Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 246
Filtrar
1.
Sci Rep ; 14(1): 17573, 2024 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080438

RESUMO

The oil obtained from black cumin (Nigella sativa) seeds has many health-effective properties, which is used in food applications and in traditional medicine. One practical method to extract its oil is mixing with other seeds such as sunflower (Helianthus anuus) seeds before oil extraction by press. The effectiveness of the cold-press oil obtained from the mixture of black cumin seeds (BS) and sunflower seeds (SF) in different proportions 100:0, 95:5, 90:10, 85:15 and 0:100 (w/w) was studied to evaluate their qualitative properties including peroxide value (PV), acid value, p-anisidine value (AnV), pigments (carotenoid and chlorophyll) content, polyphenols, and profile of fatty acids during heating process (30-150 min at 180 °C). The results revealed that the acid and p-anisidine value of the all samples enhanced with the extension of the heating time, and the peroxide value increased at the beginning of the heating and then decreased with the prolongation of the heating time (p < .05). With the increase of temperature and heating time, the peroxide of sunflower oil increased with a higher slope and speed than that of black seed and blends oil. Changes in the PV and AnV were the fastest in sunflower oil. Blending and heating caused considerable changes in the fatty acid composition of oils, especially myristic, palmitic, and stearic acids. Moreover, the levels of certain unsaturated fatty acids, namely linoleic, oleic, and linolenic acids declined after heating. The carotenoids, chlorophyll and total phenol content decreased gradually during heating treatments. Among extracted oils, SF:BS (15%) had the good potential for stability, with total phenol content of 95.92 (Caffeic acid equivalents/100 g), PV of 2.16 (meq O2/kg), AV of 2.59 (mg KOH/g oil), and AnV of 8.08 after the heating. In conclusion, oil extracted from the mixture of SF and BS can be used as salad and cooking oils with a high content of bioactive components and positive nutritional properties.


Assuntos
Helianthus , Temperatura Alta , Nigella sativa , Óleos de Plantas , Sementes , Nigella sativa/química , Helianthus/química , Sementes/química , Óleos de Plantas/química , Óleos de Plantas/análise , Ácidos Graxos/análise , Clorofila/análise , Peróxidos/análise , Polifenóis/análise , Polifenóis/química , Óleo de Girassol/química , Carotenoides/análise , Carotenoides/química
2.
Chemosphere ; 363: 142846, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39025306

RESUMO

Peroxy radicals (RO2) are key reactive intermediates in atmospheric oxidation processes and yet their chemistry is not fully unraveled. Little is known about their structures and the structures of the dimeric products (ROOR) in the self-reaction of small RO2, which are among the most abundant RO2 in the atmosphere. The product branching ratios of ROOR and their atmospheric roles are still in controversy. Here, the self-reaction of propyl peroxy radicals (C3H7O2), a typical small RO2 radical in the atmosphere, has been studied using synchrotron radiation vacuum ultraviolet photoionization mass spectrometry. Both radical (C3H7O) and closed-shell molecular (C3H6O, C3H7OH, C3H7OOC3H7) products in the self-reaction are observed in photoionization mass spectra and their elusive isomers are definitely identified in mass-selected photoionization spectra. Three isomers of the C3H7OOC3H7 dimeric products, R1OOR1, R1OOR2, and R2OOR2 (R1 and R2 represent 1-C3H7 and 2-C3H7, respectively), as well as their complex structures have been determined for the first time. Kinetic experiments are performed and compared with chemical simulations to reveal the sources of specific products. The branching ratio of the C3H7OOC3H7 dimeric channel is measured at 10 ± 5%. This work demonstrates that the dimeric product formation in the self-reaction of small RO2 radicals is non-negligible and should provide valuable new insight into atmospheric modelling.


Assuntos
Espectrometria de Massas , Síncrotrons , Atmosfera/química , Raios Ultravioleta , Vácuo , Oxirredução , Cinética , Peróxidos/química , Peróxidos/análise , Processos Fotoquímicos
3.
Anal Methods ; 16(28): 4755-4764, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38953302

RESUMO

Peroxide-mediated oxidation of drug molecules is a known challenge faced throughout the pharmaceutical development pathway-from early-stage stability studies to manufacturing processes. During the initial development stage, the major source of peroxide is the formulation excipients, whether they are pre-loaded or generated in situ due to slow degradation, and in the late phase, peroxides can be introduced during sanitization processes or generated via cavitation. In essence, a control strategy for peroxide mitigation often becomes a critical quality attribute for successful drug development. To this end, quantitation of peroxide is essential to monitor the peroxide level to ensure product quality and proposed shelf-life. However, methods for reliable and robust quantitation to detect trace levels of peroxide in a complex drug product matrix become increasingly challenging. This article discusses three high-throughput assays based on absorbance, fluorescence and chemiluminescence measurements to detect peroxide at a low level and compares the methods through validation studies in water. Selected methods have also been tested to understand the forced degradation of model peptide drug products with spiked hydrogen peroxide. Peptide degradation profiles and residual peroxide levels are presented to provide an understanding of the suitability of the quantitation methods and their performance.


Assuntos
Peptídeos , Peróxidos , Peptídeos/química , Peptídeos/análise , Peróxidos/análise , Peróxidos/química , Peróxido de Hidrogênio/química , Oxirredução , Medições Luminescentes/métodos , Estabilidade de Medicamentos , Ensaios de Triagem em Larga Escala/métodos
4.
J Oleo Sci ; 73(7): 943-952, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38945923

RESUMO

Eleven kinds of Camellia oleifera seed oils (CSOs) were evaluated in terms of chemical constituents, antioxidant activities, acid value (AV) as well as peroxide value (POV). These CSOs contained abundant ß-sitosterol, squalene, α-tocopherol and phenolics, in which the squalene was the distinct constituent with the content between 45.8±0.8 and 184.1±5.5 mg/kg. The ß-sitosterol ranging from 143.7±4.8 to 1704.6±72.0 mg/kg contributed a considerable content to total accompaniments. Palmitic acid, stearic acid, oleic acid, linoleic acid and linolenic acid were present in these CSOs, in which the dominant fatty acid was oleic acid with the content between 59.66±0.72 and 82.89±2.16 g/100 g. The AV ranged from 0.1±0.0 to 1.3±0.0 mg KOH/g, and the POV was between 0.1±0.0 and 1.0±0.0 g/100 g. These CSOs showed antioxidant activity based on DPPH and ABTS radical scavenging assay. Both α-tocopherol and ß-sitosterol contents showed a positive correlation with DPPH and ABTS values, respectively, while the α-tocopherol content showed a negative correlation with AV. These results suggested that CSO can be categorized into high oleic acid vegetable oil with abundant active constituents, of which the quality presented variation among different origins. These accompaniments may contribute to the delay of its quality deterioration.


Assuntos
Antioxidantes , Camellia , Ácido Oleico , Óleos de Plantas , Sementes , Sitosteroides , Esqualeno , alfa-Tocoferol , Camellia/química , Antioxidantes/análise , Óleos de Plantas/química , Óleos de Plantas/análise , Sitosteroides/análise , Sementes/química , Esqualeno/análise , China , alfa-Tocoferol/análise , Ácido Oleico/análise , Fenômenos Químicos , Ácidos Graxos/análise , Ácido Palmítico/análise , Fenóis/análise , Ácido Linoleico/análise , Peróxidos/análise
5.
Environ Sci Pollut Res Int ; 31(8): 11886-11897, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38225488

RESUMO

The wastewater from organic peroxide production has high chemical oxygen demand (COD) concentration and poor biodegradability, so it is necessary to find a cost-effective treatment method. The iron-carbon microelectrolysis (IC-ME) technology was used to pretreat the organic peroxide production wastewater, and the influence of reaction conditions on the removal effect of pollutants and the degradation mechanism were studied. The effects of initial pH, iron filings, iron-carbon ratio, and reaction time on the wastewater treatment were investigated by single-factor and response surface optimization experiments, and the degradation mechanism was analyzed by three-dimensional fluorescence spectroscopy, UV-Vis, and gas chromatography mass spectrometry (GC-MS). The experimental results showed that the COD removal efficiency was 35.67% and the biodegradability of wastewater was increased from 0.113 to 0.173 under the conditions of initial pH of 3.1, the dosage of iron filings of 30.5 g/L, the ratio of iron-carbon of 1.01, and the reaction time of 122.8 min, and the process of IC-ME for degrading COD of wastewater from the production of organic peroxide was consistent with the secondary reaction. The IC-ME process could decompose macromolecular organic compounds such as tyrosine proteins and aromatic proteins, and improve the biodegradability of wastewater. It provides a theoretical reference for the practical application of IC-ME to treat this type of wastewater.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Ferro/química , Eliminação de Resíduos Líquidos/métodos , Peróxidos/análise , Carbono/química , Poluentes Químicos da Água/análise , Eletrólise/métodos , Peróxido de Hidrogênio/química , Oxirredução
6.
Molecules ; 28(24)2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38138512

RESUMO

This study aimed to assess the efficacy of a bacterioruberin-rich carotenoid extract (HAE) derived from the halophilic archaea Halorubrum ezzemoulense DSM 19316 in protecting crude fish oil against thermal oxidation. The research used fish oil derived from anchovies, which had a peroxide value (PV) of 6.44 ± 0.81 meq O2 kg-1. To assess the impact of HAE on the thermal stability and post-oxidation characteristics of fish oil, several concentrations of HAE were added to the fish oil samples: 0 ppm (no additive) (HAE0), 50 ppm (HAE50), 100 ppm (HAE100), 500 ppm (HAE500), and 1000 ppm (HAE1000). Furthermore, a control group was established with the addition of 100 ppm butylated hydroxytoluene (BHT100) in order to evaluate the effectiveness of HAE with a synthetic antioxidant that is commercially available. Prior to the fast oxidation experiment, thermogravimetric analysis was conducted on samples from all experimental groups. At the conclusion of the examination, it was seen that the HAE500 and HAE1000 groups exhibited a delay in the degradation temperature. The experimental groups underwent oxidation at a temperature of 55.0 ± 0.5 °C for a duration of 96 h. The measurement of PV was conducted every 24 h during this time. PV in all experimental groups exhibited a time-dependent rise (p < 0.05). However, the HAE500 group had the lowest PV measurement at the conclusion of the 96 h period (p < 0.05). Significant disparities were detected in the fatty acid compositions of the experimental groups at the completion of the oxidation experiment. The HAE500 group exhibited the highest levels of EPA, DHA, and ΣPUFA at the end of oxidation, with statistical significance (p < 0.05). Through the examination of volatile component analysis, specifically an oxidation marker, it was shown that the HAE500 group exhibited the lowest level of volatile components (p < 0.05). Consequently, it was concluded that the addition of HAE to fish oil provided superior protection compared to BHT at an equivalent rate. Moreover, the group that used 500 ppm HAE demonstrated the highest level of performance in the investigation.


Assuntos
Carotenoides , Óleos de Peixe , Óleos de Peixe/farmacologia , Oxirredução , Carotenoides/farmacologia , Peróxidos/análise , Estresse Oxidativo
7.
Food Chem ; 425: 136495, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37276665

RESUMO

Bee pollen is a byproduct of pollination, which is a necessary process to produce foods. However, bee pollen can induce significant food-borne allergies. We previously identified a bee pollen-derived pan-allergen in the profilin family, Bra c p. Herein, we aimed to reduce Bra c p allergenicity via protein oxidation with hydrogen peroxide and explore the changes induced. Ion-mobility mass spectrometry revealed aggregation of the oxidized product; we also found irreversible sulfonation of the free sulfhydryl group of the Bra c p Cys98 residue to a more stable cysteine derivative. A significant proportion of the α-helices in Bra c p were transformed into ß-sheets after oxidation, masking the antigenic epitopes. An immunoassay demonstrated that the IgE-binding affinity of Bra c p was decreased in vitro after oxidation. To our knowledge, this is the first report describing the application of protein oxidation to reduce the allergenicity of profilin family member in foods.


Assuntos
Alérgenos , Profilinas , Abelhas , Animais , Profilinas/análise , Pólen/química , Peróxido de Hidrogênio/análise , Peróxidos/análise , Proteínas de Plantas/análise , Reações Cruzadas
8.
Braz J Biol ; 82: e268209, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36651445

RESUMO

The objective of seed extracts from Anisophyllea boehmii and Aframomum sanguineum were to evaluate their ability to stabilize against oxidation of oils exposed to sunlight on one hand and subjected to high temperatures on the other hand. Determination of the peroxide value (PV) showed that the extracts had reduced the oxidation of sunflower oils. After 8 weeks of sunlight exposure, the concentration of 265.45 mg/l of A. boehmii extract showed a PV of 30.78 meq O2/kg, 67.4 mg/l extract of A. sanguineum had a PV of 42.75 meq O2/kg while the oils without extracts had a very high PV (125.06 meq O2/kg). Heating of the oils to 180°C for 8 hours was found, with A. boehmii extract (265.45 mg/l), to have a PV of 29.66 meq O2/kg, with that of A. sanguineum, while the PV of the oils without extract reached 50.66 meq O2/kg. In the light of these results, the seeds of A. boehmii and A. sanguineum contain antioxydant compounds, which, once extracted, can be used for many purposes in the food processing, pharmaceutical and cosmetic industries.


Assuntos
Óleos de Plantas , Sementes , Óleos de Plantas/farmacologia , Burundi , Oxirredução , Peróxidos/análise , Extratos Vegetais/farmacologia
9.
Molecules ; 27(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36144797

RESUMO

The food quality of edible oils is dependent on basic chemical and structural changes that can occur by oxidation during preparation and storage. A rapid and efficient analytical method of the different steps of oil oxidation is described using a time-domain nuclear magnetic resonance (TD-NMR) sensor for measuring signals related to the chemical and physical properties of the oil. The degree of thermal oxidation of edible oils at 80 °C was measured by the conventional methodologies of peroxide and aldehyde analysis. Intact non-modified samples of the same oils were more rapidly analyzed for oxidation using a TD-NMR sensor for 2D T1-T2 and self-diffusion (D) measurements. A good linear correlation between the D values and the conventional chemical analysis was achieved, with the highest correlation of R2 = 0.8536 for the D vs. the aldehyde concentrations during the thermal oxidation of poly-unsaturated linseed oils, the oil most susceptible to oxidation. A good correlation between the D and aldehyde levels was also achieved for all the other oils. The possibility to simplify and minimize the time of oxidative analysis using the TD NMR sensors D values is discussed as an indicator of the oil's oxidation quality, as a rapid and accurate methodology for the oil industry.


Assuntos
Qualidade dos Alimentos , Óleos de Plantas , Aldeídos/análise , Espectroscopia de Ressonância Magnética/métodos , Peróxidos/análise , Óleos de Plantas/química
10.
Molecules ; 27(12)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35745025

RESUMO

Jojoba oil (JO) extracted from seeds has outstanding properties, including anti-inflammatory, antioxidant, and antibacterial activities, and can be stored forlong periodsof time. The unique properties of jojoba oil depend on its chemical composition; therefore, the effect of the jojoba genotype on the chemical properties and active components of the seed oil was evaluated in this study. Oil samples were collected from 15 elite Egyptian jojoba lines. The chemical composition, such as moisture, crude fiber, crude oil, ash, and crude protein of elite lines' seeds was determined to investigate the variation among them based on the jojoba genotype. In addition, the iodine value was obtained to measure the degree of jojoba oil unsaturation, whereas the peroxide number was determined as an indicator of the damage level in jojoba oil. Fatty acid composition was studied to compare elite jojoba lines. Fatty acid profiles varied significantly depending on the jojoba genotype. Gadoleic acid exhibited the highest percentage value (67.85-75.50%) in the extracted jojoba oil, followed by erucic acid (12.60-14.81%) and oleic acid (7.86-10.99%). The iodine value, peroxide number, and fatty acid composition of the tested elite jojoba lines were compared withthose reported by the International Jojoba Export Council (IJEC). The results showed that the chemical properties of jojoba oils varied significantly, depending on the jojoba genotype.


Assuntos
Caryophyllales , Iodo , Ácidos Graxos/química , Iodo/análise , Peróxidos/análise , Óleos de Plantas/química , Sementes/química
11.
Acta Chim Slov ; 68(3): 728-735, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34897537

RESUMO

Hydroperoxides are of great importance in the fields of atmospheric and biological chemistry. However, there are several analytical challenges in their analysis: unknown and usually low UV absorption coefficients, high reactivity, thermal instability, and a lack of available reference standards. To overcome these limitations, we propose a GC-FID approach involving pre-column silylation and quantification via the effective carbon number approach. Four hydroperoxides of α-pinene were synthesized in the liquid phase with singlet oxygen and identified using literature data on isomer yield distribution, MS spectra, estimated boiling temperatures of each isomer (retention time), their thermal stability and derivatisation rate. The developed procedure was used for the determination of hydroperoxides in bottled and autooxidised turpentine. We anticipate that this method could also be applied in atmospheric chemistry, where the reactivity of singlet oxygen could help explain the high formation rates of secondary organic aerosols.


Assuntos
Monoterpenos Bicíclicos/análise , Peróxidos/análise , Cromatografia Gasosa , Ionização de Chama , Espectrometria de Massas , Terebintina/análise
12.
J Oleo Sci ; 70(11): 1585-1606, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34645744

RESUMO

Olive growing in Palestine plays an important role at social and economic levels. Nevertheless, the quality of olive oil produced in the country has not been fully addressed. This study examined oil content, peroxide values, acid values, fatty acid profile, and total phenolic content for old olive trees located in different climatic regions in Palestine during the years 2008-2010. Oil content was determined using both Soxhlet and Abencor systems. Acid and peroxide values were determined using standard methods. Total phenolic content was determined using the Folin-spectrophotometric method. Gas chromatography was used to analyze the main fatty acids found in olive oil e.g., palmitic, palmitoleic, stearic, oleic, linoleic. Different ratios indicating olive oil quality were also determined e.g., sum ratio of unsaturated fatty acids to the sum of saturated fatty acids; ratio between the sum of monounsaturated fatty acids to the sum of polyunsaturated fatty acids, and the ratio between the oleic to linoleic fatty acids. Significant differences were found between geographic regions for the overall studied oil parameters. Wide variation ranges were obtained for fatty acids in the different West Bank locations in the three years. The major fatty acids in the olive oil samples were found to be oleic, palmitic, stearic, linoleic, and palmitoleic acids. The oil samples were found to contain more oleic acid and less linoleic and linolenic acids that is, more monounsaturated than polyunsaturated fatty acids. Total phenolic content was found to range from 125.0-978.0, 207.4-763.8, and 103.0-747.6 mg/kg in 2008, 2009, and 2010, respectively. The acidity percentage was in the range of 0.10%-1.05%, 0.11%-1.29%, and 0.10%-1.91% in 2008, 2009, and 2010, respectively. Peroxide values ranged from 2.26-13.1, 2.94-14.95, and 2.49-17.21 in 2008, 2009, and 2010, respectively.


Assuntos
Ácidos Graxos/análise , Análise de Alimentos , Qualidade dos Alimentos , Olea/química , Azeite de Oliva/química , Israel , Peróxidos/análise , Fenóis/análise , Fatores de Tempo
13.
J Oleo Sci ; 70(5): 615-632, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33952787

RESUMO

The skin of the walnut kernels can get dark during the pre- and post-harvest stages of the production. Dark kernels are less palatable for most consumers but are still edible and maybe preferable, especially in the ground form, for industrial use. In this study, we investigated the differences between oil oxidation indexes, fatty acid and tocopherol compositions of the oils, total polyphenol contents and antioxidant capacities of the extracts of light and dark walnuts. In addition, we evaluated the effects of packaging under nitrogen and vacuum-packaging techniques and storage temperature on these characteristics of both light and dark walnuts during storage for 6 months. Peroxide values and free fatty acid contents of all samples were higher at the end of storage compared to initial values, being more noticeable at 20°C than at 4°C. Increases in the free fatty acid contents were quite higher in dark walnuts than the light ones (6.1 and 3.1 fold, respectively) and the highest values of conjugated diene and peroxide were determined in the samples packaged under air and stored at 20℃. Dark walnuts had lower total phenolic, α- and γ-tocopherol contents and antioxidant activities compared to the light ones. Total phenolic and tocopherol contents decreased over time. We conclude that due to the antioxidant compounds in the fruit, oxidation parameters of dark walnuts are still acceptable at the end of 6-month storage even in the packages with air and at non-refrigerated conditions.


Assuntos
Cor , Embalagem de Alimentos/métodos , Qualidade dos Alimentos , Armazenamento de Alimentos/métodos , Juglans/química , Óleos de Plantas/isolamento & purificação , Antioxidantes/análise , Ácidos Graxos/análise , Peroxidação de Lipídeos , Nitrogênio , Peróxidos/análise , Óleos de Plantas/análise , Polifenóis/análise , Temperatura , Fatores de Tempo , Tocoferóis/análise , Vácuo
14.
Acta Sci Pol Technol Aliment ; 20(2): 189-196, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33884856

RESUMO

BACKGROUND: Bacaba (Oenocarpus bacaba Mart.) has a high yield of oil, with the potential to produce biologically active natural products and can be considered a new "superfruit" with high value added. METHODS: Acid value, peroxide value, refractive index, saponification value, p-anisidine value, relative density, iodine value, total oxidation value, specific extinction coefficients at 232 and 270 nm (K232 and K270), ΔK, and color were determined. RESULTS: The most significant changes in the quality values, such as peroxide (26.25 mEq·kg-1), p-anisidine (11.41), acidity (14.66 mg KOH·g-1 oil), and total oxidation (63.92) were determined for 15 min of microwave heating. CONCLUSIONS: The microwave heating promoted the acceleration of oxidative processes showing that, overall, much care should be taken when heating the bacaba oil by microwave to avoid oil degradation.


Assuntos
Arecaceae/química , Culinária/métodos , Frutas/química , Temperatura Alta , Micro-Ondas , Óleos de Plantas/química , Ácidos/análise , Cor , Iodo/análise , Peroxidação de Lipídeos , Oxirredução , Peróxidos/análise
15.
J Oleo Sci ; 70(2): 175-184, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33456001

RESUMO

Torreya grandis is an important economic tree species in China. It provides nutritional value and is important to the health care industry. There are ongoing issues with product quality which are primarily related to improper management and early harvest. This study was carried out during the fruit ripening processes to evaluate the influence of harvesting date on T. grandis quality, and to determine the optimal harvest period. The effects of harvest time on the variation of quality and nutritional parameters of T. grandis nuts and its oil were evaluated, and the optimal harvest period was determined. The results showed that harvest timing had a strong effect on both oil yield and quality. Prolonged ripening could induce higher levels of kernel rate, fruit inclusions, oil and nutritional quality. When the sample harvested in the mid-September, the kernel rate and oil content were increased by 1.88±0.31% and 6.65±0.47%, respectively, compared to samples harvested in the beginning of late-August. Similarly, the mid-September harvest resulted in total unsaturated fatty acids content of the oil being increased by 5.3±0.34%, the FFA and peroxide value being decreased by 40.7±0.15% and 76±0.08%, respectively, and total tocopherols and free amino acids were increased 7.5±0.24% and 47.3±0.15%, respectively, compared to the samples harvested on Aug. 25. The results indicated that the optimal harvest time of T. grandis fruits was mid-September as it was beneficial for improving the quality of T. grandis nut and its oil. It was suggested that T. grandis fruit should be harvested later.


Assuntos
Frutas/química , Valor Nutritivo , Nozes/química , Óleos de Plantas/análise , Estações do Ano , Taxaceae/química , Aminoácidos/análise , Ácidos Graxos não Esterificados/análise , Ácidos Graxos Insaturados/análise , Ácidos Graxos Insaturados/isolamento & purificação , Peróxidos/análise , Óleos de Plantas/isolamento & purificação , Fatores de Tempo , Tocoferóis/análise
16.
Food Chem ; 344: 128709, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33272763

RESUMO

Edible oil is an indispensable food in daily life but early detection of its lipid oxidation is difficult. Developing new, rapid and accurate screening technique is urgently needed for oil quality control. Here we developed a surface-enhanced Raman spectroscopy analyzer based on plasmonic metal liquid-like platform (PML-SERS), which could directly analyze the oil sample in ca. 3 min. This analyzer has the ability and sensitivity to identify fingerprint peak changes. Moreover, the relative Raman intensity, I1265/1436, has a good correlation with peroxide value (POV), which is used for quantitative detection. The fitting model combined with principal component analysis (PCA) realized rapid spectral recognition for determining POV in edible oil oxidation. The relative deviation between the POV measured by PML-SERS and the national standard method (NSM) was less than 10%. Our platform provided a practical solution for ultra-sensitive and fast analysis of POV in oil oxidation.


Assuntos
Algoritmos , Análise de Alimentos/métodos , Óleos/química , Peróxidos/análise , Análise Espectral Raman , Contaminação de Alimentos/análise , Oxirredução , Peróxidos/química , Análise de Componente Principal , Software
17.
J Oleo Sci ; 69(11): 1359-1366, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33055442

RESUMO

For the very first time, the nutritional and physicochemical properties of the oil extracted from hackberry Celtis australis fruit were investigated with the aim of possible applications of such wild fruit oil. The physicochemical properties such as peroxide value, acidity, saponification, iodine value and total fat content of the extracted oil were examined extensively. The obtained results showed that peroxide value, acidity, saponification, iodine value and total fat content of the extracted oil were found to be 4.9 meq O2/kg fat, 0.9 mg KOH/g fat, 193.6 mg KOH/g fat, 141.52 mg I2/g fat and ~5%, respectively. The predominant fatty acid found in this wild fruit is linoleic acid which was calculated to be 73.38%±1.24. In addition, gamma-tocopherol (87%) and ß-sitosterol (81.2%±1.08) were the major tocopherol and sterol compositions found in Celtis australis seed oil. Moreover, equivalent carbon number (ECN) analysis has indicated that the three linoleic acids are the main composition of the triacylglycerols extracted from Celtis australis. Also, the high value of omega 6 and ß-sitosterol make this oil applicable in cosmetics and pharmaceutical applications.


Assuntos
Carbono/análise , Ésteres/análise , Ácidos Graxos/análise , Ácido Linoleico/análise , Fitosteróis/análise , Óleos de Plantas/química , Sementes/química , Tocoferóis/análise , Triglicerídeos/análise , Ulmaceae/química , Biofarmácia , Fenômenos Químicos , Cosméticos , Peróxidos/análise , Sitosteroides/análise , Triglicerídeos/química , gama-Tocoferol/análise
18.
J Oleo Sci ; 69(11): 1349-1358, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33055445

RESUMO

Fenugreek (Trigonella foenum-graecum) a native to Southern Europe, Mediterranean region and Western Asia has been used as a spice all over the world to increase the sensory quality to the food. It is also known for its medicinal properties such as anti-diabetic, anti-carcinogenic, hypocholesterolemic and immunological activities and can also be used as a food stabilizer and emulsifying agent. The ash, protein, moisture and fiber content of defatted fenugreek seed powder obtained were 9%, 23.04%, 3.8%, 25.47% respectively. So, this study is systematically intended to determine the fatty acid composition, to be best among the different solvents used are the ethanol, petroleum ether, acetone and hexane for the extraction of the fenugreek seed oil and to analyze its susceptibility to oxidation. This study was carried out to investigate and examine the results such as acid value, peroxide value, saponification value, iodine value and the physical properties such as the color value and the refractive index of the seed oil. The results stipulate that the oil extracted using the solvent hexane had better quality and yield. Linoleic acid (41.97%) followed by alpha-linolenic acid (29.33%) and cis-9 oleic acid (12.95%) was found as the primary fatty acids present in the oil extracted using hexane. Along with these fatty acids, the PUFA content of hexane oil (71.30%) was also observed to be in a good range. So, on comparing these results with codex standards, it revealed that it can be considered as edible oil with further purifications.


Assuntos
Ácidos Graxos/análise , Ácidos Graxos/isolamento & purificação , Óleos de Plantas/química , Sementes/química , Solventes , Trigonella/química , Acetona , Alcanos , Fenômenos Químicos , Cor , Etanol , Hexanos , Ácido Linoleico/análise , Ácido Linoleico/isolamento & purificação , Ácido Oleico/análise , Ácido Oleico/isolamento & purificação , Oxirredução , Peróxidos/análise , Ácido alfa-Linolênico/análise , Ácido alfa-Linolênico/isolamento & purificação
19.
J Oleo Sci ; 69(10): 1219-1230, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32908101

RESUMO

Quality parameters of potato chips (flat and serrated) fried either in palm oil (PO) alone or containing natural (thyme (TPO) and rosemary (RPO) extracts) and synthetic BHT (BPO) antioxidants were evaluated during storage period. The free fatty acid and peroxide values of chips fried in PO (control) were found between 0.18 and 0.21% to 1.00 and 1.04 meqO2/kg during the first storage month, respectively. However, these values were 0.07-0.10% and 0.55-0.90 meqO2/kg for chips fried in TPO, respectively. The water contents increased when storage time increased from 1 to 7 month and their values changed between 0.49 and 1.95% (flat potato chips in BPO) and between 0.88 and 1.24% (serrated potato chips in TPO). The total trans-fat contents were 0.13% (serrated potato chips in BPO) and 0.35% (both flat and serrated potato chips in PO) at the start of storage. The total trans-fat content after 7 months were 0.13% (PO fried flat and serrated potato chips) and 0.17% (serrated potato chips fried in BPO, TPO and RPO). The acrylamide contents varied between 152 (serrated potato chips in PO) and 540 µg/kg (flat potato chips fried in RPO) at the beginning of storage. However, the acrylamide contents changed during 7th storage month and ranged from 182 (serrated potato chips in PO) to 518 µg/kg (flat potato chips in RPO). Among fatty acids, while palmitic acid are determined between 37.14 (flat chips in PO) and 41.60% (serrated chips in TPO), oleic acid varied between 30.0 (flat chips in RPO) and 33.00% (serrated chips in PO). Sensory evaluation showed that PO containing antioxidants showed better consumer preference for potato chips until the end of storage.


Assuntos
Antioxidantes/análise , Hidroxitolueno Butilado/análise , Culinária/métodos , Análise de Alimentos , Manipulação de Alimentos/métodos , Qualidade dos Alimentos , Armazenamento de Alimentos , Óleo de Palmeira , Extratos Vegetais , Rosmarinus/química , Solanum tuberosum/química , Paladar , Thymus (Planta)/química , Acrilamida/análise , Fenômenos Químicos , Ácidos Graxos não Esterificados/análise , Humanos , Peróxidos/análise , Ácidos Graxos trans/análise
20.
J Oleo Sci ; 69(9): 985-992, 2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32788517

RESUMO

The oxidative stability of sunflower oil containing rosemary essential oil and extracts in the oil during frying were followed by measuring peroxide value. Variation in the values of L* of the frying oil containing extract was less than that of frying oil containing essential oil. a*-Value of the fried oil containing extract highly significant decreased. Increase in the value of b* of 1. and 2. frying oil with 0.5 % rosemary essential oil was less. b* Value of the frying oils containing rosemary extract increased compared to b* values of frying oils containing essential oil. b* Value of the frying oil that the essential oil of rosemary added showed less increase than b* value of the frying oil that extract of rosemary. The viscosity values of frying oils containing rosemary extract changed between 30.3 mPas (1. frying oil containing 0.5% extract) and 35.5 mPas (2. frying oil containing 0.5% extract). In addition, free fatty acidity values of frying oils containing essential oil at 0.1, 0.3 and 0.5% levels ranged from 0.160% (1. frying oil containing 0.5% essential oil) to 0.320% (1. frying oil containing 0.3% essential oil). Peroxide values of frying oils containing rosemary extracts were determined between 12.84 meq O2/kg (1. frying oil containing 0.1% extract) and 28.98 meq O2/kg (2. frying oil containing 0.1% extract). Peroxide value of frying made with 0.3 % the rosemary essential oil increased less than that of made with the raw sunflower oil (control) (p < 0.05). Whenever rosemary essential oil and rosemary extract compare, the essential oil seems to be more effective on the peroxide value of the frying oil. The essential oil of rosemary have been effected more from the extracts of rosemary on the oxidative stability of sunflower oil.


Assuntos
Culinária , Temperatura Alta , Óleos Voláteis/química , Óleo de Girassol/química , Qualidade dos Alimentos , Oxirredução , Peróxidos/análise , Extratos Vegetais/química , Óleos de Plantas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA