Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 492
Filtrar
1.
Fish Shellfish Immunol ; 149: 109614, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38710342

RESUMO

Chemokines are critical molecules involved in immune reaction and immune system homeostasis, and some chemokines play a role in antiviral immunity. It is not known if the C-C motif chemokine ligand 3 (CCL3), a member of the CC chemokine family, possesses antiviral properties in fish. In this study, a ccl3 was cloned from the mandarin fish (Siniperca chuatsi), and it has an open reading frame (ORF) of 276 base pairs, which are predicted to encode a 91-amino acid peptide. Mandarin fish CCL3 revealed conserved sequence features with four cysteine residues and closely relationships with the CCL3s from other vertebrates based on the sequence alignment and phylogenetic analysis. The transcripts of ccl3 were notably enriched in immune-related organs, such as spleen and gills in healthy mandarin fish, and the ccl3 was induced in the isolated mandarin fish brain (MFB) cells following infection with infectious spleen and kidney necrosis virus (ISKNV). Moreover, in MFB cells, overexpression of CCL3 induced immune factors, such as IL1ß, TNFα, MX, IRF1 and IFNh, and exhibited antiviral activity against ISKNV. This study sheds light on the immune role of CCL3 in immune response of mandarin fish, and its antiviral defense mechanism is of interest for further investigation.


Assuntos
Sequência de Aminoácidos , Infecções por Vírus de DNA , Doenças dos Peixes , Proteínas de Peixes , Imunidade Inata , Iridoviridae , Perciformes , Filogenia , Alinhamento de Sequência , Animais , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/química , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Perciformes/imunologia , Perciformes/genética , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/veterinária , Iridoviridae/fisiologia , Alinhamento de Sequência/veterinária , Imunidade Inata/genética , Regulação da Expressão Gênica/imunologia , Quimiocina CCL3/genética , Quimiocina CCL3/imunologia , Clonagem Molecular , Perfilação da Expressão Gênica/veterinária , Sequência de Bases
2.
Fish Shellfish Immunol ; 149: 109584, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38670411

RESUMO

Pseudomonas plecoglossicida, the causative agent of Visceral White Spot Disease, poses substantial risks to large yellow croaker (Larimichthys crocea) aquaculture. Previous genome-wide association studies (GWAS), directed towards elucidating the resistance mechanisms of large yellow croaker against this affliction, suggested that the transmembrane protein 208 (named Lctmem208) may confer a potential advantage. TMEM proteins, particularly TMEM208 located in the endoplasmic reticulum, plays significant roles in autophagy, ER stress, and dynamics of cancer cell. However, research on TMEM's function in teleost fish immunity remains sparse, highlighting a need for further study. This study embarks on a comprehensive examination of LcTmem208, encompassing cloning, molecular characterization, and its dynamics in immune function in response to Pseudomonas plecoglossicida infection. Our findings reveal that LcTmem208 is highly conserved across teleost species, exhibiting pronounced expression in immune-relevant tissues, which escalates significantly upon pathogenic challenge. Transcriptome analysis subsequent to LcTmem208 overexpression in kidney cells unveiled its pivotal role in modulating immune-responsive processes, notably the p53 signaling pathway and cytokine-mediated interactions. Enhanced phagocytic activity in macrophages overexpressing LcTmem208 underscores its importance in innate immunity. Taken together, this is the first time reported the critical involvement of LcTmem208 in regulating innate immune responses of defensing P. plecoglossicida, thereby offering valuable insights into teleost fish immunity and potential strategies for the selective breeding of disease-resistant strains of large yellow croaker in aquaculture practices.


Assuntos
Doenças dos Peixes , Proteínas de Peixes , Perfilação da Expressão Gênica , Imunidade Inata , Perciformes , Infecções por Pseudomonas , Pseudomonas , Animais , Doenças dos Peixes/imunologia , Perciformes/imunologia , Perciformes/genética , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Pseudomonas/fisiologia , Imunidade Inata/genética , Perfilação da Expressão Gênica/veterinária , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/veterinária , Regulação da Expressão Gênica/imunologia , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Transcriptoma , Filogenia , Alinhamento de Sequência/veterinária , Clonagem Molecular
3.
Artigo em Inglês | MEDLINE | ID: mdl-38452850

RESUMO

Declining flesh quality has drawn considerable attention in the farmed large yellow croaker (LYC; Larimichthys crocea) industry. Inosine monophosphate (IMP) is the primary flavor substance in aquatic animals. Adenosine monophosphate deaminase 1 (AMPD1) plays a critical role in IMP formation by catalyzing the deamination of AMP to IMP in the purine nucleotide cycle. To further evaluate the correlation between ampd1 mRNA expression levels and IMP content in the LYC muscle tissue, the relevant open reading frame (ORF) of L. crocea (Lcampd1) was cloned, and the IMP content and Lcampd1 mRNA expression in the muscles of LYCs of different sizes were examined. The ORF cDNA of Lcampd1 was 2211 bp in length and encoded a polypeptide of 736 amino acids (AAs). The deduced protein, LcAMPD1, possesses conserved AMPD active regions (SLSTDDP) and shows high homology with AMPD proteins of other teleost fishes. The genomic DNA sequence of Lcampd1 exhibits a high degree of evolutionary conservation in terms of structural organization among species. Phylogenetic analysis of the deduced AA sequence revealed that teleost fish and mammalian AMPD1 were separate from each other and formed a cluster with AMPD3, suggesting that AMPD1 and AMPD3 arose by duplication of a common primordial gene. In healthy LYC, Lcampd1 mRNA was expressed only in the muscle tissue. The IMP content in the muscle of LYCs with different average body weights was measured by high-performance liquid chromatography; the results showed that the IMP content in the muscle of LYCs with greater body weight was significantly higher than that in LYC with lower body weight. Moreover, a similar trend in Lcampd1 expression was observed in these muscle tissues. The Pearson correlation analysis further showed that the Lcampd1 mRNA expression was positively correlated with IMP content in the muscles of different-sized LYCs. These results suggest the potential function of Lcampd1 in determining the IMP content in LYC and provide a theoretical basis for flesh quality improvement, as well as a scientific basis for the development of the molecular breeding of LYC.


Assuntos
Inosina Monofosfato , Perciformes , Animais , Sequência de Bases , Sequência de Aminoácidos , Inosina Monofosfato/metabolismo , Filogenia , Perciformes/genética , Perciformes/metabolismo , Monofosfato de Adenosina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Peso Corporal/genética , Proteínas de Peixes/metabolismo , Mamíferos/metabolismo
4.
Chronobiol Int ; 41(3): 329-346, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38516993

RESUMO

The light/dark cycle, known as the photoperiod, plays a crucial role in influencing various physiological activities in fish, such as growth, feeding and reproduction. However, the underlying mechanisms of this influence are not fully understood. This study focuses on exploring the impact of different light regimes (LD: 12 h of light and 12 h of darkness; LL: 24 h of light and 0 h of darkness; DD: 0 h of light and 24 h of darkness) on the expression of clock genes (LcClocka, LcClockb, LcBmal, LcPer1, LcPer2) and the secretion of hormones (melatonin, GnRH, NPY) in the large yellow croaker, Larimichthys crocea. Real-time quantitative PCR (RT-qPCR) and enzyme-linked immunosorbent assays were utilized to assess how photoperiod variations affect clock gene expression and hormone secretion. The results indicate that changes in photoperiod can disrupt the rhythmic patterns of clock genes, leading to phase shifts and decreased expression. Particularly under LL conditions, the pineal LcClocka, LcBmal and LcPer1 genes lose their rhythmicity, while LcClockb and LcPer2 genes exhibit phase shifts, highlighting the importance of dark phase entrainment for maintaining rhythmicity. Additionally, altered photoperiod affects the neuroendocrine system of L. crocea. In comparison to the LD condition, LL and DD treatments showed a phase delay of GnRH secretion and an acceleration of NPY synthesis. These findings provide valuable insights into the regulatory patterns of circadian rhythms in fish and may contribute to optimizing the light environment in the L. crocea farming industry.


Assuntos
Melatonina , Perciformes , Glândula Pineal , Animais , Ritmo Circadiano/fisiologia , Fotoperíodo , Glândula Pineal/metabolismo , Melatonina/metabolismo , Expressão Gênica , Perciformes/genética , Perciformes/metabolismo , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-38040327

RESUMO

Hsp90s are molecular chaperones that enhance fish tolerance to high-temperature stress. However, the function of Hsp90s in Seriola aureovittata (yellowtail kingfish) under high-temperature stress remains largely unknown. Here, two Hsp90 isoforms were identified in S. aureovittata by bioinformatics analysis: SaHsp90α and SaHsp90ß. The coding sequence of SaHsp90α was 2193-bp long and encoded a polypeptide of 730 amino acids; SaHsp90ß was 2178-bp long and encoded a polypeptide of 725 amino acids. SaHsp90α and SaHsp90ß both contained a HATPase domain and a HSP90 domain. Their transcripts were detected in all examined S. aureovittata tissues, with relatively high levels in the gonads, head kidney, and intestine. During high-temperature stress at 28 °C, the expression levels of SaHsp90α and SaHsp90ß transcripts were significantly increased in liver. After simultaneously knocking down the expression of the SaHsp90s, there was a significant decrease in liver superoxide dismutase (SOD) activity and a remarkable increase of malondialdehyde content in liver after high-temperature stress. The expression levels of the key caspase family genes caspase-3 and caspase-7 were also significantly upregulated by high-temperature stress in SaHsp90-knockdown liver. TUNEL labeling demonstrated that the number of apoptotic cells significantly increased in the SaHsp90-knockdown group when high-temperature treatment lasted for 48 h. Protein-protein docking analysis predicted that SaHsp90α and SaHsp90ß can bind to S. aureovittata SOD and survivin, which are key proteins for maintenance of redox homeostasis and inhibition of apoptosis. These findings demonstrate that SaHsp90α and SaHsp90ß play a crucial role in resistance to high-temperature stress by regulating redox homeostasis and apoptosis in yellowtail kingfish.


Assuntos
Estresse Oxidativo , Perciformes , Animais , Temperatura , Perciformes/genética , Perciformes/metabolismo , Fígado/metabolismo , Apoptose , Proteínas de Choque Térmico/metabolismo , Superóxido Dismutase/metabolismo , Peptídeos/metabolismo , Aminoácidos/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-37918461

RESUMO

The p38 mitogen-activated protein kinase (p38 MAPK) is a multifunctional molecule that is involved in cellular response to various stressful stimuli. In the present study, the full-length cDNA sequence of p38 MAPK (Lcp38 MAPK) was identified from the large yellow croaker Larimichthys crocea, which encoded a polypeptide of 361 amino acid residues. The predicted Lcp38 MAPK protein contained a highly conserved Thr-Gly-Tyr (TGY) motif, a glutamate and aspartate (ED) site, a substrate binding site (Ala-Thr-Arg-Trp < ATRW>), and a serine/threonine kinase catalytic (S_TKc) domain characteristic of the MAPK family. The constitutive expression of Lcp38 MAPK was detected in most of the tissues examined with the strongest expression in intestine. Subcellular localization in LCK cells (kidney cell line from a L. crocea) revealed that Lcp38 MAPK existed in both the cytoplasm and cell nucleus. The expression of Lcp38 MAPK after temperature stress was tested in LCK cells. The results indicated that Lcp38 MAPK transcripts were significantly upregulated under both cold (10 °C) and heat stress (35 °C) (P < 0.05). Furthermore, the phosphorylation levels of p38 MAPK as well the transcriptional levels of heat shock protein 27 (HSP27) and caspase3 in LCK cells were significantly induced under thermal exposure (P < 0.05). However, the cold- and heat induced HSP27 and caspase3 expression was significantly suppressed by SB203580, a specific inhibitor of p38-MAPK (P < 0.05). These findings indicated that Lcp38 MAPK might be involved in the cellular stress response via HSP27 and caspase3 in large yellow croaker.


Assuntos
Perciformes , Proteínas Quinases p38 Ativadas por Mitógeno , Animais , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas de Choque Térmico HSP27/metabolismo , Fosforilação , Temperatura , Perciformes/genética , Perciformes/metabolismo
7.
Fish Physiol Biochem ; 50(2): 513-526, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38103084

RESUMO

Peroxiredoxin1(Prx1), also known as natural killer enhancing factor A (NKEF-A), is a crucial antioxidant involving in various cellular activities and immune response against bacterial and viral infection in fish. In the present study, a full-length Prx1 cDNA sequence (TfPrx1) was firstly cloned from roughskin sculpin (Trachidermus fasciatus), which was composed of 1044 bp nucleotides encoding a peptide of 199 amino acids with a molecular weight of 22.35 kDa and a theoretical pI of 6.42, respectively. The predicted peptide was a typical 2-cys Prx containing two conserved characteristic motifs 43FYPLDFTFVCPTEI56 and 170GEVCPA175 with the two conserved peroxidatic and resolving cysteine residuals forming disulfide bond. Quantitative real-time PCR analysis showed that TfPrx1 was ubiquitously expressed in all tested tissues with the highest expression in the intestine. It could be significantly induced following LPS injection and heavy metal exposure. Recombinant TfPrx1 (rTfPrx1) displayed insulin disulfide reduction and ROS-scavenging activity in a concentration-dependent manner, and further exhibited DNA and cytoprotective effects under oxidative stress. These results suggested that TfPrx1 protein may play an important role in fish immune protection from oxidative damage.


Assuntos
Perciformes , Peroxirredoxinas , Animais , Sequência de Aminoácidos , Sequência de Bases , Alinhamento de Sequência , Peroxirredoxinas/genética , Peroxirredoxinas/química , Perciformes/genética , Peixes/genética , Peptídeos/genética , Dissulfetos , Filogenia
8.
Fish Physiol Biochem ; 49(6): 1115-1128, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37855969

RESUMO

Glucose-regulated protein 78 (grp78) and activating transcription factor 6α (atf6α) are considered vital endoplasmic reticulum (ER) molecular chaperones and ER stress (ERS) sensors, respectively. In the present study, the full cDNA sequences of these two ERS-related genes were first cloned and characterized from black seabream (Acanthopagrus schlegelii). The grp78 cDNA sequence is 2606 base pair (bp) encoding a protein of 654 amino acids (aa). The atf6α cDNA sequence is 2168 base pair (bp) encoding a protein of 645 aa. The predicted aa sequences of A. schlegelii grp78 and atf6α indicated that the proteins contain all the structural features, which were characteristic of the two genes in other species. Tissues transcript abundance analysis revealed that the mRNAs of grp78 and atf6α were expressed in all measured tissues, but the highest expression of these two genes was all recorded in the gill followed by liver/ brain. Moreover, in vivo experiment found that fish intake of a high lipid diet (HLD) can trigger ERS by activating grp78/Grp78 and atf6α/Atf6α. However, it can be alleviated by dietary betaine supplementation, similar results were also obtained by in vitro experiment using primary hepatocytes of A. schlegelii. These findings will be beneficial for us to evaluate the regulator effects of HLD supplemented with betaine on ERS at the molecular level, and thus provide some novel insights into the functions of betaine in marine fish fed with an HLD.


Assuntos
Perciformes , Dourada , Animais , Chaperona BiP do Retículo Endoplasmático , Dourada/genética , Betaína , DNA Complementar/genética , Perciformes/genética , Estresse do Retículo Endoplasmático , Fatores Ativadores da Transcrição/genética , Clonagem Molecular
9.
Mol Biol Evol ; 40(11)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37879119

RESUMO

Expression of multiple hemoglobin isoforms with differing physiochemical properties likely helps species adapt to different environmental and physiological conditions. Antarctic notothenioid fishes inhabit the icy Southern Ocean and display fewer hemoglobin isoforms, each with less affinity for oxygen than temperate relatives. Reduced hemoglobin multiplicity was proposed to result from relaxed selective pressure in the cold, thermally stable, and highly oxygenated Antarctic waters. These conditions also permitted the survival and diversification of white-blooded icefishes, the only vertebrates living without hemoglobin. To understand hemoglobin evolution during adaptation to freezing water, we analyzed hemoglobin genes from 36 notothenioid genome assemblies. Results showed that adaptation to frigid conditions shaped hemoglobin gene evolution by episodic diversifying selection concomitant with cold adaptation and by pervasive evolution in Antarctic notothenioids compared to temperate relatives, likely a continuing adaptation to Antarctic conditions. Analysis of hemoglobin gene expression in adult hematopoietic organs in various temperate and Antarctic species further revealed a switch in hemoglobin gene expression underlying hemoglobin multiplicity reduction in Antarctic fish, leading to a single hemoglobin isoform in adult plunderfishes and dragonfishes, the sister groups to icefishes. The predicted high hemoglobin multiplicity in Antarctic fish embryos based on transcriptomic data, however, raises questions about the molecular bases and physiological implications of diverse hemoglobin isoforms in embryos compared to adults. This analysis supports the hypothesis that the last common icefish ancestor was vulnerable to detrimental mutations affecting the single ancestral expressed alpha- and beta-globin gene pair, potentially predisposing their subsequent loss.


Assuntos
Peixes , Perciformes , Animais , Peixes/genética , Hemoglobinas/genética , Vertebrados , Evolução Molecular , Isoformas de Proteínas , Regiões Antárticas , Perciformes/genética
10.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1868(12): 159397, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37741313

RESUMO

Low-density lipoprotein (LDL) is the main carrier of cholesterol transport in plasma, which participates in regulating lipid homeostasis. Studies in mammals have shown that high levels of LDL in plasma absorbed by macrophages trigger the formation of lipid-rich foam cells, leading to the development of atherosclerotic plaques. Although lipid-rich atherosclerosis-like lesions have been discovered in the aorta of several fish species, the physiological function of LDL in fish macrophages remains poorly understood. In the present study, LDL was isolated from the plasma of large yellow croaker (Larimichthys crocea), and mass spectrometry analysis identified two truncated forms of apolipoprotein B100 in the LDL protein profile. Transcriptomic analysis of LDL-stimulated macrophages revealed that differentially expressed genes (DEGs) were enriched in various pathways related to lipid metabolism, as confirmed by the fact that LDL increased total cholesterol and cholesteryl esters content. Meanwhile, the gene and protein expression levels of perilipin2 (PLIN2), a DEG enriched in the PPAR signaling pathway, were upregulated in response to LDL stimulation. Importantly, knocking down plin2 significantly attenuates LDL-induced cholesterol accumulation and promotes cholesterol efflux. Furthermore, the transcription factor PPARγ, which is upregulated in response to LDL stimulation, can enhance the promoter activity of plin2. In conclusion, this study suggests that LDL may upregulate plin2 expression through PPARγ, resulting in cholesterol accumulation in fish macrophages. This study will facilitate the investigation of the function of LDL in regulating lipid homeostasis in macrophages and shed light on the evolutionary origin of LDL metabolism in vertebrates.


Assuntos
Aterosclerose , Perciformes , Animais , Metabolismo dos Lipídeos , PPAR gama/metabolismo , Macrófagos/metabolismo , Colesterol/metabolismo , LDL-Colesterol/metabolismo , Aterosclerose/metabolismo , Perciformes/genética , Perciformes/metabolismo , Mamíferos/metabolismo
11.
Fish Shellfish Immunol ; 142: 109099, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37734650

RESUMO

The NK-lysin antimicrobial peptide, first identified in mammals, possesses both antibacterial and cytotoxic activity against cancer cell lines. Homologue peptides isolated from different fish species have been examined for their functional characteristics in the last few years. In this study, a NK-lysin transcript was identified in silico from the head kidney transcriptome of the Antarctic teleost Trematomus bernacchii. The corresponding amino acid sequence, slightly longer than NK-lysins of other fish species, contains six cysteine residues that in mammalian counterparts form three disulphide bridges. Real time-PCR analysis indicated its predominant expression in T. bernacchii immune-related organs and tissues, with greatest mRNA abundance detected in gills and spleen. Instead of focusing on the full T. bernacchii derived NK-lysin mature molecule, we selected a 27 amino acid residue peptide (named NKL-WT), corresponding to the potent antibiotic NK-2 sequence found in human NK-lysin. Moreover, we designed a mutant peptide (named NKL-MUT) in which two alanine residues substitute the two cysteines found in the NKL-WT. The two peptides were obtained by solid phase organic synthesis to investigate their functional features. NKL-WT and NKL-MUT displayed antibacterial activity against the human pathogenic bacterium Enterococcus faecalis and the ESKAPE pathogen Acinetobacter baumannii, respectively. Moreover, at the determined Minimum Inhibitory Concentration and Minimum Bactericidal Concentration values against these pathogens, both peptides showed high selectivity as they did not exhibit any haemolytic activity on erythrocytes or cytotoxic activity against mammalian primary cell lines. Finally, the NKL-MUT selectively triggers the killing of the melanoma cell line B16F10 by means of a pro-apoptotic pathway at a concentration range in which no effects were found in normal mammalian cell lines. In conclusion, the two peptides could be considered as promising candidates in the fight against antibiotic resistance and tumour proliferative action, and also be used as innovative adjuvants, either to decrease chemotherapy side effects or to enhance anticancer drug activity.


Assuntos
Proteínas de Peixes , Perciformes , Humanos , Animais , Regiões Antárticas , Proteínas de Peixes/genética , Proteínas de Peixes/química , Peptídeos , Antibacterianos/farmacologia , Perciformes/genética , Perciformes/metabolismo , Proteolipídeos/genética , Proteolipídeos/química , Peixes/metabolismo , Mamíferos/metabolismo
12.
Fish Shellfish Immunol ; 141: 109031, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37640122

RESUMO

Glycerol monolaurate (GML) is a potential candidate for regulating metabolic syndrome and inflammatory response. However, the role of GML in modulating intestinal health in fish has not been well determined. In this study, a 70-d feeding trial was conducted to evaluate the effect of GML on intestinal barrier, antioxidant capacity, inflammatory response and microbiota community of large yellow croaker (13.05 ± 0.09 g) fed with high level soybean oil (SO) diets. Two basic diets with fish oil (FO) or SO were formulated. Based on the SO group diet, three different levels of GML 0.02% (SO0.02), 0.04% (SO0.04) and 0.08% (SO0.08) were supplemented respectively. Results showed that intestinal villus height and perimeter ratio were increased in SO0.04 treatment compared with the SO group. The mRNA expressions of intestinal physical barrier-related gene odc and claudin-11 were significantly up-regulated in different addition of GML treatments compared with the SO group. Fish fed SO diet with 0.04% GML addition showed higher activities of acid phosphatase and lysozyme compared with the SO group. The content of malonaldehyde was significantly decreased and activities of catalase and superoxide dismutase were significantly increased in 0.02% and 0.04% GML groups compared with those in the SO group. The mRNA transcriptional levels of inflammatory response-related genes (il-1ß, il-6, tnf-α and cox-2) in 0.04% GML treatment were notably lower than those in the SO group. Meanwhile, sequencing analysis of bacterial 16S rRNA V4-V5 region showed that GML addition changed gut microbiota structure and increased alpha diversity of large yellow croaker fed diets with a high level of SO. The correlation analysis results indicated that the change of intestinal microbiota relative abundance strongly correlated with intestinal health indexes. In conclusion, these results demonstrated that 0.02%-0.04% GML addition could improve intestinal morphology, physical barrier, antioxidant capacity, inflammatory response and microbiota dysbiosis of large yellow croaker fed diets with a high percentage of SO.


Assuntos
Microbiota , Perciformes , Animais , Antioxidantes/metabolismo , Óleo de Soja/metabolismo , Disbiose , RNA Ribossômico 16S , Dieta/veterinária , Perciformes/genética , RNA Mensageiro/metabolismo , Ração Animal/análise
13.
Int J Mol Sci ; 24(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37298202

RESUMO

Hepcidin, a cysteine-rich antimicrobial peptide, has a highly conserved gene structure in teleosts, and it plays an essential role in host immune response against various pathogenic bacteria. Nonetheless, few studies on the antibacterial mechanism of hepcidin in golden pompano (Trachinotus ovatus) have been reported. In this study, we synthesized a derived peptide, TroHepc2-22, from the mature peptide of T. ovatus hepcidin2. Our results showed that TroHepc2-22 has superior antibacterial abilities against both Gram-negative (Vibrio harveyi and Edwardsiella piscicida) and Gram-positive (Staphylococcus aureus and Streptococcus agalactiae) bacteria. Based on the results of a bacterial membrane depolarization assay and propidium iodide (PI) staining assay in vitro, TroHepc2-22 displayed antimicrobial activity by inducing the bacterial membrane depolarization and changing the bacterial membrane permeability. Scanning electron microscopy (SEM) visualization illustrated that TroHepc2-22 brought about membrane rupturing and the leakage of the cytoplasm for the bacteria. In addition, TroHepc2-22 was verified to have hydrolytic activity on bacterial genomic DNA in view of the results of the gel retardation assay. In terms of the in vivo assay, the bacterial loads of V. harveyi in the tested immune tissues (liver, spleen, and head kidney) were significantly reduced in T. ovatus, revealing that TroHepc2-22 significantly enhanced the resistance against V. harveyi infection. Furthermore, the expressions of immune-related genes, including tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), interleukin 1-ß (IL-1ß), IL-6, Toll-like receptor 1 (TLR1), and myeloid differentiation factor 88 (MyD88) were significantly increased, indicating that TroHepc2-22 might regulate inflammatory cytokines and activate immune-related signaling pathways. To summarize, TroHepc2-22 possesses appreciable antimicrobial activity and plays a vital role in resisting bacterial infection. The observation of our present study unveils the excellent application prospect of hepcidin as a substitute for antibiotics to resist pathogenic microorganisms in teleosts.


Assuntos
Anti-Infecciosos , Doenças dos Peixes , Perciformes , Vibrioses , Animais , Hepcidinas/genética , Hepcidinas/farmacologia , Imunidade Inata/genética , Perciformes/genética , Peixes/metabolismo , Peptídeos , Proteínas de Peixes/genética , Proteínas de Peixes/farmacologia , Proteínas de Peixes/química
14.
Front Immunol ; 14: 1168517, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275897

RESUMO

Antimicrobial peptides (AMPs) may be the most promising substitute for antibiotics due to their effective antimicrobial activities and multiple function mechanisms against pathogenic microorganisms. In this study, a novel AMP containing 51 amino acids, named Lc1687, was screened from the large yellow croaker (Larimichthys crocea) via a B. subtilis system. Bioinformatics and circular dichroism (CD) analyses showed that Lc1687 is a novel anionic amphiphilic α-helical peptide, which was derived from the C-terminal of a Ferritin heavy subunit. The recombinant Lc1687 (named rLc1687) purified from Escherichia coli exhibited strong activities against Gram-positive (Gram+) bacterium Staphylococcus aureus, Gram-negative (Gram-) bacteria Vibrio vulnificus, V. parahaemolyticus, and Scuticociliatida. Scanning electron microscope (SEM) and transmission electron microscopy (TEM) revealed the possible function mechanisms of this peptide, which is to target and disrupt the bacterial cell membranes, including pore-forming, loss of fimbriae, and cytoplasm overflow, whereas gel retardation assay revealed that peptide Lc1687 cannot bind bacterial DNA. The peptide stability analysis showed that rLc1687 acts as a stable antimicrobial agent against Gram+ and Gram- bacteria at temperatures ranging from 25 to 100°C, pH 3-12, and UV radiation time ranging from 15 to 60 min. A hemolytic activity assay confirmed that this peptide may serve as a potential source for clinical medicine development. Taken together, Lc1687 is a novel AMP as it is a firstly confirmed Ferritin fragment with antimicrobial activity. It is also a promising agent for the development of peptide-based antibacterial and anti-parasitic therapy.


Assuntos
Anti-Infecciosos , Perciformes , Animais , Bacillus subtilis , Peptídeos Antimicrobianos , Antibacterianos/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/metabolismo , Peptídeos/metabolismo , Perciformes/genética
15.
Dev Comp Immunol ; 147: 104747, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37276930

RESUMO

The inflammatory cytokines TNF-ß and IFN-γ are important mediators of the vertebrate inflammatory response and coordinators of the immune system in regard to NF-κB signalling pathways. In this study, the TNF-ß and IFN-γ genes of yellowfin seabream, Acanthopagrus latus were identified, and the multiple sequence alignments, evolutionary relationships and gene expressions of the two genes were also determined. AlTNF-ß contained a 762 bp open reading frame (ORF) encoding 253 amino acids, while AlIFN-γ contained a 582 bp ORF encoding 193 amino acids. An amino-acid sequence alignment analysis showed that these proteins have highly conserved transmembrane structural domains among teleosts. Moreover, AlTNF-ß has a close affinity with TNF-ß of yellowfin seabream while AlIFN-γ has a high evolutionary correlation with A. regius and Sparus aurata. In addition, the mRNAs of AlTNF-ß and AlIFN-γ are widely expressed in various tissues. AlTNF-ß is highly expressed in gill and intestinal tissues, and the mRNA levels of AlIFN-γ are higher in spleen, skin, and gill tissues than in other tissues. Under transportation density stress, the mRNA level of AlTNF-ß was significantly elevated in the intestine of the high-density group, while AlTNF-ß transcription in the gills did not vary significantly among the density groups. Furthermore, AlIFN-γ expression was increased in liver, intestinal, and gill tissues under high transportation density. The results of this study show that TNF-ß and IFN-γ expression in yellowfin seabream is greatly affected by density stress. The density of 125 per bag for 4-5 cm fry or 1200 per bag for 1-2 cm fry is most suitable for the transportation of live fish. These results might provide a reference for further studies on the immunomodulatory response process and auxiliary function of immune stress of TNF and IFN genes in fish under density stress.


Assuntos
Perciformes , Dourada , Animais , Linfotoxina-alfa/metabolismo , Perciformes/genética , Interferon gama/genética , Interferon gama/metabolismo , Imunidade , RNA Mensageiro/metabolismo
16.
Genome Biol Evol ; 15(7)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37226990

RESUMO

Clownfishes are an iconic group of coral reef fishes that evolved a mutualistic interaction with sea anemones, which triggered the rapid diversification of the group. Following the emergence of this mutualism, clownfishes diversified into different ecological niches and developed convergent phenotypes associated with their host use. The genetic basis of the initial acquisition of the mutualism with host anemones has been described, but the genomic architecture underlying clownfish diversification once the mutualism was established and the extent to which clownfish phenotypic convergence originated through shared genetic mechanisms are still unknown. Here, we investigated these questions by performing comparative genomic analyses on the available genomic data of five pairs of closely related but ecologically divergent clownfish species. We found that clownfish diversification was characterized by bursts of transposable elements, an overall accelerated coding evolution, incomplete lineage sorting, and ancestral hybridization events. Additionally, we detected a signature of positive selection in 5.4% of the clownfish genes. Among them, five presented functions associated with social behavior and ecology, and they represent candidate genes involved in the evolution of the size-based hierarchical social structure so particular to clownfishes. Finally, we found genes with patterns of either relaxation or intensification of purifying selection and signals of positive selection linked with clownfish ecological divergence, suggesting some level of parallel evolution during the diversification of the group. Altogether, this work provides the first insights into the genomic substrate of clownfish adaptive radiation and integrates the growing collection of studies investigating the genomic mechanisms governing species diversification.


Assuntos
Perciformes , Anêmonas-do-Mar , Animais , Evolução Biológica , Perciformes/genética , Genômica , Genoma , Anêmonas-do-Mar/genética , Filogenia
17.
J Fish Dis ; 46(9): 905-916, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37245215

RESUMO

Liver-expressed antimicrobial peptide 2 (LEAP2) is a small peptide, which is consisted of signal peptide, pro-peptide and the bioactive mature peptide. Mature LEAP2 is an antibacterial peptide with four highly conserved cysteines forming two intramolecular disulfide bonds. Chionodraco hamatus, an Antarctic notothenioid fish that lives in the coldest water, has white blood unlike most fish of the world. In this study, the LEAP2 coding sequence was cloned from C. hamatus, including a 29 amino acids signal peptide and mature peptide of 46 amino acids. High levels of LEAP2 mRNA were detected in the skin and liver. Mature peptide was obtained by chemical synthesis in vitro, displayed selective antimicrobial activities against Escherichia coli, Aeromonas hydrophila, Staphylococcus aureus and Streptococcus agalactiae. Liver-expressed antimicrobial peptide 2 showed bactericidal activity by destroying the cell membrane integrity and robustly combined with bacterial genomic DNA. In addition, overexpression of the Tol-LEAP2-EGFP in zebrafish larva showed stronger antimicrobial activity in C. hamatus than in zebrafish, accompanied by lower bacterial load and expression of pro-inflammatory factors. This is the first demonstration of the antimicrobial activity of LEAP2 from C. hamatus, which is of useful value in improving resistance to pathogens.


Assuntos
Anti-Infecciosos , Doenças dos Peixes , Perciformes , Animais , Peixe-Zebra , Hepcidinas , Perciformes/genética , Peptídeos , Aminoácidos , Sinais Direcionadores de Proteínas , Antibacterianos/farmacologia
18.
Front Immunol ; 14: 1162633, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37051230

RESUMO

Dietary high soybean oil (SO) levels might cause hepatic lipid deposition, induce oxidative stress and inflammatory response in aquatic animals, while octanoate (OCT) is beneficial to metabolism and health in mammals. However, the effect of OCT has been studied rarely in aquatic animals. In this study, a 10-week feeding trial was conducted to investigate the effect of supplemental OCT on hepatic lipid metabolism, serum biochemical indexes, antioxidant capacity and inflammatory response of large yellow croaker (Larimichthys crocea) fed with high SO levels diet. The negative control diet contained 7% fish oil (FO), while the positive control diet contained 7% SO. The other four experimental diets were supplemented with 0.7, 2.1, 6.3 and 18.9 g/kg sodium octanoate (OCT) based on the positive control diet. Results showed that OCT supplementation effectively reduced the hepatic crude lipid, triglyceride (TG), total cholesterol (TC) and non-esterified free fatty acids contents, and alleviated lipid accumulation caused by the SO diet. Meanwhile, OCT supplementation decreased the serum TG, TC, alanine transaminase, aspartate transaminase and low-density lipoprotein cholesterol levels, increased the serum high-density lipoprotein cholesterol level, improved the serum lipid profiles and alleviated hepatic injury. Furthermore, with the supplementation of OCT, the mRNA expression of genes related to lipogenesis (acc1, scd1, fas, srebp1, dgat1 and cebpα) and fatty acid (FA) transport (fabp3, fatp and cd36) were down-regulated, while the mRNA expression of genes related to lipolysis (atgl, hsl and lpl) and FA ß-oxidation (cpt1 and mcad) were up-regulated. Besides that, dietary OCT increased the total antioxidant capacity, activities of peroxidase, catalase and superoxide dismutase and the content of reduced glutathione, decreased the content of 8-hydroxy-deoxyguanosine and malondialdehyde and relieved hepatic oxidative stress. Supplementation of 0.7 and 2.1 g/kg OCT down-regulated the mRNA expression of genes related to pro-inflammatory cytokines (tnfα, il1ß and ifnγ), and suppressed hepatic inflammatory response. In conclusion, supplementation with 0.7-2.1 g/kg OCT could reduce hepatic lipid accumulation, relieve oxidative stress and regulate inflammatory response in large yellow croaker fed the diet with high SO levels, providing a new way to alleviate the hepatic fat deposition in aquatic animals.


Assuntos
Antioxidantes , Perciformes , Animais , Antioxidantes/farmacologia , Óleo de Soja , Caprilatos/farmacologia , Caprilatos/metabolismo , Metabolismo dos Lipídeos , Dieta , Inflamação , Perciformes/genética , RNA Mensageiro/metabolismo , Colesterol/metabolismo , Mamíferos/metabolismo
19.
BMC Genomics ; 24(1): 183, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024792

RESUMO

BACKGROUND: Red-tail catfish (Hemibagrus wyckioides) is an important commercially farmed catfish in southern China. Males of red-tail catfish grow faster than females, suggesting that all-male catfish will produce more significant economic benefits in aquaculture practice. However, little research has been reported on sex determination and gonadal development in red-tail catfish. RESULTS: In this study, we performed the first transcriptomic analysis of male and female gonads at four developmental stages at 10, 18, 30, and 48 days post hatching (dph) using RNA-seq technology. A total of 23,588 genes were screened in 24 sequenced samples, of which 28, 213, 636, and 1381 differentially expressed genes (DEGs) were detected at four developmental stages, respectively. Seven candidate genes of sex determination and differentiation were further identified. Real-time quantitative PCR (RT-qPCR) further confirmed that anti-Mullerian hormone (amh), growth differentiation factor 6a (gdf6a), testis-specific gene antigen 10 (tsga10), and cytochrome P450 family 17 subfamily A (cyp17a) were highly expressed mainly in the male, while cytochrome P450 family 19 subfamily A polypeptide 1b (cyp19a1b), forkhead box L2 (foxl2), and hydroxysteroid 17-beta dehydrogenase 1 (hsd17b1) were highly expressed in the female. The KEGG pathway enrichment data showed that these identified DEGs were mainly involved in steroid hormone biosynthesis and TGF-ß signaling pathways. CONCLUSIONS: Based on RNA-seq data of gonads at the early developmental stages, seven DEGs shared by the four developmental stages were identified, among which amh and gdf6a may be the male-biased expression genes, while foxl2, cyp19a1b and hsd17b1 may be the female-biased expression genes in red-tail catfish. Our study will provide crucial genetic information for the research on sex control in red-tail catfish, as well as for exploring the evolutionary processes of sex determination mechanisms in fish.


Assuntos
Peixes-Gato , Perciformes , Animais , Feminino , Masculino , Transcriptoma , Peixes-Gato/genética , Gônadas/metabolismo , Ovário/metabolismo , Perfilação da Expressão Gênica , Perciformes/genética , Diferenciação Sexual/genética , Regulação da Expressão Gênica no Desenvolvimento , Processos de Determinação Sexual/genética
20.
Mar Environ Res ; 187: 105953, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36965322

RESUMO

In order to understand the physiological and immune responses of Sebastes schlegelii to the water-soluble fraction of diesel oil (WSD), S. schlegelii were used as the experimental objects to study the effect of WSD on the sera biochemical indicators, histological changes, and immune responses. Significant differences in sera biochemical indicators were observed in S. schlegelii after WSD exposure. The alkaline phosphatase (ALP), glucose (GLU), and globulin (GLB) were reduced by 3.51-fold, 3.12- fold, and 1.58-fold, respectively; however, K+ was increased by 3.55-fold. The results of HE staining showed that interstitial congestion was observed in the liver; the secondary lamellae deformity and hyperplasia, epithelial lifting, the primary lamellae hyperplasia, and aneurism were observed in the gill. Epidermis thickness increased, and epidermal hyperplasia in the skin was shown. The length of the secondary lamellae shortened significantly after WSD exposure. The results of AB-PAS staining showed that three different types of mucous cells were observed in the gill, and a significant increase in the number of all three types of mucous cells was observed after WSD exposure (P < 0.05). In addition, the results of the relative mRNA expressions in the liver of eleven immune-related genes showed that the relative expression levels of IL-1ß, IL-8, TNF receptor, BAFF, C1s, C1r, and MyD88 in the WSD group were substantially higher than those in the LPS group (P < 0.05), and the relative expression of caspase 10 was significantly lower than that in the LPS group (P < 0.05). At the same time, no significant differences were observed in the relative expression levels of IL-1, TNFα, and C1inh between the two groups (P > 0.05). This study was expected to provide essential data for health assessments of S. schlegelii and establish the foundation for the immune-related researches of S. schlegelii after WSD exposure.


Assuntos
Lipopolissacarídeos , Perciformes , Animais , Hiperplasia/metabolismo , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Perciformes/genética , Imunidade Inata/genética , Fígado , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA