) is developed to target GBM via macropinocytosis, allowing for fluorescence-guided surgery of GBM and improving photodynamic treatment (PDT) of GBM residual by alleviating hypoxia. By reducing self-quenching and enhancing lysosome escape efficiency, the incorporation of calcium peroxide (CaO2) cores in PLCNP amplifies the fluorescence intensity of porphyrin-lipid. Furthermore, the CaO2 core has diminished tumor hypoxia and improves the PDT efficacy of PLCNP, enabling low-dose PDT and reversing tumor progression induced by hypoxia aggravation following PDT. Taken together, this self-disassembling and oxygen-generating porphyrin-lipoprotein nanoparticle may serve as a promising all-in-one nanotheranostic platform for guiding precise GBM excision and empowering post-operative PDT, providing a clinically applicable strategy to combat GBM in a safe and effective manner.


Assuntos
Glioblastoma , Nanopartículas , Peróxidos , Fotoquimioterapia , Porfirinas , Humanos , Porfirinas/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/cirurgia , Oxigênio/metabolismo , Fotoquimioterapia/métodos , Hipóxia , Nanopartículas/uso terapêutico , Linhagem Celular Tumoral , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico
19.
Environ Res ; 249: 118362, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38325787

RESUMO

Sulfate radical-based advanced oxidation processes with (SR-AOPs) are widely employed to degrade organic pollutants due to their high efficiency, cost-effectiveness and safety. In this study, a highly active and stable FeNiP was successfully prepared by reduction and heat treatment. FeNiP exhibited high performance of peroxymonosulfate (PMS) activation for tetracycline hydrochloride (TC) removal. Over a wide pH range, an impressive TC degaradation efficiency 97.86% was achieved within 60 min employing 0.1 g/L FeNiP and 0.2 g/L PMS at room temperature. Both free radicals of SO4·-, ·OH, ·O2- and non-free radicals of 1O2 participated the TC degradation in the FeNiP/PMS system. The PMS activation ability was greatly enhanced by the cycling between Ni and Fe bimetal, and the active site regeneration was achieved due to the existence of the negatively charged Pn-. Moreover, the FeNiP/PMS system exhibited substantial TC degradation levels in both simulated real-world disturbance scenarios and practical water tests. Cycling experiments further affirmed the robust stability of FeNiP catalyst, demonstrating sustained degradation efficiency of approximately 80% even after four cycles. These findings illuminate its promising potential across natural water bodies, presenting an innovative catalyst construction approach for PMS activation in the degradation of antibiotic pollutants.


Assuntos
Ferro , Peróxidos , Tetraciclina , Poluentes Químicos da Água , Tetraciclina/química , Poluentes Químicos da Água/química , Peróxidos/química , Ferro/química , Níquel/química , Antibacterianos/química , Oxirredução , Purificação da Água/métodos
20.
Int J Radiat Biol ; 100(4): 595-608, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38166197

RESUMO

PURPOSE: Oxygen plays a crucial role in radiation biology. Antioxidants and peroxyl radicals affect the oxygen effect greatly. This study aims to establish a computational model of the oxygen effect and explore the effect attributed to antioxidants and peroxyl radicals. MATERIALS AND METHODS: Oxygen-related reactions are added to our track-structure Monte Carlo code NASIC, including oxygen fixation, chemical repair by antioxidants and damage migration from base-derived peroxyl radicals. Then the code is used to simulate the DNA damage under various oxygen, antioxidant and damage migration rate conditions. The oxygen enhancement ratio(OER) is calculated quantifying by the number of double-strand breaks for each condition. The roles of antioxidants and peroxyl radicals are examined by manipulating the relevant parameters. RESULTS AND CONCLUSIONS: Our results indicate that antioxidants are capable of rapidly restoring DNA radicals through chemical reactions, which compete with natural and oxygen fixation processes. Additionally, antioxidants can react with peroxyl radicals derived from bases, thereby preventing the damage from migrating to DNA strands. By quantitatively accounting for the impact of peroxyl radicals and antioxidants on the OER curves, our study establishes a more precise and comprehensive model of the radiation oxygen effect.


Assuntos
Antioxidantes , Oxigênio , Antioxidantes/farmacologia , Antioxidantes/química , Radicais Livres/química , Radicais Livres/efeitos da radiação , Método de Monte Carlo , Peróxidos , DNA/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA