Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 303: 122395, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37988899

RESUMO

Triple-negative breast cancer (TNBC) causes great suffering to patients because of its heterogeneity, poor prognosis, and chemotherapy resistance. Ferroptosis is characterized by iron-dependent oxidative damage by accumulating intracellular lipid peroxides to lethal levels, and plays a vital role in the treatment of TNBC based on its intrinsic characteristics. To identify the relationship between chemotherapy resistance and ferroptosis in TNBC, we analyzed the single cell RNA-sequencing public dataset of GSE205551. It was found that the expression of Gpx4 in DOX-resistant TNBC cells was significantly higher than that in DOX-sensitive TNBC cells. Based on this finding, we hypothesize that inducing ferroptosis by inhibiting the expression of Gpx4 can reduce the resistance of TNBC to DOX and enhance the therapeutic effect of chemotherapy on TNBC. Herein, dihydroartemisinin (DHA)-loaded polyglutamic acid-stabilized Fe3O4 magnetic nanoparticles (Fe3O4-PGA-DHA) was combined with DOX-loaded polyaspartic acid-stabilized Fe3O4 magnetic nanoparticles (Fe3O4-PASP-DOX) for ferroptosis-enhanced chemotherapy of TNBC. Compared with Fe3O4-PASP-DOX, Fe3O4-PGA-DHA + Fe3O4-PASP-DOX demonstrated significantly stronger cytotoxicity against different TNBC cell lines and achieved significantly more intracellular accumulation of reactive oxygen species and lipid peroxides. Furthermore, transcriptomic analyses demonstrated that Fe3O4-PASP-DOX-induced apoptosis could be enhanced by Fe3O4-PGA-DHA-induced ferroptosis and Fe3O4-PGA-DHA + Fe3O4-PASP-DOX might trigger ferroptosis in MDA-MB-231 cells by inhibiting the PI3K/AKT/mTOR/GPX4 pathway. Fe3O4-PGA-DHA + Fe3O4-PASP-DOX showed superior anti-tumor efficacy on MDA-MB-231 tumor-bearing mice, providing great potential for improving the therapeutic effect of TNBC.


Assuntos
Ferroptose , Nanopartículas , Neoplasias de Mama Triplo Negativas , Humanos , Camundongos , Animais , Neoplasias de Mama Triplo Negativas/patologia , Linhagem Celular Tumoral , Peróxidos Lipídicos/uso terapêutico , Fosfatidilinositol 3-Quinases , Fenômenos Magnéticos
2.
Biomater Adv ; 147: 213323, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36764198

RESUMO

The cancer chemodynamic therapy based on the Fenton reaction has been attracting more and more attention. However, the performance of the Fenton reaction is restricted by the unsuitable physiological pH value and inadequate H2O2 content in the tumor microenvironment (TME). In this study, we proposed a novel method of inducing lipid peroxide (LPO) of the cancer cell membrane, whose performance is not limited by the pH value and H2O2 in the TME. The activatable LPO-inducing liposomes were constructed by encapsulating Fe3+-containing compound ferric ammonium citrate (FC) in the unsaturated soybean phospholipids (SPC). It was found that the FC could be reduced by the overexpressed glutathione (GSH) in the TME and produce iron redox couple. The Fe3+/Fe2+ mediated the peroxidation of the unsaturated SPC and induced the LPO in the cancer cells. Finally, LPO accumulation led to cancer cell death and tumor growth inhibition. Furthermore, the activatable liposomes did not damage healthy tissues because of the low GSH content in normal tissues and the GSH-triggered activation of the nanocarrier. Together, our findings revealed that FC-SPC-lipo displayed excellent anti-tumor performance and its therapeutic effects are less influenced by the TME, compared with the traditional ferroptosis.


Assuntos
Peróxidos Lipídicos , Neoplasias , Humanos , Peróxidos Lipídicos/farmacologia , Peróxidos Lipídicos/uso terapêutico , Lipossomos/uso terapêutico , Peróxido de Hidrogênio/metabolismo , Neoplasias/tratamento farmacológico , Membrana Celular/metabolismo , Microambiente Tumoral
3.
Adv Sci (Weinh) ; 8(23): e2102561, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34672122

RESUMO

Photodynamic therapy (PDT) has become a promising candidate for cancer theranostics; however, traditional photosensitizers (PSs) usually exhibit weak fluorescence and poor reactive oxygen species (ROS) generation efficiency when aggregated. Recently, aggregation-induced emission (AIE) luminogens have shown great potential in the development of novel PSs owing to their excellent aggregation-induced ROS generation (AIG-ROS) activity. However, there are still concerns that must be addressed. In this study, two near-infrared (NIR) emitters (PI and PTI) are synthesized with AIG-ROS characteristic. PTI exhibit a valuable redder emission with more effective intersystem crossing (ISC) process than PI. The two AIE-active PSs show excellent lipid droplet (LD)-specific targeting ability. The detailed therapeutic mechanism of PDT in LDs specificity is also investigated. The mechanism of oxidation of polyunsaturated fatty acids (PUFAs) in LDs to form toxic lipid peroxides (LPOs) and thereby causing cellular ferroptosis is confirmed first. Homologous targeting is also used to achieve tumor targeting via coating PSs with active cancer cell membranes. Biomimetic aggregates exhibit good targeting ability, and an improved PDT antitumor effect via AIG-ROS activity. These findings offer a clear route to develop advanced PSs with good targeting specificity. A template has also been provided for studying the therapeutic mechanism of AIE-active PSs.


Assuntos
Neoplasias da Mama/terapia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/uso terapêutico , Animais , Biomimética/métodos , Modelos Animais de Doenças , Ferroptose , Fluorescência , Humanos , Peróxidos Lipídicos/uso terapêutico , Células MCF-7 , Camundongos , Camundongos Nus , Nanopartículas/uso terapêutico , Espécies Reativas de Oxigênio
4.
Oxid Med Cell Longev ; 2019: 2828493, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31636803

RESUMO

Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a lipid and protein phosphatase that coordinates various cellular processes. Its activity is regulated by the reversible oxidation of an active-site cysteine residue by H2O2 and thioredoxin. However, the potential role of lipid peroxides in the redox regulation of PTEN remains obscure. To evaluate this, 15-hydroperoxy-eicosatetraenoic acid (15s-HpETE), a lipid peroxide, was employed to investigate its effect on PTEN using molecular and cellular-based assays. Exposure to 15s-HpETE resulted in the oxidation of recombinant PTEN. Reversible oxidation of PTEN was also observed in mouse embryonic fibroblast (MEF) cells treated with a 15s-HpETE and Lipofectamine mixture. The oxidative dimerization of thioredoxin was found simultaneously. In addition, the absence of peroxiredoxin III aggravated 15s-HpETE-induced PTEN oxidation in MEF cells. Our study provides novel insight into the mechanism linking lipid peroxidation to the etiology of tumorigenesis.


Assuntos
Leucotrienos/uso terapêutico , Peróxidos Lipídicos/uso terapêutico , PTEN Fosfo-Hidrolase/efeitos dos fármacos , Peroxirredoxina III/uso terapêutico , Animais , Humanos , Leucotrienos/farmacologia , Peróxidos Lipídicos/farmacologia , Camundongos , Oxirredução , Peroxirredoxina III/farmacologia , Transfecção
5.
Theranostics ; 9(21): 6209-6223, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31534546

RESUMO

Rationale: Ferroptosis is a regulated process of cell death caused by iron-dependent accumulation of lipid hydroperoxides (LPO). It is sensitive to epithelial-to-mesenchymal transition (EMT) cells, a well-known therapy-resistant state of cancer. Previous studies on nanomaterials did not investigate the immense value of ferroptosis therapy (FT) in epithelial cell carcinoma during EMT. Herein, we describe an EMT-specific nanodevice for a comprehensive FT strategy involving LPO burst. Methods: Mitochondrial membrane anchored oxidation/reduction response and Fenton-Reaction-Accelerable magnetic nanophotosensitizer complex self-assemblies loading sorafenib (CSO-SS-Cy7-Hex/SPION/Srfn) were constructed in this study for LPO produced to overcome the therapy-resistant state of cancer. Both in vitro and in vivo experiments were performed using breast cancer cells to investigate the anti-tumor efficacy of the complex self-assemblies. Results: The nano-device enriched the tumor sites by magnetic targeting of enhanced permeability and retention effects (EPR), which were disassembled by the redox response under high levels of ROS and GSH in FT cells. Superparamagnetic iron oxide nanoparticles (SPION) released Fe2+ and Fe3+ in the acidic environment of lysosomes, and the NIR photosensitizer Cy7-Hex anchored to the mitochondrial membrane, combined sorafenib (Srfn) leading to LPO burst, which was accumulated ~18-fold of treatment group in breast cancer cells. In vivo pharmacodynamic test results showed that this nanodevice with small particle size and high cytotoxicity increased Srfn circulation and shortened the period of epithelial cancer treatment. Conclusion: Ferroptosis therapy had a successful effect on EMT cells. These findings have great potential in the treatment of therapy-resistant epithelial cell carcinomas.


Assuntos
Ferroptose/efeitos dos fármacos , Peróxidos Lipídicos/uso terapêutico , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/administração & dosagem , Sorafenibe/administração & dosagem , Animais , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Membranas Mitocondriais/metabolismo , Nanopartículas/uso terapêutico , Oxirredução , Ratos , Ratos Wistar
6.
Nano Lett ; 19(6): 3505-3518, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31034238

RESUMO

Despite recent advances in enhancing photodynamic therapy efficacy, high-efficiency reactive oxygen species (ROS)-based therapy approach, especially in malignancy tumor treatment, remains challenging. Relieving the hypoxia of tumor tissue has been considered to be an attractive strategy for enhancing ROS-based treatment effect. Nevertheless, it is frequently neglected that the hypoxic regions are usually located deep in the tumors and therefore are usually inaccessible. To address these limitations, herein we constructed a sequential intercellular delivery system (MFLs/LAOOH@DOX) that consists of a membrane fusion liposomes (MFLs) doped with linoleic acid hydroperoxide (LAOOH) in the lipid bilayer and antitumor doxorubicin (DOX) encapsulated inside. In this report, LAOOH, one of the primary products of lipid peroxidation in vivo, was selected as ROS-generated agent herein, which depends on Fe2+ rather than oxygen and other external stimuli to produce ROS. Upon the enhanced permeation and retention effect, MFLs/LAOOH@DOX first fused with tumor cell membranes in the perivascular region in synchrony with selective delivery of LAOOH into the plasma membrane and the on-demand intracellular release of DOX. By hitchhiking with extracellular vesicles, LAOOH, as a cell membrane natural ingredient, spread gradually to neighboring cells and throughout the entire tumor eventually. Combined with subsequent administration of nano Fe3O4, ROS was specifically generated on the tumor cell membrane by LAOOH throughout the tumor tissues. This study offers a new method to enhance ROS-based antitumor treatment efficiency.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Doxorrubicina/análogos & derivados , Ácidos Linoleicos/administração & dosagem , Peróxidos Lipídicos/administração & dosagem , Neoplasias/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Animais , Antibióticos Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Doxorrubicina/uso terapêutico , Sistemas de Liberação de Medicamentos , Feminino , Ácidos Linoleicos/uso terapêutico , Peróxidos Lipídicos/uso terapêutico , Camundongos Endogâmicos BALB C , Neoplasias/metabolismo , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/uso terapêutico , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA