Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Int J Mol Sci ; 22(14)2021 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-34299295

RESUMO

Nearly three decades ago, the Wilms' tumor suppressor Wt1 was identified as a crucial regulator of heart development. Wt1 is a zinc finger transcription factor with multiple biological functions, implicated in the development of several organ systems, among them cardiovascular structures. This review summarizes the results from many research groups which allowed to establish a relevant function for Wt1 in cardiac development and disease. During development, Wt1 is involved in fundamental processes as the formation of the epicardium, epicardial epithelial-mesenchymal transition, coronary vessel development, valve formation, organization of the cardiac autonomous nervous system, and formation of the cardiac ventricles. Wt1 is further implicated in cardiac disease and repair in adult life. We summarize here the current knowledge about expression and function of Wt1 in heart development and disease and point out controversies to further stimulate additional research in the areas of cardiac development and pathophysiology. As re-activation of developmental programs is considered as paradigm for regeneration in response to injury, understanding of these processes and the molecules involved therein is essential for the development of therapeutic strategies, which we discuss on the example of WT1.


Assuntos
Coração/crescimento & desenvolvimento , Miocárdio/metabolismo , Proteínas WT1/metabolismo , Animais , Transição Epitelial-Mesenquimal/fisiologia , Expressão Gênica/genética , Coração/embriologia , Cardiopatias/genética , Cardiopatias/metabolismo , Cardiopatias/fisiopatologia , Humanos , Pericárdio/embriologia , Pericárdio/patologia , Fatores de Transcrição/metabolismo , Proteínas WT1/genética , Proteínas WT1/fisiologia
2.
Histol Histopathol ; 35(9): 1035-1046, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32633330

RESUMO

The epicardium is the outer mesothelial layer of the heart. It covers the myocardium and plays important roles in both heart development and regeneration. It is derived from the proepicardium (PE), groups of cells that emerges at early developmental stages from the dorsal pericardial layer (DP) close to the atrio-ventricular canal and the venous pole of the heart-tube. In zebrafish, PE cells extrude apically into the pericardial cavity as a consequence of DP tissue constriction, a process that is dependent on Bmp pathway signaling. Expression of the transcription factor Wilms tumor-1, Wt1, which is a leader of important morphogenetic events such as apoptosis regulation or epithelial-mesenchymal cell transition, is also necessary during PE formation. In this study, we used the zebrafish model to compare intensity level of the wt1a reporter line epi:GFP in PE and its original tissue, the DP. We found that GFP is present at higher intensity level in the PE tissue, and differentially wt1 expression at pericardial tissues could be involved in the PE formation process. Our results reveal that bmp2b overexpression leads to enhanced GFP level both in DP and in PE tissues.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Organogênese/genética , Pericárdio/embriologia , Proteínas WT1/genética , Proteínas de Peixe-Zebra/genética , Animais , Pericárdio/metabolismo , Proteínas WT1/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
3.
Cell Rep ; 31(10): 107739, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32521264

RESUMO

Epicardial cells are cardiac progenitors that give rise to the majority of cardiac fibroblasts, coronary smooth muscle cells, and pericytes during development. An integral phase of epicardial fate transition is epithelial-to-mesenchymal transition (EMT) that confers motility. We uncover an essential role for the protein arginine methyltransferase 1 (PRMT1) in epicardial invasion and differentiation. Using scRNA-seq, we show that epicardial-specific deletion of Prmt1 reduced matrix and ribosomal gene expression in epicardial-derived cell lineages. PRMT1 regulates splicing of Mdm4, which is a key controller of p53 stability. Loss of PRMT1 leads to accumulation of p53 that enhances Slug degradation and blocks EMT. During heart development, the PRMT1-p53 pathway is required for epicardial invasion and formation of epicardial-derived lineages: cardiac fibroblasts, coronary smooth muscle cells, and pericytes. Consequently, this pathway modulates ventricular morphogenesis and coronary vessel formation. Altogether, our study reveals molecular mechanisms involving the PRMT1-p53 pathway and establish its roles in heart development.


Assuntos
Pericárdio/embriologia , Pericárdio/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Diferenciação Celular/fisiologia , Transição Epitelial-Mesenquimal , Feminino , Coração/embriologia , Camundongos , Miocárdio/citologia , Miocárdio/metabolismo , Pericárdio/citologia , Gravidez , Transdução de Sinais
4.
FASEB J ; 34(4): 5223-5239, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32068311

RESUMO

The embryonic epicardium generates a population of epicardial-derived mesenchymal cells (EPDC) whose contribution to the coronary endothelium is minor or, according to some reports, negligible. We have compared four murine cell-tracing models related to the EPDC in order to elucidate this contribution. Cre recombinase was expressed under control of the promoters of the Wilms' tumor suppressor (Wt1), the cardiac troponin (cTnT), and the GATA5 genes, activating expression of the R26REYFP reporter. We have also used the G2 enhancer of the GATA4 gene as a driver due to its activation in the proepicardium. Recombination was found in most of the epicardium/EPDC in all cases. The contribution of these lineages to the cardiac endothelium was analyzed using confocal microscopy and flow cytometry. G2-GATA4 lineage cells are the most frequent in the endothelium, probably due to the recruitment of circulating endothelial progenitors. The contribution of the WT1 cell lineage increases along gestation due to further endothelial expression of WT1. GATA5 and cTnT lineages represent 4% of the cardiac endothelial cells throughout the gestation, probably standing for the actual EPDC contribution to the coronary endothelium. These results suggest caution when using a sole cell-tracing model to study the fate of the EPDC.


Assuntos
Linhagem da Célula , Vasos Coronários/citologia , Endotélio Vascular/citologia , Pericárdio/citologia , Animais , Vasos Coronários/embriologia , Vasos Coronários/metabolismo , Endotélio Vascular/embriologia , Endotélio Vascular/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Integrases , Camundongos , Pericárdio/embriologia , Pericárdio/metabolismo
5.
Development ; 146(13)2019 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-31175121

RESUMO

The epicardium, the outer mesothelial layer enclosing the myocardium, plays key roles in heart development and regeneration. During embryogenesis, the epicardium arises from the proepicardium (PE), a cell cluster that appears in the dorsal pericardium (DP) close to the venous pole of the heart. Little is known about how the PE emerges from the pericardial mesothelium. Using a zebrafish model and a combination of genetic tools, pharmacological agents and quantitative in vivo imaging, we reveal that a coordinated collective movement of DP cells drives PE formation. We found that Bmp signaling and the actomyosin cytoskeleton promote constriction of the DP, which enables PE cells to extrude apically. We provide evidence that cell extrusion, which has been described in the elimination of unfit cells from epithelia and the emergence of hematopoietic stem cells, is also a mechanism for PE cells to exit an organized mesothelium and fulfil their developmental fate to form a new tissue layer, the epicardium.


Assuntos
Actinas/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Movimento Celular , Coração/embriologia , Pericárdio/citologia , Pericárdio/embriologia , Células-Tronco/fisiologia , Animais , Animais Geneticamente Modificados , Padronização Corporal/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Movimento Celular/genética , Embrião não Mamífero , Miocárdio/citologia , Organogênese/genética , Transdução de Sinais/fisiologia , Células-Tronco/citologia , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
6.
Fundam Clin Pharmacol ; 33(2): 159-169, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30246884

RESUMO

Sulodexide (SDX) is a mixed drug containing low-molecular-weight heparin sulfate and dermatan sulfate. It exerts mild anticoagulant action but can also affect leukocytes, macrophages, and cell-cell adhesion and may interact with growth factors although its direct influence on endothelial cells is not well described. Clinically, SDX is used for the treatment of cardiovascular diseases, where it exerts anti-inflammatory and endothelial protective effects. The aim of this study was to determine the influence of SDX on tubule formation and angiogenesis-related proteins' mRNA expression in endothelial cell line C166 and mouse proepicardial explants. C166 cells and explants were stimulated with a proangiogenic cocktail containing bFGF/VEGF-A120 /VEGF-A164 enriched with SDX. After stimulation, the number and morphology of tubules stained with anti-CD31 antibody were examined under confocal microscope and expression of mRNA for VEGF-A, VEGF-B, VEGF-C, bFGF, IGF-1, Dll4, and Notch1 was measured with real-time PCR. In C166 cell line, there was no difference in tubule formation and mRNA expression, but in proepicardial explants, we observed reduction in tubule number and in mRNA level for DLL4 and Notch1 after SDX administration. In conclusion, SDX indirectly inhibits angiogenesis in mouse proepicardial explant cultures but has no direct effect on the C166 endothelial cell line.


Assuntos
Inibidores da Angiogênese/farmacologia , Vasos Coronários/efeitos dos fármacos , Glicosaminoglicanos/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Pericárdio/efeitos dos fármacos , Receptor Notch1/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Ligação ao Cálcio , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Vasos Coronários/embriologia , Vasos Coronários/metabolismo , Regulação para Baixo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Idade Gestacional , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Pericárdio/embriologia , Pericárdio/metabolismo , Receptor Notch1/genética , Transdução de Sinais/efeitos dos fármacos , Técnicas de Cultura de Tecidos , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
7.
Anat Rec (Hoboken) ; 302(6): 893-903, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30421563

RESUMO

The proepicardium (PE) is a transitory extracardiac embryonic structure which plays a crucial role in cardiac morphogenesis and delivers various cell lineages to the developing heart. The PE arises from the lateral plate mesoderm (LPM) and is present in all vertebrate species. During development, mesothelial cells of the PE reach the naked myocardium either as free-floating aggregates in the form of vesicles or via a tissue bridge; subsequently, they attach to the myocardium and, finally, form the third layer of a mature heart-the epicardium. After undergoing epithelial-to-mesenchymal transition (EMT) some of the epicardial cells migrate into the myocardial wall and differentiate into fibroblasts, smooth muscle cells, and possibly other cell types. Despite many recent findings, the molecular pathways that control not only proepicardial induction and differentiation but also epicardial formation and epicardial cell fate are poorly understood. Knowledge about these events is essential because molecular mechanisms that occur during embryonic development have been shown to be reactivated in pathological conditions, for example, after myocardial infarction, during hypertensive heart disease or other cardiovascular diseases. Therefore, in this review we intended to summarize the current knowledge about PE formation and structure, as well as proepicardial cell fate in animals commonly used as models for studies on heart development. Anat Rec, 302:893-903, 2019. © 2018 Wiley Periodicals, Inc.


Assuntos
Transição Epitelial-Mesenquimal/fisiologia , Mesoderma/embriologia , Pericárdio/embriologia , Células-Tronco Pluripotentes/fisiologia , Animais , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Células Epiteliais/fisiologia , Fibroblastos/fisiologia , Humanos , Mesoderma/citologia , Miócitos de Músculo Liso/fisiologia , Pericárdio/citologia , Especificidade da Espécie
8.
J Clin Ultrasound ; 46(2): 149-151, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29552748

RESUMO

We describe the prenatal and postnatal sonographic findings and postnatal course in the first reported patient with a posterior mediastinal pericardial cyst. We then review and discuss current knowledge about the management of prenatally diagnosed cystic structures of the pericardium. © 2017 Wiley Periodicals, Inc. J Clin Ultrasound 46:149-151, 2018.


Assuntos
Ecocardiografia Doppler em Cores/métodos , Coração Fetal/diagnóstico por imagem , Cisto Mediastínico/diagnóstico por imagem , Pericárdio/diagnóstico por imagem , Ultrassonografia Pré-Natal/métodos , Feminino , Humanos , Cisto Mediastínico/embriologia , Pericárdio/embriologia , Gravidez
9.
Dev Growth Differ ; 60(2): 97-111, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29392712

RESUMO

The origin of coronary endothelial cells (ECs) has been investigated in avian species, and the results showed that the coronary ECs originate from the proepicardial organ (PEO) and developing epicardium. Genetic approaches in mouse models showed that the major source of coronary ECs is the sinus venosus endothelium or ventricular endocardium. To clarify and reconcile the differences between avian and mouse species, we examined the source of coronary ECs in avian embryonic hearts. Using an enhanced green fluorescent protein-Tol2 system and fluorescent dye labeling, four types of quail-chick chimeras were made and quail-specific endothelial marker (QH1) immunohistochemistry was performed. The developing PEO consisted of at least two cellular populations in origin, one was sinus venosus endothelium-derived inner cells and the other was surface mesothelium-derived cells. The majority of ECs in the coronary stems, ventricular free wall, and dorsal ventricular septum originated from the sinus venosus endothelium. The ventricular endocardium contributed mainly to the septal artery and a few cells to the coronary stems. Surface mesothelial cells of the PEO differentiated mainly into a smooth muscle phenotype, but a few differentiated into ECs. In avian species, the coronary endothelium had a heterogeneous origin in a region-specific manner, and the sources of ECs were basically the same as those observed in mice.


Assuntos
Vasos Coronários/embriologia , Células Endoteliais/citologia , Endotélio Vascular/embriologia , Células Epiteliais/citologia , Coração/embriologia , Animais , Diferenciação Celular , Embrião de Galinha , Galinhas , Quimera/embriologia , Endotélio Vascular/citologia , Células Epiteliais/fisiologia , Epitélio/fisiologia , Proteínas de Fluorescência Verde/genética , Imuno-Histoquímica , Miocárdio/citologia , Técnicas de Cultura de Órgãos , Pericárdio/citologia , Pericárdio/embriologia , Codorniz/embriologia
10.
Cardiol Clin ; 35(4): 601-614, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29025550

RESUMO

Congenital abnormalities of the pericardium are a rare group of disorders that include congenital absence of the pericardium, pericardial cysts, and diverticula. These congenital defects result from alterations in the embryologic formation and structure of the pericardium. Although many cases are incidentally found, they can present as symptomatic, life-threatening disease. Owing to their rarity, many cases are inappropriately diagnosed. Alterations in the embryologic formation and structure may result in the formation of these congenital abnormalities. We review the presentation, diagnosis, and management of congenital absence of the pericardium, pericardial cysts, and diverticula. A summary of multimodality imaging features is provided.


Assuntos
Divertículo/diagnóstico por imagem , Cardiopatias Congênitas/diagnóstico por imagem , Cisto Mediastínico/diagnóstico por imagem , Pericárdio/anormalidades , Angiografia Coronária , Divertículo/embriologia , Divertículo/fisiopatologia , Divertículo/terapia , Ecocardiografia , Cardiopatias Congênitas/embriologia , Cardiopatias Congênitas/fisiopatologia , Cardiopatias Congênitas/terapia , Humanos , Imageamento por Ressonância Magnética , Imagem Cinética por Ressonância Magnética , Cisto Mediastínico/embriologia , Cisto Mediastínico/fisiopatologia , Cisto Mediastínico/terapia , Pericárdio/diagnóstico por imagem , Pericárdio/embriologia , Radiografia Torácica , Tomografia Computadorizada por Raios X
11.
In Vitro Cell Dev Biol Anim ; 53(10): 922-939, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28842809

RESUMO

Cardiomyocyte (CM) differentiation from proepicardial organ- (PEO) and embryonic epicardium (eEpi)-derived cells or EPDCs in a developing heart emerges as a wide interest in purview of cardiac repair and regenerative medicine. eEpi originates from the precursor PEO and EPDCs, which contribute to several cardiac cell types including smooth muscle cells, fibroblasts, endothelial cells, and CMs during cardiogenesis. Here in this report, we have analyzed several cardiac lineage-specific marker gene expressions between PEO and eEpi cells. We have found that PEO-derived cells show increased level of CM lineage-specific marker gene expression compared to eEpi cells. Moreover, Wnt signaling activation results in increased level of CM-specific marker gene expression in both PEO and eEpi cells in culture. Interestingly, Wnt signaling activation also increases the number of proliferating and sarcomeric myosin (Mf20)-positive cells in eEpi explant culture. Together, this data suggests that eEpi cells as a source for CM differentiation and Wnt signaling mediator, ß-catenin, might play an important role in CM differentiation from eEpi cells in culture.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Miócitos Cardíacos/citologia , Pericárdio/citologia , Pericárdio/embriologia , beta Catenina/genética , Animais , Diferenciação Celular , Embrião de Galinha , Marcadores Genéticos , Miócitos Cardíacos/fisiologia , Miosinas/metabolismo , Técnicas de Cultura de Órgãos/métodos , Proteínas com Domínio T/genética , Via de Sinalização Wnt/genética , beta Catenina/metabolismo
12.
J Cell Sci ; 130(16): 2696-2706, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28687623

RESUMO

Nonmuscle myosin IIB (NMIIB; heavy chain encoded by MYH10) is essential for cardiac myocyte cytokinesis. The role of NMIIB in other cardiac cells is not known. Here, we show that NMIIB is required in epicardial formation and functions to support myocardial proliferation and coronary vessel development. Ablation of NMIIB in epicardial cells results in disruption of epicardial integrity with a loss of E-cadherin at cell-cell junctions and a focal detachment of epicardial cells from the myocardium. NMIIB-knockout and blebbistatin-treated epicardial explants demonstrate impaired mesenchymal cell maturation during epicardial epithelial-mesenchymal transition. This is manifested by an impaired invasion of collagen gels by the epicardium-derived mesenchymal cells and the reorganization of the cytoskeletal structure. Although there is a marked decrease in the expression of mesenchymal genes, there is no change in Snail (also known as Snai1) or E-cadherin expression. Studies from epicardium-specific NMIIB-knockout mice confirm the importance of NMIIB for epicardial integrity and epicardial functions in promoting cardiac myocyte proliferation and coronary vessel formation during heart development. Our findings provide a novel mechanism linking epicardial formation and epicardial function to the activity of the cytoplasmic motor protein NMIIB.


Assuntos
Diferenciação Celular/genética , Células-Tronco Mesenquimais/fisiologia , Cadeias Pesadas de Miosina/fisiologia , Miosina não Muscular Tipo IIB/fisiologia , Pericárdio/citologia , Pericárdio/embriologia , Animais , Embrião de Mamíferos , Desenvolvimento Embrionário/genética , Coração/embriologia , Camundongos , Camundongos Knockout , Miocárdio/metabolismo , Cadeias Pesadas de Miosina/genética , Miosina não Muscular Tipo IIB/genética , Organogênese/genética
13.
Acta Biochim Biophys Sin (Shanghai) ; 49(1): 14-24, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27932393

RESUMO

The epicardial cell (EpiC) culture system plays an important role in investigating the specific mechanisms and signaling molecules that are involved in the development of EpiCs. From this early formation until adulthood, EpiCs undergo dynamic changes in the expression of embryonic genes that correlate with changes in the embryonic EpiC properties. The differences of embryonic EpiC properties may affect the related results of experiments in which EpiC culture system is used; however, these differences have not been explored. Therefore, in this study we examined the differences in the biological characteristics of EpiCs on different embryonic days in vitro EpiCs were isolated from embryonic ventricle explants on embryonic day (E) 11.5, E13.5, and E15.5. The differences in the migration, proliferation and differentiation were studied in EpiCs of different embryonic day by scratch assay, cell cycle analysis and platelet derived growth factor-bb (PDGF-BB) treatment. The results showed that EpiCs were successfully cultured from E11.5, E13.5, and E15.5 embryonic ventricle explants. The time windows of E11.5, E13.5, and E15.5 EpiC isolation out of the explants were different. The migration abilities of E11.5, E13.5, and E15.5 EpiCs decreased during embryonic development. Smooth muscle cell differentiation potential of early stage EpiCs was better than that of the later stage EpiCs. Although the proliferation ability of E11.5 EpiCs was significantly weaker than those of E13.5 and E15.5 EpiCs, the proliferation abilities of E13.5 and E15.5 EpiCs did not differ. These results suggest that the biological characteristics of EpiCs correlate with the timing of embryonic development, and different embryonic stage of ventricle should be properly chosen for culturing EpiCs depending on the purposes of the specific experiments.


Assuntos
Pericárdio/embriologia , Animais , Becaplermina , Diferenciação Celular/efeitos dos fármacos , Movimento Celular , Proliferação de Células , Células Cultivadas , Feminino , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Pericárdio/citologia , Gravidez , Proteínas Proto-Oncogênicas c-sis/farmacologia
14.
J Vasc Res ; 53(1-2): 83-93, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27626281

RESUMO

Angiogenesis contributes to the generation of the vascular bed but also affects the progression of many diseases, such as tumor growth. Many details of the molecular pathways controlling angiogenesis are still undefined due to the lack of appropriate models. We propose the proepicardial explant as a suitable model for studying certain aspects of angiogenesis. The proepicardium (PE) is a transient embryonic structure that contains a population of undifferentiated endothelial cells (ECs) forming a vascular net continuous with the sinus venosus. In this paper, we show that PE explants give rise to CD31-positive vascular sprouts in the presence of basic fibroblast growth factor (bFGF) and 2 isoforms of vascular endothelial growth factor A (VEGF-A), i.e. VEGF-A120 and VEGF-A164. Vascular sprouts exhibit differences in number, length, thickness and the number of branches, depending on the combination of growth factors used. Moreover, the ECs of the sprouts express various levels of mRNA for Notch1 and its ligand Dll4. Additionally, stimulation with bFGF/VEGF-A164 upregulates the expression of Lyve-1 antigen in the ECs in the sprouts. In summary, we present a new model for angiogenesis studies involving mouse PE as a source of ECs. We believe that our model may act as a supplementary assay for angiogenesis studies along with the existing models.


Assuntos
Indutores da Angiogênese/farmacologia , Fator 2 de Crescimento de Fibroblastos/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Pericárdio/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/farmacologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Biomarcadores/metabolismo , Proteínas de Ligação ao Cálcio , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Idade Gestacional , Glicoproteínas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Pericárdio/embriologia , Pericárdio/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Gravidez , Receptor EphB2/genética , Receptor EphB2/metabolismo , Receptor EphB4/genética , Receptor EphB4/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo , Fatores de Tempo , Técnicas de Cultura de Tecidos
15.
Circ Res ; 116(7): 1216-30, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25814683

RESUMO

Although numerous preclinical investigations have consistently demonstrated salubrious effects of c-kit(pos) cardiac cells administered after myocardial infarction, the mechanism of action remains highly controversial. We and others have found little or no evidence that these cells differentiate into mature functional cardiomyocytes, suggesting paracrine effects. In this review, we propose a new paradigm predicated on a comprehensive analysis of the literature, including studies of cardiac development; we have (facetiously) dubbed this conceptual construct "string theory" of c-kit(pos) cardiac cells because it reconciles multifarious and sometimes apparently discrepant results. There is strong evidence that, during development, the c-kit receptor is expressed in different pools of cardiac progenitors (some capable of robust cardiomyogenesis and others with little or no contribution to myocytes). Accordingly, c-kit positivity, in itself, does not define the embryonic origins, lineage capabilities, or differentiation capacities of specific cardiac progenitors. C-kit(pos) cells derived from the first heart field exhibit cardiomyogenic potential during development, but these cells are likely depleted shortly before or after birth. The residual c-kit(pos) cells found in the adult heart are probably of proepicardial origin, possess a mesenchymal phenotype (resembling bone marrow mesenchymal stem/stromal cells), and are capable of contributing significantly only to nonmyocytic lineages (fibroblasts, smooth muscle cells, and endothelial cells). If these 2 populations (first heart field and proepicardium) express different levels of c-kit, the cardiomyogenic potential of first heart field progenitors might be reconciled with recent results of c-kit(pos) cell lineage tracing studies. The concept that c-kit expression in the adult heart identifies epicardium-derived, noncardiomyogenic precursors with a mesenchymal phenotype helps to explain the beneficial effects of c-kit(pos) cell administration to ischemically damaged hearts despite the observed paucity of cardiomyogenic differentiation of these cells.


Assuntos
Linhagem da Célula , Modelos Cardiovasculares , Infarto do Miocárdio/terapia , Miócitos Cardíacos/transplante , Proteínas Proto-Oncogênicas c-kit , Túnica Adventícia/citologia , Vasos Sanguíneos/citologia , Vasos Sanguíneos/embriologia , Diferenciação Celular , Ensaios Clínicos Fase I como Assunto , Citocinas/fisiologia , Endocárdio/citologia , Endocárdio/embriologia , Transição Epitelial-Mesenquimal , Sobrevivência de Enxerto , Coração/embriologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Músculo Liso/citologia , Miócitos Cardíacos/química , Comunicação Parácrina , Pericárdio/citologia , Pericárdio/embriologia , Células-Tronco/química , Células-Tronco/classificação , Células-Tronco/citologia , Transplante Autólogo
16.
Cardiol Young ; 25(1): 158-60, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24447774

RESUMO

An intrapericardial vacuolated mass compressing and displacing the heart was diagnosed by echocardiography in a foetus of 22 weeks gestation. The birth was induced for early signs of foetal distress at 29 weeks and, after two initial pericardial evacuation procedures, the tumour was resected radically 7 days after birth at a weight of 1.55 kg. Mass histology showed teratoma associated with yolk sac tumour. We comment on the overall approach adopted after foetal diagnosis and the histopathological features of the tumour, and try to draw conclusions on patient outcome data.


Assuntos
Ecocardiografia , Tumor do Seio Endodérmico/embriologia , Doenças Fetais/diagnóstico por imagem , Neoplasias Cardíacas/embriologia , Pericárdio/diagnóstico por imagem , Teratoma/embriologia , Ultrassonografia Pré-Natal/métodos , Diagnóstico Diferencial , Tumor do Seio Endodérmico/diagnóstico por imagem , Feminino , Neoplasias Cardíacas/diagnóstico por imagem , Humanos , Recém-Nascido , Pericárdio/embriologia , Gravidez , Teratoma/diagnóstico por imagem
17.
Dev Biol ; 396(1): 8-18, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25300579

RESUMO

Recent studies using mouse models for cell fate tracing of epicardial derived cells (EPDCs) have demonstrated that at the atrioventricular (AV) junction EPDCs contribute to the mesenchyme of the AV sulcus, the annulus fibrosus, and the parietal leaflets of the AV valves. There is little insight, however, into the mechanisms that govern the contribution of EPDCs to these tissues. While it has been demonstrated that bone morphogenetic protein (Bmp) signaling is required for AV cushion formation, its role in regulating EPDC contribution to the AV junction remains unexplored. To determine the role of Bmp signaling in the contribution of EPDCs to the AV junction, the Bmp receptor activin-like kinase 3 (Alk3; or Bmpr1a) was conditionally deleted in the epicardium and EPDCs using the mWt1/IRES/GFP-Cre (Wt1(Cre)) mouse. Embryonic Wt1(Cre);Alk3(fl/fl) specimens showed a significantly smaller AV sulcus and a severely underdeveloped annulus fibrosus. Electrophysiological analysis of adult Wt1(Cre);Alk3(fl/fl) mice showed, unexpectedly, no ventricular pre-excitation. Cell fate tracing revealed a significant decrease in the number of EPDCs within the parietal leaflets of the AV valves. Postnatal Wt1(Cre);Alk3(fl/fl) specimens showed myxomatous changes in the leaflets of the mitral valve. Together these observations indicate that Alk3 mediated Bmp signaling is important in the cascade of events that regulate the contribution of EPDCs to the AV sulcus, annulus fibrosus, and the parietal leaflets of the AV valves. Furthermore, this study shows that EPDCs do not only play a critical role in early developmental events at the AV junction, but that they also are important in the normal maturation of the AV valves.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo I/fisiologia , Proteínas Morfogenéticas Ósseas/metabolismo , Átrios do Coração/embriologia , Ventrículos do Coração/embriologia , Pericárdio/embriologia , Animais , Apoptose , Linhagem da Célula , Movimento Celular , Proliferação de Células , Cruzamentos Genéticos , Eletrocardiografia , Eletrofisiologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Imageamento Tridimensional , Masculino , Camundongos , Valva Mitral/embriologia , Pericárdio/citologia , Fenótipo , Transdução de Sinais
18.
J Mol Cell Cardiol ; 65: 108-19, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24140724

RESUMO

During embryonic heart development, the transcription factors Tcf21, Wt1, and Tbx18 regulate activation and differentiation of epicardium-derived cells, including fibroblast lineages. Expression of these epicardial progenitor factors and localization of cardiac fibrosis were examined in mouse models of cardiovascular disease and in human diseased hearts. Following ischemic injury in mice, epicardial fibrosis is apparent in the thickened layer of subepicardial cells that express Wt1, Tbx18, and Tcf21. Perivascular fibrosis with predominant expression of Tcf21, but not Wt1 or Tbx18, occurs in mouse models of pressure overload or hypertensive heart disease, but not following ischemic injury. Areas of interstitial fibrosis in ischemic and hypertensive hearts actively express Tcf21, Wt1, and Tbx18. In all areas of fibrosis, cells that express epicardial progenitor factors are distinct from CD45-positive immune cells. In human diseased hearts, differential expression of Tcf21, Wt1, and Tbx18 also is detected with epicardial, perivascular, and interstitial fibrosis, indicating conservation of reactivated developmental mechanisms in cardiac fibrosis in mice and humans. Together, these data provide evidence for distinct fibrogenic mechanisms that include Tcf21, separate from Wt1 and Tbx18, in different fibroblast populations in response to specific types of cardiac injury.


Assuntos
Fibrose Endomiocárdica/metabolismo , Fibrose Endomiocárdica/patologia , Hipertensão/patologia , Isquemia Miocárdica/patologia , Pericárdio/embriologia , Pericárdio/patologia , Células-Tronco/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Biomarcadores/metabolismo , Modelos Animais de Doenças , Fibrose Endomiocárdica/embriologia , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Humanos , Hipertensão/complicações , Hipertensão/embriologia , Hipertensão/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Antígenos Comuns de Leucócito/metabolismo , Leucócitos/metabolismo , Camundongos , Modelos Biológicos , Isquemia Miocárdica/complicações , Isquemia Miocárdica/metabolismo , Pericárdio/metabolismo , Proteínas com Domínio T/metabolismo , Proteínas WT1/metabolismo
19.
Dev Biol ; 383(2): 307-20, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24016759

RESUMO

The epicardium and coronary vessels originate from progenitor cells in the proepicardium. Here we show that Tbx18, a T-box family member highly expressed in the proepicardium, controls critical early steps in coronary development. In Tbx18(-/-) mouse embryos, both the epicardium and coronary vessels exhibit structural and functional defects. At E12.5, the Tbx18-deficient epicardium contains protrusions and cyst-like structures overlying a disorganized coronary vascular plexus that contains ectopic structures resembling blood islands. At E13.5, the left and right coronary stems form correctly in mutant hearts. However, analysis of PECAM-1 whole mount immunostaining, distribution of SM22α(lacZ/+) activity, and analysis of coronary vascular casts suggest that defective vascular plexus remodeling produces a compromised arterial network at birth consisting of fewer distributing conduit arteries with smaller lumens and a reduced capacity to conduct blood flow. Gene expression profiles of Tbx18(-/-) hearts at E12.5 reveal altered expression of 79 genes that are associated with development of the vascular system including sonic hedgehog signaling components patched and smoothened, VEGF-A, angiopoietin-1, endoglin, and Wnt factors compared to wild type hearts. Thus, formation of coronary vasculature is responsive to Tbx18-dependent gene targets in the epicardium, and a poorly structured network of coronary conduit vessels is formed in Tbx18 null hearts due to defects in epicardial cell signaling and fate during heart development. Lastly, we demonstrate that Tbx18 possesses a SRF/CArG box dependent repressor activity capable of inhibiting progenitor cell differentiation into smooth muscle cells, suggesting a potential function of Tbx18 in maintaining the progenitor status of epicardial-derived cells.


Assuntos
Vasos Coronários/embriologia , Vasos Coronários/metabolismo , Pericárdio/embriologia , Pericárdio/metabolismo , Proteínas com Domínio T/metabolismo , Animais , Animais Recém-Nascidos , Diferenciação Celular , Circulação Coronária , Vasos Coronários/patologia , Vasos Coronários/ultraestrutura , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/patologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Miócitos de Músculo Liso/metabolismo , Pericárdio/patologia , Pericárdio/ultraestrutura , Proteínas Repressoras/metabolismo , Fator de Resposta Sérica/química , Proteínas com Domínio T/deficiência , Proteínas com Domínio T/genética , Transcrição Gênica , beta-Galactosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA