Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38928015

RESUMO

Noise-induced hearing loss (NIHL) is a major cause of hearing impairment and is linked to dementia and mental health conditions, yet no FDA-approved drugs exist to prevent it. Downregulating the mitogen-activated protein kinase (MAPK) cellular pathway has emerged as a promising approach to attenuate NIHL, but the molecular targets and the mechanism of protection are not fully understood. Here, we tested specifically the role of the kinases ERK1/2 in noise otoprotection using a newly developed, highly specific ERK1/2 inhibitor, tizaterkib, in preclinical animal models. Tizaterkib is currently being tested in phase 1 clinical trials for cancer treatment and has high oral bioavailability and low predicted systemic toxicity in mice and humans. In this study, we performed dose-response measurements of tizaterkib's efficacy against permanent NIHL in adult FVB/NJ mice, and its minimum effective dose (0.5 mg/kg/bw), therapeutic index (>50), and window of opportunity (<48 h) were determined. The drug, administered orally twice daily for 3 days, 24 h after 2 h of 100 dB or 106 dB SPL noise exposure, at a dose equivalent to what is prescribed currently for humans in clinical trials, conferred an average protection of 20-25 dB SPL in both female and male mice. The drug shielded mice from the noise-induced synaptic damage which occurs following loud noise exposure. Equally interesting, tizaterkib was shown to decrease the number of CD45- and CD68-positive immune cells in the mouse cochlea following noise exposure. This study suggests that repurposing tizaterkib and the ERK1/2 kinases' inhibition could be a promising strategy for the treatment of NIHL.


Assuntos
Perda Auditiva Provocada por Ruído , Animais , Camundongos , Administração Oral , Perda Auditiva Provocada por Ruído/tratamento farmacológico , Masculino , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/administração & dosagem , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Feminino , Modelos Animais de Doenças , Cóclea/efeitos dos fármacos , Cóclea/metabolismo
2.
Sci Adv ; 10(25): eadk2299, 2024 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-38896614

RESUMO

Noise-induced hearing loss (NIHL) is a common sensorineural hearing impairment that lacks U.S. Food and Drug Administration-approved drugs. To fill the gap in effective screening models, we used an in silico transcriptome-based drug screening approach, identifying 22 biological pathways and 64 potential small molecule treatments for NIHL. Two of these, afatinib and zorifertinib [epidermal growth factor receptor (EGFR) inhibitors], showed efficacy in zebrafish and mouse models. Further tests with EGFR knockout mice and EGF-morpholino zebrafish confirmed their protective role against NIHL. Molecular studies in mice highlighted EGFR's crucial involvement in NIHL and the protective effect of zorifertinib. When given orally, zorifertinib was found in the perilymph with favorable pharmacokinetics. In addition, zorifertinib combined with AZD5438 (a cyclin-dependent kinase 2 inhibitor) synergistically prevented NIHL in zebrafish. Our results underscore the potential for in silico transcriptome-based drug screening in diseases lacking efficient models and suggest EGFR inhibitors as potential treatments for NIHL, meriting clinical trials.


Assuntos
Receptores ErbB , Perda Auditiva Provocada por Ruído , Transcriptoma , Peixe-Zebra , Animais , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Receptores ErbB/genética , Camundongos , Perda Auditiva Provocada por Ruído/tratamento farmacológico , Perda Auditiva Provocada por Ruído/metabolismo , Perda Auditiva Provocada por Ruído/genética , Modelos Animais de Doenças , Simulação por Computador , Inibidores de Proteínas Quinases/farmacologia , Humanos , Avaliação Pré-Clínica de Medicamentos , Camundongos Knockout , Perfilação da Expressão Gênica
3.
J Otolaryngol Head Neck Surg ; 52(1): 78, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38082455

RESUMO

Noise exposure is an important cause of acquired hearing loss. Studies have found that noise exposure causes dysregulated redox homeostasis in cochlear tissue, which has been recognized as a signature feature of hearing loss. Oxidative stress plays a pivotal role in many diseases via very complex and diverse mechanisms and targets. Reactive oxygen species are products of oxidative stress that exert toxic effects on a variety of physiological activities and are considered significant in noise-induced hearing loss (NIHL). Endogenous cellular antioxidants can directly or indirectly counteract oxidative stress and regulate intracellular redox homeostasis, and exogenous antioxidants can complement and enhance this effect. Therefore, antioxidant therapy is considered a promising direction for NIHL treatment. However, drug experiments have been limited to animal models of NIHL, and these experiments and related observations are difficult to translate in humans; therefore, the mechanisms and true effects of these drugs need to be further analyzed. This review outlines the effects of oxidative stress in NIHL and discusses the main mechanisms and strategies of antioxidant treatment for NIHL.


Assuntos
Perda Auditiva Provocada por Ruído , Animais , Humanos , Perda Auditiva Provocada por Ruído/tratamento farmacológico , Antioxidantes/uso terapêutico , Estresse Oxidativo , Oxirredução , Homeostase
4.
Biochem Pharmacol ; 210: 115457, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36806583

RESUMO

NOD-like receptor protein 3 (NLRP3) inflammasomes trigger the inflammatory cascades and participate in various inflammatory diseases, including noise-induced hearing loss (NIHL) caused by oxidative stress. Recently, the anti-inflammatory traditional medicine oridonin (Ori) has been reported to provide hearing protection in mice after noise exposure by blocking the NLRP3-never in mitosis gene A-related kinase 7 (NEK7)-inflammasome complex assembly. Using RNA sequencing analysis, we further elucidated that interleukin 1 receptor type 2 (IL1R2) may be another crucial factor regulated by Ori to protect NIHL. We observed that IL1R2 expression was localized in spiral ganglion neurons, inner and outer hair cells, in Ori-treated mouse cochleae. Additionally, we confirmed that ectopic overexpression of IL1R2 in the inner ears of healthy mice using an adeno-associated virus delivery system significantly reduced noise-induced ribbon synapse lesions and hearing loss by blocking the "cytokine storm" in the inner ear. This study provides a novel theoretical foundation for guiding the clinical treatment of NIHL.


Assuntos
Orelha Interna , Perda Auditiva Provocada por Ruído , Otite , Camundongos , Animais , Perda Auditiva Provocada por Ruído/tratamento farmacológico , Perda Auditiva Provocada por Ruído/etiologia , Perda Auditiva Provocada por Ruído/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Orelha Interna/metabolismo , Orelha Interna/patologia , Inflamação/complicações , Anti-Inflamatórios/farmacologia , Otite/complicações , Receptores de Interleucina-1
5.
Oxid Med Cell Longev ; 2022: 3373828, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531206

RESUMO

Hair cell death induced by excessive reactive oxygen species (ROS) has been identified as the major pathogenesis of noise-induced hearing loss (NIHL). Recent studies have demonstrated that cisplatin- and neomycin-induced ototoxicity can be alleviated by ferroptosis inhibitors. However, whether ferroptosis inhibitors have a protective effect against NIHL remains unknown. We investigated the protective effect of the ferroptosis inhibitor ferrostatin-1 (Fer-1) on NIHL in vivo in CBA/J mice and investigated the protective effect of Fer-1 on tert-butyl hydroperoxide (TBHP)-induced hair cell damage in vitro in cochlear explants and HEI-OC1 cells. We observed ROS overload and lipid peroxidation, which led to outer hair cell (OHC) apoptosis and ferroptosis, in the mouse cochlea after noise exposure. The expression level of apoptosis-inducing factor mitochondria-associated 2 (AIFM2) was substantially increased following elevation of the expression of its upstream protein P53 after noise exposure. The ferroptosis inhibitor Fer-1was demonstrated to enter the inner ear after the systemic administration. Administration of Fer-1 significantly alleviated noise-induced auditory threshold elevation and reduced the loss of OHCs, inner hair cell (IHC) ribbon synapses, and auditory nerve fibers (ANFs) caused by noise. Mechanistically, Fer-1 significantly reduced noise- and TBHP-induced lipid peroxidation and iron accumulation in hair cells, alleviating ferroptosis in cochlear cells consequently. Furthermore, Fer-1 treatment decreased the levels of TfR1, P53, and AIFM2. These results suggest that Fer-1 exerted its protective effects by scavenging of ROS and inhibition of TfR1-mediated ferroptosis and P53-AIFM2 signaling pathway-mediated apoptosis. Our findings suggest that Fer-1 is a promising drug for treating NIHL because of its ability to inhibit noise-induced hair cell apoptosis and ferroptosis, opening new avenues for the treatment of NIHL.


Assuntos
Ferroptose , Perda Auditiva Provocada por Ruído , Camundongos , Animais , Perda Auditiva Provocada por Ruído/tratamento farmacológico , Perda Auditiva Provocada por Ruído/etiologia , Perda Auditiva Provocada por Ruído/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53 , Camundongos Endogâmicos CBA , Apoptose
6.
Biomolecules ; 12(10)2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36291636

RESUMO

Noise-induced hearing loss (NIHL) is one of the leading causes of sensorineural hearing loss with global importance. The current treatment of choice for patients with hearing problems is a hearing aid or a cochlear implant. However, there is currently no treatment to restore physiological hearing. The development of preventive drugs is currently the focus of hearing research. In order to test the efficacy of a drug, the active ingredient has to be applied at reliable concentrations over a period of time. Osmotic minipumps can provide local drug delivery into the perilymph. Combined with a cochlear implant or a tube, the implantation of the pumps may lead to increased hearing thresholds. Such surgery-related threshold shifts complicate the examination of other factors, such as noise. The aim of the present study was to develop an animal model for the examination of substances that potentially prevent NIHL. For this purpose, six male guinea pigs were unilaterally implanted with a silicon catheter with a hook-shaped microcannula at its tip, attached to an artificial perilymph containing osmotic minipump. One week after surgery, the animals were exposed to four hours of a musical piece, presented at 120 dB SPL, to induce a threshold shift. The implantation of the hook-delivery device caused a moderate threshold shift that allows to detect an additional noise-induced temporary threshold shift. This method enables to investigate drug effects delivered prior to the noise insult in order to establish a preventive strategy against noise-induced temporary threshold shifts. The established drug delivery approach allows the release of drugs into the inner ear in a known concentration and for a known duration. This provides a scientific tool for basic research on drug effects in normal hearing animals.


Assuntos
Orelha Interna , Perda Auditiva Provocada por Ruído , Cobaias , Masculino , Animais , Perda Auditiva Provocada por Ruído/tratamento farmacológico , Perda Auditiva Provocada por Ruído/prevenção & controle , Cóclea , Silício/farmacologia , Audição , Modelos Animais de Doenças
7.
Ecotoxicol Environ Saf ; 243: 113992, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35994911

RESUMO

The aim of this study was to investigate the effect of LLY-283, a selective inhibitor of protein arginine methyltransferase 5 (PRMT5), on a noise-induced hearing loss (NIHL) mouse model and to identify a potential target for a therapeutic intervention against NIHL. Eight-week-old male C57BL/6 mice were used. The auditory brainstem response was measured 2 days after noise exposure. The apoptosis of hair cells (HCs) was detected by caspase-3/7 staining, whereas the accumulation of reactive oxygen species (ROS) was measured by 4-HNE staining. We demonstrated that the death of HCs and loss of cochlear synaptic ribbons induced by noise exposure could be significantly reduced by the presence of LLY-283. LLY-283 pretreatment before noise exposure notably decreased 4-HNE and caspase-3/7 levels in the cochlear HCs. We also noticed that the number of spiral ganglion neurons (SGNs) was notably increased after LLY-283 pretreatment. Furthermore, we showed that LLY-283 could increase the expression level of p-AKT in the SGNs. The underlying mechanism involves alleviation of ROS accumulation and activation of the PI3K/AKT pathway, indicating that LLY-283 might be a potential candidate for therapeutic intervention against NIHL.


Assuntos
Perda Auditiva Provocada por Ruído , Animais , Caspase 3 , Inibidores Enzimáticos/uso terapêutico , Perda Auditiva Provocada por Ruído/tratamento farmacológico , Perda Auditiva Provocada por Ruído/metabolismo , Perda Auditiva Provocada por Ruído/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Espécies Reativas de Oxigênio
8.
J Control Release ; 348: 148-157, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35659555

RESUMO

Hearing loss is the most common sensory disorder worldwide and may result from age, drugs, or exposure to excessive noise. Crossing the blood-labyrinth barrier to achieve targeted drug delivery to the inner ear is key to the treatment of hearing loss. We designed a nanoparticle (NP)-based system for targeted drug delivery of forskolin (FSK) to the inner ear, driven by the prestin-targeting peptide LS19 ("ligand-receptor type interaction"). In vivo experiments in developing zebrafish embryos (4-96 h past fertilization) and mice confirmed that LS19-FSK specifically targeted and accumulated in zebrafish lateral line neuromasts and mouse outer hair cells (OHCs). LS19 peptide modification enabled LS19-FSK-NPs to rapidly target OHCs with high specificity. Furthermore, the multifunctional LS19-FSK-NPs were successfully delivered to the OHCs via the round window membrane route and exhibited slow-release properties. The sustained release and intracellular accumulation of FSK inhibited apoptosis of OHCs. Compared with LS19-NPs and FSK-NPs, LS19-FSK-NPs provided significantly stronger protection against noise-induced hearing damage, based on auditory brainstem responses at 4, 8, 16, and 32 kHz. Thus, our specially designed targeted nano-delivery system may serve as a basis for future clinical applications and treatment platforms and has the potential to significantly improve the treatment results of many inner ear diseases.


Assuntos
Perda Auditiva Provocada por Ruído , Animais , Colforsina , Perda Auditiva Provocada por Ruído/tratamento farmacológico , Perda Auditiva Provocada por Ruído/prevenção & controle , Camundongos , Sistemas de Liberação de Fármacos por Nanopartículas , Peptídeos , Peixe-Zebra
9.
Eur J Med Chem ; 226: 113849, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34560429

RESUMO

Cyclin-dependent kinase 2 (CDK2) is a potential therapeutic target for the treatment of hearing loss and cancer. Previously, we identified AZD5438 and AT7519-7 as potent inhibitors of CDK2, however, they also targeted additional kinases, leading to unwanted toxicities. Proteolysis Targeting Chimeras (PROTACs) are a new promising class of small molecules that can effectively direct specific proteins to proteasomal degradation. Herein we report the design, synthesis, and characterization of PROTACs of AT7519-7 and AZD5438 and the identification of PROTAC-8, an AZD5438-PROTAC, that exhibits selective, partial CDK2 degradation. Furthermore, PROTAC-8 protects against cisplatin ototoxicity and kainic acid excitotoxicity in zebrafish. Molecular dynamics simulations reveal the structural requirements for CDK2 degradation. Together, PROTAC-8 is among the first-in-class PROTACs with in vivo therapeutic activities and represents a new lead compound that can be further developed for better efficacy and selectivity for CDK2 degradation against hearing loss and cancer.


Assuntos
Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Perda Auditiva Provocada por Ruído/tratamento farmacológico , Imidazóis/farmacologia , Substâncias Protetoras/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Animais , Antineoplásicos/farmacologia , Linhagem Celular , Cisplatino/antagonistas & inibidores , Cisplatino/farmacologia , Quinase 2 Dependente de Ciclina/metabolismo , Relação Dose-Resposta a Droga , Perda Auditiva Provocada por Ruído/metabolismo , Humanos , Imidazóis/síntese química , Imidazóis/química , Simulação de Dinâmica Molecular , Estrutura Molecular , Substâncias Protetoras/síntese química , Substâncias Protetoras/química , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pirimidinas/síntese química , Pirimidinas/química , Relação Estrutura-Atividade , Peixe-Zebra
10.
Mar Drugs ; 19(8)2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34436282

RESUMO

One of the well-known causes of hearing loss is noise. Approximately 31.1% of Americans between the ages of 20 and 69 years (61.1 million people) have high-frequency hearing loss associated with noise exposure. In addition, recurrent noise exposure can accelerate age-related hearing loss. Phlorofucofuroeckol A (PFF-A) and dieckol, polyphenols extracted from the brown alga Ecklonia cava, are potent antioxidant agents. In this study, we investigated the effect of PFF-A and dieckol on the consequences of noise exposure in mice. In 1,1-diphenyl-2-picrylhydrazyl assay, dieckol and PFF-A both showed significant radical-scavenging activity. The mice were exposed to 115 dB SPL of noise one single time for 2 h. Auditory brainstem response(ABR) threshold shifts 4 h after 4 kHz noise exposure in mice that received dieckol were significantly lower than those in the saline with noise group. The high-PFF-A group showed a lower threshold shift at click and 16 kHz 1 day after noise exposure than the control group. The high-PFF-A group also showed higher hair cell survival than in the control at 3 days after exposure in the apical turn. These results suggest that noise-induced hair cell damage in cochlear and the ABR threshold shift can be alleviated by dieckol and PFF-A in the mouse. Derivatives of these compounds may be applied to individuals who are inevitably exposed to noise, contributing to the prevention of noise-induced hearing loss with a low probability of adverse effects.


Assuntos
Antioxidantes/uso terapêutico , Benzofuranos/uso terapêutico , Dioxinas/uso terapêutico , Perda Auditiva Provocada por Ruído/tratamento farmacológico , Kelp , Extratos Vegetais/uso terapêutico , Animais , Antioxidantes/farmacologia , Organismos Aquáticos , Benzofuranos/farmacologia , Cóclea/efeitos dos fármacos , Dioxinas/farmacologia , Modelos Animais de Doenças , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Células Ciliadas Auditivas/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fitoterapia , Extratos Vegetais/farmacologia
11.
Cell Death Dis ; 12(7): 682, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34234110

RESUMO

The prevalence of noise-induced hearing loss (NIHL) continues to increase, with limited therapies available for individuals with cochlear damage. We have previously established that the transcription factor FOXO3 is necessary to preserve outer hair cells (OHCs) and hearing thresholds up to two weeks following mild noise exposure in mice. The mechanisms by which FOXO3 preserves cochlear cells and function are unknown. In this study, we analyzed the immediate effects of mild noise exposure on wild-type, Foxo3 heterozygous (Foxo3+/-), and Foxo3 knock-out (Foxo3-/-) mice to better understand FOXO3's role(s) in the mammalian cochlea. We used confocal and multiphoton microscopy to examine well-characterized components of noise-induced damage including calcium regulators, oxidative stress, necrosis, and caspase-dependent and caspase-independent apoptosis. Lower immunoreactivity of the calcium buffer Oncomodulin in Foxo3-/- OHCs correlated with cell loss beginning 4 h post-noise exposure. Using immunohistochemistry, we identified parthanatos as the cell death pathway for OHCs. Oxidative stress response pathways were not significantly altered in FOXO3's absence. We used RNA sequencing to identify and RT-qPCR to confirm differentially expressed genes. We further investigated a gene downregulated in the unexposed Foxo3-/- mice that may contribute to OHC noise susceptibility. Glycerophosphodiester phosphodiesterase domain containing 3 (GDPD3), a possible endogenous source of lysophosphatidic acid (LPA), has not previously been described in the cochlea. As LPA reduces OHC loss after severe noise exposure, we treated noise-exposed Foxo3-/- mice with exogenous LPA. LPA treatment delayed immediate damage to OHCs but was insufficient to ultimately prevent their death or prevent hearing loss. These results suggest that FOXO3 acts prior to acoustic insult to maintain cochlear resilience, possibly through sustaining endogenous LPA levels.


Assuntos
Proteína Forkhead Box O3/deficiência , Células Ciliadas Auditivas Externas/metabolismo , Perda Auditiva Provocada por Ruído/metabolismo , Animais , Morte Celular , Modelos Animais de Doenças , Feminino , Proteína Forkhead Box O3/genética , Regulação da Expressão Gênica , Células Ciliadas Auditivas Externas/efeitos dos fármacos , Células Ciliadas Auditivas Externas/patologia , Audição , Perda Auditiva Provocada por Ruído/tratamento farmacológico , Perda Auditiva Provocada por Ruído/genética , Perda Auditiva Provocada por Ruído/patologia , Homozigoto , Lisofosfolipídeos/metabolismo , Lisofosfolipídeos/farmacologia , Masculino , Camundongos Knockout , Ruído , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Fatores de Tempo
12.
Molecules ; 26(12)2021 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-34199327

RESUMO

The application of insulin-like growth factor 1 (IGF-1) to the round window membrane (RWM) is an emerging treatment for inner ear diseases. RWM permeability is the key factor for efficient IGF-1 delivery. Ultrasound microbubbles (USMBs) can increase drug permeation through the RWM. In the present study, the enhancing effect of USMBs on the efficacy of IGF-1 application and the treatment effect of USMB-mediated IGF-1 delivery for noise-induced hearing loss (NIHL) were investigated. Forty-seven guinea pigs were assigned to three groups: the USM group, which received local application of recombinant human IGF-1 (rhIGF-1, 10 µg/µL) following application of USMBs to the RWM; the RWS group, which received IGF-1 application alone; and the saline-treated group. The perilymphatic concentration of rhIGF-1 in the USM group was 1.95- and 1.67- fold of that in the RWS group, 2 and 24 h after treatment, respectively. After 5 h of 118 dB SPL noise exposure, the USM group had the lowest threshold shift in auditory brainstem response, least loss of cochlear outer hair cells, and least reduction in the number of synaptic ribbons on postexposure day 28 among the three groups. The combination of USMB and IGF-1 led to a better therapeutic response to NIHL. Two hours after treatment, the USM group had significantly higher levels of Akt1 and Mapk3 gene expression than the other two groups. The most intense immunostaining for phosphor-AKT and phospho-ERK1/2 was detected in the cochlea in the USM group. These results suggested that USMB can be applied to enhance the efficacy of IGF-1 therapy in the treatment of inner ear diseases.


Assuntos
Cóclea/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Perda Auditiva Provocada por Ruído/tratamento farmacológico , Fator de Crescimento Insulin-Like I/farmacologia , Microbolhas/uso terapêutico , Janela da Cóclea/efeitos dos fármacos , Ondas Ultrassônicas , Animais , Cóclea/metabolismo , Modelos Animais de Doenças , Cobaias , Perda Auditiva Provocada por Ruído/metabolismo , Perda Auditiva Provocada por Ruído/patologia , Janela da Cóclea/metabolismo
13.
Int J Mol Sci ; 22(11)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34072013

RESUMO

The treatment of acute hearing loss is clinically challenging due to the low efficacy of drug delivery into the inner ear. Local intratympanic administration of dexamethasone (D) and insulin-like growth factor 1 (IGF1) has been proposed for treatment, but they do not persist in the middle ear because they are typically delivered in fluid form. We developed a dual-vehicle drug delivery system consisting of cross-linked hyaluronic acid and polylactide-co-glycolide microcapsules. The effect and biocompatibility of the dual vehicle in delivering D and IGF1 were evaluated using an animal model of acute acoustic trauma. The dual vehicle persisted 10.9 times longer (8.7 days) in the middle ear compared with the control (standard-of-care vehicle, 0.8 days). The dual vehicle was able to sustain drug release over up to 1 to 2 months when indocyanine green was loaded as the drug. One-third of the animals experienced an inflammatory adverse reaction. However, it was transient with no sequelae, which was validated by micro CT findings, endoscopic examination, and histological assessment. Hearing restoration after acoustic trauma was satisfactory in both groups, which was further supported by comparable numbers of viable hair cells. Overall, the use of a dual vehicle for intratympanic D and IGF1 delivery may maximize the effect of drug delivery to the target organ because the residence time of the vehicle is prolonged.


Assuntos
Materiais Biocompatíveis , Cápsulas , Perda Auditiva Provocada por Ruído/tratamento farmacológico , Ácido Hialurônico/administração & dosagem , Ácido Hialurônico/química , Poliglactina 910/química , Animais , Biópsia , Contagem de Células , Dexametasona/administração & dosagem , Modelos Animais de Doenças , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Endoscopia , Potenciais Evocados Auditivos do Tronco Encefálico , Células Ciliadas Auditivas Internas , Perda Auditiva Provocada por Ruído/diagnóstico , Perda Auditiva Provocada por Ruído/etiologia , Perda Auditiva Provocada por Ruído/metabolismo , Injeção Intratimpânica , Camundongos , Microtomografia por Raio-X
14.
Lasers Med Sci ; 36(9): 1941-1947, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33822307

RESUMO

Sensorineural hearing loss is an intractable disease. Acoustic overstimulation creates hearing loss; many patients exhibit social and emotional dysfunctions. In a model of noise-induced hearing loss (NIHL), low-level laser photobiomodulation (PBM) at a near-infrared wavelength significantly improved auditory brainstem response (ABR) thresholds. In addition, both N-acetyl-L-cysteine (NAC) and acetyl-L-carnitine (ALCAR) attenuated NIHL, reducing the effects of noise trauma in the cochlea and the central auditory system. Here, we combined PBM with antioxidants to explore hearing threshold recovery and morphological hair cell changes after rats were exposed to noise. The average auditory brainstem response thresholds after PBM/NAC combination treatment were reduced from the apex to the basal turn at all of 8, 16, and 32 kHz compared to the noise-only group. The PBM/NAC combination treated group exhibited intact outer hair cells in all turns, and significantly greater hair cell numbers in the middle and basal cochlear turns, than did controls. Thus, PBM/NAC treatment may prevent hearing dysfunction caused by NIHL.


Assuntos
Perda Auditiva Provocada por Ruído , Acetilcisteína/farmacologia , Animais , Limiar Auditivo , Cóclea , Potenciais Evocados Auditivos do Tronco Encefálico , Células Ciliadas Auditivas , Perda Auditiva Provocada por Ruído/tratamento farmacológico , Humanos , Ratos
15.
PLoS One ; 16(1): e0243903, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33411811

RESUMO

Tinnitus, the phantom perception of sound, often occurs as a clinical sequela of auditory traumas. In an effort to develop an objective test and therapeutic approach for tinnitus, the present study was performed in blast-exposed rats and focused on measurements of auditory brainstem responses (ABRs), prepulse inhibition of the acoustic startle response, and presynaptic ribbon densities on cochlear inner hair cells (IHCs). Although the exact mechanism is unknown, the "central gain theory" posits that tinnitus is a perceptual indicator of abnormal increases in the gain (or neural amplification) of the central auditory system to compensate for peripheral loss of sensory input from the cochlea. Our data from vehicle-treated rats supports this rationale; namely, blast-induced cochlear synaptopathy correlated with imbalanced elevations in the ratio of centrally-derived ABR wave V amplitudes to peripherally-derived wave I amplitudes, resulting in behavioral evidence of tinnitus. Logistic regression modeling demonstrated that the ABR wave V/I amplitude ratio served as a reliable metric for objectively identifying tinnitus. Furthermore, histopathological examinations in blast-exposed rats revealed tinnitus-related changes in the expression patterns of key plasticity factors in the central auditory pathway, including chronic loss of Arc/Arg3.1 mobilization. Using a formulation of N-acetylcysteine (NAC) and disodium 2,4-disulfophenyl-N-tert-butylnitrone (HPN-07) as a therapeutic for addressing blast-induced neurodegeneration, we measured a significant treatment effect on preservation or restoration of IHC ribbon synapses, normalization of ABR wave V/I amplitude ratios, and reduced behavioral evidence of tinnitus in blast-exposed rats, all of which accorded with mitigated histopathological evidence of tinnitus-related neuropathy and maladaptive neuroplasticity.


Assuntos
Acetilcisteína , Benzenossulfonatos , Modelos Animais de Doenças , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Células Ciliadas Auditivas Internas/metabolismo , Perda Auditiva Provocada por Ruído , Zumbido , Acetilcisteína/farmacologia , Acetilcisteína/uso terapêutico , Animais , Benzenossulfonatos/farmacologia , Benzenossulfonatos/uso terapêutico , Biomarcadores/metabolismo , Células Ciliadas Auditivas Internas/patologia , Perda Auditiva Provocada por Ruído/tratamento farmacológico , Perda Auditiva Provocada por Ruído/fisiopatologia , Masculino , Ratos , Zumbido/tratamento farmacológico , Zumbido/fisiopatologia
16.
Braz. j. otorhinolaryngol. (Impr.) ; 86(6): 703-710, Nov.-Dec. 2020. graf
Artigo em Inglês | LILACS | ID: biblio-1142603

RESUMO

Abstract Introduction: The 72 kDa heat shock protein, HSP72, located intracellularly provides cochlear cytoprotective and anti-inflammatory roles in the inner ear during stressful noise challenges. The expression of intracellular HSP72 (iHSP72) can be potentiated by alanyl-glutamine dipeptide supplementation. Conversely, these proteins act as pro-inflammatory signals in the extracellular milieu (eHSP72). Objective: We explore whether noise-induced hearing loss promotes both intracellular and extracellular HSP72 heat shock response alterations, and if alanyl-glutamine dipeptide supplementation could modify heat shock response and prevent hearing loss. Methods: Female 90 day-old Wistar rats (n = 32) were randomly divided into four groups: control, noise-induced hearing loss, treated with alanyl-glutamine dipeptide and noise-induced hearing loss plus alanyl-glutamine dipeptide. Auditory brainstem responses were evaluated before noise exposure (124 dB SPL for 2 h) and 14 days after. Cochlea, nuclear cochlear complex and plasma samples were collected for the measurement of intracellular HSP72 and extracellular HSP72 by a high-sensitivity ELISA kit. Results: We found an increase in both iHSP72 and eHSP72 levels in the noise-induced hearing loss group, which was alleviated by alanyl-glutamine dipeptide treatment. Furthermore, H-index of HSP72 (plasma/cochlea eHSP72/iHSP72 ratio) was increased in the noise-induced hearing loss group, but prevented by alanyl-glutamine dipeptide treatment, although alanyl-glutamine dipeptide had no effect on auditory threshold. Conclusions: Our data indicates that cochlear damage induced by noise exposure is accompanied by local and systemic heat shock response markers. Also, alanyl-glutamine reduced stress markers even though it had no effect on noise-induced hearing loss. Finally, plasma levels of 72 kDa heat shock proteins can be used as a biomarker of auditory stress after noise exposure.


Resumo Introdução: A proteína de choque térmico de 72 kDa, HSP72 localizada intracelularmente, tem papéis citoprotetores e anti-inflamatórios cocleares na orelha interna durante situações de ruído estressantes. A expressão dessa proteína pode ser potencializada pela suplementação com dipeptídeo de alanil-glutamina. Por outro lado, essas proteínas atuam como sinais pró-inflamatórios no meio extracelular. Objetivo: Investigar se a perda auditiva induzida por ruído promove alterações tanto das proteínas HSP72 intracelulares quanto extracelulares na resposta de choque térmico e se a suplementação com alanil-glutamina pode modificar a resposta de choque térmico e evitar a perda auditiva. Método: Ratos Wistar fêmeas, com 90 dias de idade (n = 32), foram divididos aleatoriamente em quatro grupos: controle, perda auditiva induzida por ruído, tratados com alanil-glutamina e perda auditiva induzida por ruído mais alanil-glutamina. Os potenciais evocados auditivos do tronco encefálico foram avaliados antes da exposição ao ruído (124 dB NPS por 2 h) e 14 dias após. A cóclea, o complexo nuclear coclear e amostras de plasma foram coletadas para mensuração de HSP72 intra e extracelular com um kit Elisa de alta sensibilidade. Resultados: Houve um aumento nos níveis de HSP72 intra e extracelular no grupo perda auditiva induzida por ruído, que foi minimizado pelo tratamento com alanil-glutamina. Além disso, o índice H das HSP72 (razão HSP72 extracelular/HSP72intracelular plasma/cóclea) aumentou no grupo perda auditiva induzida por ruído, mas foi limitado pelo tratamento com alanil-glutamina, embora o alanil-glutamina não tenha efeito no limiar auditivo. Conclusões: Nossos dados indicam que o dano coclear induzido pela exposição ao ruído é acompanhado por marcadores da resposta de choque térmico locais e sistêmicos. Além disso, alanil-glutamina reduziu os marcadores de estresse, mesmo não tendo efeito sobre a perda auditiva induzida por ruído. Finalmente, os níveis plasmáticos de proteínas de choque térmico de 72 kDa podem ser usados como biomarcador do estresse auditivo, após a exposição ao ruído.


Assuntos
Animais , Feminino , Ratos , Perda Auditiva Provocada por Ruído/prevenção & controle , Perda Auditiva Provocada por Ruído/tratamento farmacológico , Ratos Wistar , Resposta ao Choque Térmico , Suplementos Nutricionais , Dipeptídeos , Proteínas de Choque Térmico
17.
Food Chem Toxicol ; 143: 111555, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32640333

RESUMO

SCOPE: The imbalance of cellular redox status, in conjunction with the activation of inflammatory processes, have been considered common predominant mechanisms of noise-induced hearing loss. The identification of novel natural products as potential therapeuticstargeting oxidative stress and inflammatory pathways is an emerging field. Here, we focused on the polyphenol caffeic acid (CA), the major representative of hydroxycinnamic acids and phenolic acid, in order to investigate its protective capacity in a model of sensorineural hearing loss induced by noise. METHODS AND RESULTS: Hearing loss was induced by exposing animals (Wistar rats) to a pure tone, 120 dB, 10 kHz for 60 min. By using auditory brainstem responses (ABRs) and immunofluorescence analysis, we found that CA protects auditory function and limits cell death in the cochlear middle/basal turn, damaged by noise exposure. Immunofluorescence analysis provided evidence that CA mediates multiple cell protection mechanisms involving both anti-inflammatory and anti-oxidant effects by decreasing NF-κB and IL-1ß expression in the cochlea and opposing the oxidative/nitrosative damage induced by noise insult. CONCLUSIONS: These results demonstrate that the supplementation of polyphenol CA can be considered a valid therapeutic strategy for attenuating noise-induced hearing loss and cochlear damage targeting both inflammatory signalling and cochlear redox balance.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Ácidos Cafeicos/farmacologia , Perda Auditiva Provocada por Ruído/tratamento farmacológico , Animais , Citocinas/genética , Citocinas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Perda Auditiva Provocada por Ruído/prevenção & controle , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Peroxidação de Lipídeos , Masculino , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Ratos , Ratos Wistar , Espécies Reativas de Nitrogênio , Espécies Reativas de Oxigênio
18.
J Med Food ; 23(5): 491-498, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32186941

RESUMO

Changing consumption patterns and increasing health awareness, especially in Europe, are resulting in an increased demand for sesame seeds. In 2016, Asia imported the highest quantity of sesame seeds, followed by Europe and North America. We examined, for the first time, the effects of treatment with sesame oil and sesamin in hearing impairment models. Sesame oil exhibited an ameliorative effect on auditory impairment in a hair cell line in zebrafish and mice. In ototoxic zebrafish larvae, neuromasts and otic cells increased in numbers because of sesame oil. Furthermore, auditory function in noise-induced hearing loss (NIHL) was studied through auditory brainstem response to evaluate the therapeutic effects of sesame oil. Sesame oil reduced the hearing threshold shift in response to clicks and 8, 16-kHz tone bursts in NIHL mice. Auditory-protective effect of sesame oil was seen in zebrafish and mice; therefore, we used chromatographic analysis to study sesamin, which is the major effective factor in sesame oil. To investigate its effects related to auditory function, we studied the hearing-related gene, Tecta, using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazoliumbromide (MTT) assay. Auditory cell proliferation was induced by treatment with sesame oil and sesamin using Tecta (Tectorin Alpha) regulation. The expression of Tecta increases in the apex area of the cochlear hair cells as they grow, and their activity is enhanced by sesame oil and sesamin. These results provide a novel mechanistic insight into the sesame oil activities and suggest that sesamin, the key constituent in sesame oil, is responsible for its auditory function related benefits, including protection of auditory cells and reversal of their impairments.


Assuntos
Dioxóis/análise , Dioxóis/uso terapêutico , Células Ciliadas Auditivas/efeitos dos fármacos , Perda Auditiva Provocada por Ruído/tratamento farmacológico , Lignanas/análise , Lignanas/uso terapêutico , Óleo de Gergelim/uso terapêutico , Animais , Linhagem Celular , Expressão Gênica , Larva , Camundongos , Peixe-Zebra
19.
Redox Biol ; 29: 101406, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31926629

RESUMO

The formation of reactive oxygen species (ROS) is a well-documented process in noise-induced hearing loss (NIHL). We have also previously shown that activation of 5' adenosine monophosphate (AMP)-activated protein kinase (AMPKα) at its catalytic residue T172 is one of the key reactions triggering noise-induced outer hair cell (OHC) death. In this study, we are addressing the link between ROS formation and activation of AMPKα in OHCs after noise exposure. In-vivo treatment of CBA/J mice with the antioxidant N-acetyl cysteine (NAC) reduced noise-induced ROS formation (as assessed by the relative levels of 4-hydroxynonenal and 3-nitrotyrosine) and activation of AMPKα in OHCs. Forskolin, an activator of adenylyl cyclase (AC) and an antioxidant, significantly increased cyclic adenosine monophosphate (cAMP) and decreased ROS formation and noise-induced activation of AMPKα. Consequently, treatment with forskolin attenuated noise-induced losses of OHCs and NIHL. In HEI-OC1 cells, H2O2-induced activation of AMPKα and cell death were inhibited by the application of forskolin. The sum of our data indicates that noise activates AMPKα in OHCs through formation of ROS and that noise-exposure-induced OHC death is mediated by a ROS/AMPKα-dependent pathway. Forskolin may serve as a potential compound for prevention of NIHL.


Assuntos
Perda Auditiva Provocada por Ruído , Peróxido de Hidrogênio , Animais , Células Ciliadas Auditivas Externas , Perda Auditiva Provocada por Ruído/tratamento farmacológico , Camundongos , Camundongos Endogâmicos CBA , Espécies Reativas de Oxigênio
20.
Am J Otolaryngol ; 41(1): 102328, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31732304

RESUMO

OBJECTIVE: This study aimed to investigate the healing effect of metformin on noise induced hearing loss (NIHL) by measuring audiological, biochemical and histological parameters. MATERIALS AND METHODS: 32 rats were divided into four groups (Group 1: Noise, Group 2: Noise + Metformin, Grup 3: Metformin, Grup 4: Control). Broadband noise was applied to Group 1 and Group 2 after basal measurements. Measuring audiological (distortion product otoacoustic emission (DPOAE) and Auditory Brainstem Response (ABR)), biochemical (total antioxidant status (TAS), total oxidant status (TOS), oxidative status index (OSI), DNA damage, IL-1 beta, IL-6, TNF alfa, HSF-1 and COX-2) and histological parameters. RESULTS: Group 2 had significant decreases in ABR thresholds on day 7 and day 14 compared to day 1. DPOAE values of Group 2 on the 7th and 14th days were significantly higher than the post-noise levels. DNA damage, TOS and OSI values of Group 1 were significantly higher than the other groups. The Cox-2 value of Group 1 was higher than all other groups. The HSF-1 value of Group 2 was significantly higher than that of Group 1. In terms of IL-1 Beta, IL-6 and TNF-alpha values, there was no significant difference between groups 2, 3 and 4 and these values were significantly lower than group 1. In histopathological results of our study, no significant difference was found between the groups being exposed to noise and the control group. CONCLUSION: This study showed that early period of Metformin treatment has therapeutic effect on NIHL.


Assuntos
Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Perda Auditiva Provocada por Ruído/tratamento farmacológico , Metformina/farmacologia , Emissões Otoacústicas Espontâneas/efeitos dos fármacos , Animais , Limiar Auditivo , Biomarcadores/metabolismo , Modelos Animais de Doenças , Feminino , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA