Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 460
Filtrar
1.
Life Sci Alliance ; 7(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38631913

RESUMO

The Helicobacter pylori Cag type IV secretion system (Cag T4SS) has an important role in the pathogenesis of gastric cancer. The Cag T4SS outer membrane core complex (OMCC) is organized into three regions: a 14-fold symmetric outer membrane cap (OMC) composed of CagY, CagX, CagT, CagM, and Cag3; a 17-fold symmetric periplasmic ring (PR) composed of CagY and CagX; and a stalk with unknown composition. We investigated how CagT, CagM, and a conserved antenna projection (AP) region of CagY contribute to the structural organization of the OMCC. Single-particle cryo-EM analyses showed that complexes purified from ΔcagT or ΔcagM mutants no longer had organized OMCs, but the PRs remained structured. OMCCs purified from a CagY antenna projection mutant (CagY∆AP) were structurally similar to WT OMCCs, except for the absence of the α-helical antenna projection. These results indicate that CagY and CagX are sufficient for maintaining a stable PR, but the organization of the OMC requires CagY, CagX, CagM, and CagT. Our results highlight an unexpected structural independence of two major subdomains of the Cag T4SS OMCC.


Assuntos
Helicobacter pylori , Sistemas de Secreção Tipo IV/química , Periplasma
2.
Appl Microbiol Biotechnol ; 108(1): 238, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38407600

RESUMO

Pasteurella multocida is an important bacterial pathogen that can cause diseases in both animals and humans. Its elevated morbidity and mortality rates in animals result in substantial economic repercussions within the livestock industry. The prevention of diseases caused by P. multocida through immunization is impeded by the absence of a safe and effective vaccine. Outer membrane vesicles (OMVs) secreted from the outer membrane of Gram-negative bacteria are spherical vesicular structures that encompass an array of periplasmic components in conjunction with a diverse assortment of lipids and proteins. These vesicles can induce antibacterial immune responses within the host. P. multocida has been shown to produce OMVs. Nonetheless, the precise characteristics and immunomodulatory functions of P. multocida OMVs have not been fully elucidated. In this study, OMVs were isolated from P. multocida using an ultrafiltration concentration technique, and their morphology, protein constitution, and immunomodulatory properties in RAW264.7 cells were studied. Transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA) revealed that the OMVs exhibited typical spherical and bilayered lipid vesicular architecture, exhibiting an average diameter of approximately 147.5 nm. The yield of OMVs was 2.6 × 1011 particles/mL. Proteomic analysis revealed a high abundance of membrane-associated proteins within P. multocida OMVs, with the capability to instigate the host's immune response. Furthermore, OMVs stimulated the proliferation and cellular uptake of macrophages and triggered the secretion of cytokines, such as TNF-ɑ, IL-1ß, IL-6, IL-10, and TGF-ß1. Consequently, our results indicated that OMVs from P. multocida could directly interact with macrophages and regulate their immune function in vitro. These results supported the prospective applicability of P. multocida OMVs as a platform in the context of vaccine development. KEY POINTS: • Preparation and characterization of P. multocida OMVs. • P. multocida OMVs possess a range of antigens and lipoproteins associated with the activation of the immune system. • P. multocida OMVs can activate the proliferation, internalization, and cytokine secretion of macrophages in vitro.


Assuntos
Pasteurella multocida , Animais , Humanos , Estudos Prospectivos , Proteômica , Macrófagos , Periplasma
3.
Redox Biol ; 64: 102800, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37413765

RESUMO

The thiol redox balance in the periplasm of E. coli depends on the DsbA/B pair for oxidative power and the DsbC/D system as its complement for isomerization of non-native disulfides. While the standard redox potentials of those systems are known, the in vivo "steady state" redox potential imposed onto protein thiol disulfide pairs in the periplasm remains unknown. Here, we used genetically encoded redox probes (roGFP2 and roGFP-iL), targeted to the periplasm, to directly probe the thiol redox homeostasis in this compartment. These probes contain two cysteine residues that are virtually completely reduced in the cytoplasm, but once exported into the periplasm, can form a disulfide bond, a process that can be monitored by fluorescence spectroscopy. Even in the absence of DsbA, roGFP2, exported to the periplasm, was almost fully oxidized, suggesting the presence of an alternative system for the introduction of disulfide bonds into exported proteins. However, the absence of DsbA shifted the steady state periplasmic thiol-redox potential from -228 mV to a more reducing -243 mV and the capacity to re-oxidize periplasmic roGFP2 after a reductive pulse was significantly decreased. Re-oxidation in a DsbA strain could be fully restored by exogenous oxidized glutathione (GSSG), while reduced GSH accelerated re-oxidation of roGFP2 in the WT. In line, a strain devoid of endogenous glutathione showed a more reducing periplasm, and was significantly worse in oxidatively folding PhoA, a native periplasmic protein and substrate of the oxidative folding machinery. PhoA oxidative folding could be enhanced by the addition of exogenous GSSG in the WT and fully restored in a ΔdsbA mutant. Taken together this suggests the presence of an auxiliary, glutathione-dependent thiol-oxidation system in the bacterial periplasm.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Dissulfeto de Glutationa/metabolismo , Periplasma/metabolismo , Dobramento de Proteína , Oxirredução , Glutationa/metabolismo , Proteínas/metabolismo , Homeostase , Dissulfetos/química , Compostos de Sulfidrila/metabolismo , Estresse Oxidativo , Proteínas de Escherichia coli/metabolismo
4.
Sci Adv ; 9(29): eadg5858, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37478187

RESUMO

Semiconductor-based biointerfaces are typically established either on the surface of the plasma membrane or within the cytoplasm. In Gram-negative bacteria, the periplasmic space, characterized by its confinement and the presence of numerous enzymes and peptidoglycans, offers additional opportunities for biomineralization, allowing for nongenetic modulation interfaces. We demonstrate semiconductor nanocluster precipitation containing single- and multiple-metal elements within the periplasm, as observed through various electron- and x-ray-based imaging techniques. The periplasmic semiconductors are metastable and display defect-dominant fluorescent properties. Unexpectedly, the defect-rich (i.e., the low-grade) semiconductor nanoclusters produced in situ can still increase adenosine triphosphate levels and malate production when coupled with photosensitization. We expand the sustainability levels of the biohybrid system to include reducing heavy metals at the primary level, building living bioreactors at the secondary level, and creating semi-artificial photosynthesis at the tertiary level. The biomineralization-enabled periplasmic biohybrids have the potential to serve as defect-tolerant platforms for diverse sustainable applications.


Assuntos
Biomineralização , Periplasma , Periplasma/metabolismo , Membrana Celular/metabolismo , Citoplasma/metabolismo , Fotossíntese
5.
Prep Biochem Biotechnol ; 53(10): 1288-1296, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37040146

RESUMO

The microbial expression system (Escherichia coli) is the most widely studied host for the production of biotherapeutic products, such as antibody fragments, single chain variable fragments and nanobodies. However, recombinant biotherapeutic proteins are often expressed as insoluble proteins, thereby limiting the utility of E. coli as expression system. To overcome this limitation, various strategies have been developed, such as changes at DNA level (codon optimization), fusion with soluble tags and variations in process parameters (temperature), and inducer concentration. However, there is no "one size fits all" strategy. The most commonly used approach involves induction at low temperature, as reducing the temperature during cultivation has been reported to increase bioactive protein production in E. coli. In this study, we examine the impact of various process parameters, such as temperature and inducer concentration, as well as, high plasmid copy number vector for achieving enhanced soluble expression of TNFα inhibitor Fab. An interaction amongst these parameters has been observed and their optimization has been demonstrated to result in expression of 30 ± 3 mg/L antibody fragment using E. coli. This case study illustrates how process optimization can contribute toward making biotherapeutics affordable.


Assuntos
Escherichia coli , Anticorpos de Cadeia Única , Escherichia coli/genética , Escherichia coli/metabolismo , Anticorpos Monoclonais , Periplasma/metabolismo , Proteínas Recombinantes/metabolismo , Anticorpos de Cadeia Única/genética
6.
Mol Microbiol ; 119(4): 423-438, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36756756

RESUMO

Copper avidly binds thiols and is redox active, and it follows that one element of copper toxicity may be the generation of undesirable disulfide bonds in proteins. In the present study, copper oxidized the model thiol N-acetylcysteine in vitro. Alkaline phosphatase (AP) requires disulfide bonds for activity, and copper activated reduced AP both in vitro and when it was expressed in the periplasm of mutants lacking their native disulfide-generating system. However, AP was not activated when it was expressed in the cytoplasm of copper-overloaded cells. Similarly, this copper stress failed to activate OxyR, a transcription factor that responds to the creation of a disulfide bond. The elimination of cellular disulfide-reducing systems did not change these results. Nevertheless, in these cells, the cytoplasmic copper concentration was high enough to impair growth and completely inactivate enzymes with solvent-exposed [4Fe-4S] clusters. Experiments with N-acetylcysteine determined that the efficiency of thiol oxidation is limited by the sluggish pace at which oxygen regenerates copper(II) through oxidation of the thiyl radical-Cu(I) complex. We conclude that this slow step makes copper too inefficient a catalyst to create disulfide stress in the thiol-rich cytoplasm, but it can still impact the few thiol-containing proteins in the periplasm. It also ensures that copper accumulates intracellularly in the Cu(I) valence.


Assuntos
Cobre , Escherichia coli , Cobre/metabolismo , Escherichia coli/metabolismo , Periplasma/metabolismo , Acetilcisteína/metabolismo , Citoplasma/metabolismo , Bactérias/metabolismo , Oxirredução , Fatores de Transcrição/metabolismo , Compostos de Sulfidrila/metabolismo , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Dissulfetos/metabolismo
7.
J Biol Chem ; 298(11): 102572, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36209828

RESUMO

PpiD and YfgM are inner membrane proteins that are both composed of an N-terminal transmembrane segment and a C-terminal periplasmic domain. Escherichia coli YfgM and PpiD form a stable complex that interacts with the SecY/E/G (Sec) translocon, a channel that allows protein translocation across the cytoplasmic membrane. Although PpiD is known to function in protein translocation, the functional significance of PpiD-YfgM complex formation as well as the molecular mechanisms of PpiD-YfgM and PpiD/YfgM-Sec translocon interactions remain unclear. Here, we conducted genetic and biochemical studies using yfgM and ppiD mutants and demonstrated that a lack of YfgM caused partial PpiD degradation at its C-terminal region and hindered the membrane translocation of Vibrio protein export monitoring polypeptide (VemP), a Vibrio secretory protein, in both E. coli and Vibrio alginolyticus. While ppiD disruption also impaired VemP translocation, we found that the yfgM and ppiD double deletion exhibited no additive or synergistic effects. Together, these results strongly suggest that both PpiD and YfgM are required for efficient VemP translocation. Furthermore, our site-directed in vivo photocrosslinking analysis revealed that the tetratricopeptide repeat domain of YfgM and a conserved structural domain (NC domain) in PpiD interact with each other and that YfgM, like PpiD, directly interacts with the SecG translocon subunit. Crosslinking analysis also suggested that PpiD-YfgM complex formation is required for these proteins to interact with SecG. In summary, we propose that PpiD and YfgM form a functional unit that stimulates protein translocation by facilitating their proper interactions with the Sec translocon.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Canais de Translocação SEC/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Transporte Proteico , Periplasma/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Peptidilprolil Isomerase/química
8.
Nature ; 608(7923): 626-631, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35896743

RESUMO

Emissions of the critical ozone-depleting and greenhouse gas nitrous oxide (N2O) from soils and industrial processes have increased considerably over the last decades1-3. As the final step of bacterial denitrification, N2O is reduced to chemically inert N2 (refs. 1,4) in a reaction that is catalysed by the copper-dependent nitrous oxide reductase (N2OR) (ref. 5). The assembly of its unique [4Cu:2S] active site cluster CuZ requires both the ATP-binding-cassette (ABC) complex NosDFY and the membrane-anchored copper chaperone NosL (refs. 4,6). Here we report cryo-electron microscopy structures of Pseudomonas stutzeri NosDFY and its complexes with NosL and N2OR, respectively. We find that the periplasmic NosD protein contains a binding site for a Cu+ ion and interacts specifically with NosL in its nucleotide-free state, whereas its binding to N2OR requires a conformational change that is triggered by ATP binding. Mutually exclusive structures of NosDFY in complex with NosL and with N2OR reveal a sequential metal-trafficking and assembly pathway for a highly complex copper site. Within this pathway, NosDFY acts as a mechanical energy transducer rather than as a transporter. It links ATP hydrolysis in the cytoplasm to a conformational transition of the NosD subunit in the periplasm, which is required for NosDFY to switch its interaction partner so that copper ions are handed over from the chaperone NosL to the enzyme N2OR.


Assuntos
Proteínas de Bactérias , Microscopia Crioeletrônica , Óxido Nitroso , Oxirredutases , Pseudomonas stutzeri , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura , Sítios de Ligação , Cobre/química , Cobre/metabolismo , Citoplasma/enzimologia , Chaperonas Moleculares/metabolismo , Óxido Nitroso/metabolismo , Oxirredutases/química , Oxirredutases/metabolismo , Oxirredutases/ultraestrutura , Periplasma/enzimologia , Ligação Proteica , Conformação Proteica , Pseudomonas stutzeri/citologia , Pseudomonas stutzeri/enzimologia
9.
Biomol NMR Assign ; 16(2): 231-236, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35482172

RESUMO

The ability to interact and adapt to the surrounding environment is vital for bacteria that colonise various niches and organisms. One strategy developed by Gram-negative bacteria is to secrete exoprotein substrates via the type II secretion system (T2SS). The T2SS is a proteinaceous complex spanning the bacterial envelope that translocates folded proteins such as toxins and enzymes from the periplasm to the extracellular milieu. In the T2SS, a cytoplasmic ATPase elongates in the periplasm the pseudopilus, a non-covalent polymer composed of protein subunits named pseudopilins, and anchored in the inner membrane by a transmembrane helix. The pseudopilus polymerisation is coupled to the secretion of substrates. The T2SS of Dickeya dadantii secretes more than 15 substrates, essentially plant cell wall degrading enzymes. In D. dadantii, the major pseudopilin or the major subunit of the pseudopilus is called OutG. To better understand the mechanism of secretion of these numerous substrates via the pseudopilus, we have been studying the structure of OutG by NMR. Here, as the first part of this study, we report the 1H, 15N and 13C backbone and sidechain chemical shift assignment of the periplasmic domain of OutG and its NMR derived secondary structure.


Assuntos
Sistemas de Secreção Tipo II , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/química , Dickeya , Ressonância Magnética Nuclear Biomolecular , Periplasma/metabolismo , Polímeros/análise , Polímeros/metabolismo , Ligação Proteica , Subunidades Proteicas/metabolismo , Sistemas de Secreção Tipo II/química
10.
Mol Biol Rep ; 49(2): 859-873, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35059972

RESUMO

BACKGROUND: Due to the association of hypermutated colorectal cancer (CRC) with many neo-antigens, poly-neo-epitopes are attractive vaccines. The molecular features of murine CT26 are similar to those of aggressive human CRC. CT26 contains some antigenic mutations, which can provide specific immunotherapy targets. Herein, we aimed to express, and purify the previously designed hexatope containing CT26 neoepitopes, CT26-poly-neoepitopes. METHODS AND RESULTS: In the current study, expression of the CT26-poly-neoepitopes was optimized in three different Escherichia coli strains including BL21 (DE3), Origami (DE3), and SHuffle®. Furthermore, the effect of ethanol on the CT26-poly-neoepitopes expression was investigated. The highest amount of CT26-poly-neoepitopes, which included CT26-poly-neoepitopes with the uncleaved pelB signal sequence and the processed one, was achieved when BL21 containing pET-22 (CT26-poly-neoepitopes) was induced with 0.1 mM IPTG for 48 h at 22 ºC in the presence of 2% ethanol. However, 37 ºC was the optimized induction temperature for expression of the CT26-poly-neoepitopes in the absence of ethanol. To purify the CT26-poly-neoepitopes, Ni-NTA affinity chromatography under denaturing and hybrid conditions were applied. High and satisfactory CT26-poly-neoepitopes purity was achieved by the combined urea and imidazole method. CONCLUSION: The effect of ethanol on expression of the CT26-poly-neoepitopes was temperature-dependent. Furthermore, the pelB-mediated translocation of the CT26-poly-neoepitopes into the periplasm was inefficient. Moreover, higher concentration of imidazole in the washing buffer improved the CT26-poly-neoepitopes purification under hybrid condition. Overall, the immunogenicity of CT26-poly-neoepitopes expressed in BL21 under the optimum condition and purified under hybrid condition can be studied in our future in vivo study.


Assuntos
Engenharia de Proteínas/métodos , Proteínas/isolamento & purificação , Vacinas/biossíntese , Epitopos/genética , Escherichia coli , Humanos , Imunoterapia , Periplasma , Sinais Direcionadores de Proteínas
11.
Protein Expr Purif ; 193: 106047, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35026386

RESUMO

Suppressor of copper sensitivity (Scs) proteins play a role in the bacterial response to copper stress in many Gram-negative bacteria, including in the human pathogen Proteus mirabilis. Recently, the ScsC protein from P. mirabilis (PmScsC) was characterized as a trimeric protein with isomerase activity that contributes to the ability of the bacterium to swarm in the presence of copper. The CXXC motif catalytic cysteines of PmScsC are maintained in their active reduced state by the action of its membrane-bound partner protein, the Proteus mirabilis ScsB (PmScsB). Thus, PmScsC and PmScsB form a redox relay in vivo. The predicted domain arrangement of PmScsB comprises a central transmembrane ß-domain and two soluble, periplasmic domains, the N-terminal α-domain and C-terminal γ-domain. Here, we provide a procedure for the recombinant expression and purification of the full-length PmScsB protein. Using Lemo21 (DE3) cells we expressed PmScsB and, after extraction and purification, we were able to achieve a yield of 3 mg of purified protein per 8 L of bacterial culture. Furthermore, using two orthogonal methods - AMS labelling of free thiols and a scrambled RNase A activity assay - PmScsB is shown to catalyze the reduction of PmScsC. Our results demonstrate that the PmScsC and PmScsB redox relay can be reconstituted in vitro using recombinant full-length PmScsB membrane protein. This finding provides a promising starting point for the in vitro biochemical and structural characterization of the P. mirabilis ScsC and ScsB interaction.


Assuntos
Cobre , Proteus mirabilis , Proteínas de Bactérias/química , Cobre/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Periplasma/metabolismo , Proteus mirabilis/química , Proteus mirabilis/genética , Proteus mirabilis/metabolismo
12.
J Biol Chem ; 298(2): 101560, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34990713

RESUMO

Pseudomonas aeruginosa is an opportunistic human pathogen and a leading cause of chronic infection in the lungs of individuals with cystic fibrosis. After colonization, P. aeruginosa often undergoes a phenotypic conversion to mucoidy, characterized by overproduction of the alginate exopolysaccharide. This conversion is correlated with poorer patient prognoses. The majority of genes required for alginate synthesis, including the alginate lyase, algL, are located in a single operon. Previous investigations of AlgL have resulted in several divergent hypotheses regarding the protein's role in alginate production. To address these discrepancies, we determined the structure of AlgL and, using multiple sequence alignments, identified key active site residues involved in alginate binding and catalysis. In vitro enzymatic analysis of active site mutants highlights R249 and Y256 as key residues required for alginate lyase activity. In a genetically engineered P. aeruginosa strain where alginate biosynthesis is under arabinose control, we found that AlgL is required for cell viability and maintaining membrane integrity during alginate production. We demonstrate that AlgL functions as a homeostasis enzyme to clear the periplasmic space of accumulated polymer. Constitutive expression of the AlgU/T sigma factor mitigates the effects of an algL deletion during alginate production, suggesting that an AlgU/T-regulated protein or proteins can compensate for an algL deletion. Together, our study demonstrates the role of AlgL in alginate biosynthesis, explains the discrepancies observed previously across other P. aeruginosa ΔalgL genetic backgrounds, and clarifies the existing divergent data regarding the function of AlgL as an alginate degrading enzyme.


Assuntos
Alginatos , Periplasma , Polissacarídeo-Liases , Pseudomonas aeruginosa , Alginatos/química , Alginatos/metabolismo , Proteínas de Bactérias/metabolismo , Ácido Glucurônico/química , Ácido Glucurônico/genética , Ácidos Hexurônicos/química , Homeostase , Humanos , Periplasma/enzimologia , Periplasma/metabolismo , Polímeros/metabolismo , Polissacarídeo-Liases/metabolismo , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/metabolismo
13.
Microbiol Spectr ; 9(3): e0074321, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34908461

RESUMO

Although glutathione (GSH) has been shown to influence the antimicrobial effects of many kinds of antibiotics, little is known about its role in relation to trimethoprim (TMP), a widely used antifolate. In this study, several genes related to glutathione metabolism were deleted in different Escherichia coli strains (i.e., O157:H7 and ATCC 25922), and their effects on susceptibility to TMP were tested. The results showed that deleting gshA, gshB, grxA, and cydD caused TMP resistance, and deleting cydD also caused resistance to other drugs. Meanwhile, deleting gshA, grxA, and cydD resulted in a significant decrease of the periplasmic glutathione content. Supplementing exogenous GSH or further deleting glutathione importer genes (gsiB and ggt) restored TMP sensitivity to ΔcydD. Subsequently, the results of quantitative-reverse transcription PCR experiments showed that expression levels of acrA, acrB, and tolC were significantly upregulated in both ΔgrxA and ΔcydD. Correspondingly, deleting cydD led to a decreased accumulation of TMP within bacterial cells, and further deleting acrA, acrB, or tolC restored TMP sensitivity to ΔcydD. Inactivation of CpxR and SoxS, two transcriptional factors that modulate the transcription of acrAB-tolC, restored TMP sensitivity to ΔcydD. Furthermore, mutations of gshA, gshB, grxA, cydC, and cydD are highly prevalent in E. coli clinical strains. Collectively, these data suggest that reducing the periplasmic glutathione content of E. coli leads to increased expression of acrAB-tolC with the involvement of CpxR and SoxS, ultimately causing drug resistance. To the best of our knowledge, this is the first report showing a linkage between periplasmic GSH and drug resistance in bacteria. IMPORTANCE After being used extensively for decades, trimethoprim still remains one of the key accessible antimicrobials recommended by the World Health Organization. A better understanding of the mechanisms of resistance would be beneficial for the future utilization of this drug. It has been shown that the AcrAB-TolC efflux pump is associated with trimethoprim resistance in E. coli clinical strains. In this study, we show that E. coli can sense the periplasmic glutathione content with the involvement of the CpxAR two-component system. As a result, reducing the periplasmic glutathione content leads to increased expression of acrA, acrB, and tolC via CpxR and SoxS, causing resistance to antimicrobials, including trimethoprim. Meanwhile, mutations in the genes responsible for periplasmic glutathione content maintenance are highly prevalent in E. coli clinical isolates, indicating a potential correlation of the periplasmic glutathione content and clinical antimicrobial resistance, which merits further investigation.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Glutationa/metabolismo , Periplasma/química , Trimetoprima/farmacologia , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/genética , Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Ácido Fólico/metabolismo , Antagonistas do Ácido Fólico/farmacologia , Deleção de Genes , Genoma Bacteriano/genética , Humanos
14.
Int J Mol Sci ; 22(24)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34948248

RESUMO

The bacterial proteins of the Dsb family catalyze the formation of disulfide bridges between cysteine residues that stabilize protein structures and ensure their proper functioning. Here, we report the detailed analysis of the Dsb pathway of Campylobacter jejuni. The oxidizing Dsb system of this pathogen is unique because it consists of two monomeric DsbAs (DsbA1 and DsbA2) and one dimeric bifunctional protein (C8J_1298). Previously, we showed that DsbA1 and C8J_1298 are redundant. Here, we unraveled the interaction between the two monomeric DsbAs by in vitro and in vivo experiments and by solving their structures and found that both monomeric DsbAs are dispensable proteins. Their structures confirmed that they are homologs of EcDsbL. The slight differences seen in the surface charge of the proteins do not affect the interaction with their redox partner. Comparative proteomics showed that several respiratory proteins, as well as periplasmic transport proteins, are targets of the Dsb system. Some of these, both donors and electron acceptors, are essential elements of the C. jejuni respiratory process under oxygen-limiting conditions in the host intestine. The data presented provide detailed information on the function of the C. jejuni Dsb system, identifying it as a potential target for novel antibacterial molecules.


Assuntos
Oxirredutases/metabolismo , Proteínas Periplásmicas/metabolismo , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Sequência de Aminoácidos , Fenômenos Fisiológicos Bacterianos , Proteínas de Bactérias/metabolismo , Campylobacter jejuni/patogenicidade , Campylobacter jejuni/fisiologia , Dissulfetos/metabolismo , Oxirredução , Oxirredutases/genética , Periplasma/metabolismo , Proteínas Periplásmicas/genética , Homologia de Sequência de Aminoácidos
15.
Sci Rep ; 11(1): 23026, 2021 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-34845270

RESUMO

Molecular imaging using singlechain variable fragments (scFv) of antibodies targeting cancer specific antigens have been considered a non-immunogenic approach for early diagnosis in the clinic. Usually, production of proteins is performed within Escherichia coli. Recombinant proteins are either expressed in E. coli cytoplasm as insoluble inclusion bodies, that often need cumbersome denaturation and refolding processes, or secreted toward the periplasm as soluble proteins that highly reduce the overall yield. However, production of active scFvs in their native form, without any heterologous fusion, is required for clinical applications. In this study, we expressed an anti-thymocyte differentiation antigen-scFv (Thy1-scFv) as a fusion protein with a N-terminal sequence including 3 × hexa-histidines, as purification tags, together with a Trx-tag and a S-tag for enhanced-solubility. Our strategy allowed to recover ~ 35% of Thy1-scFv in the soluble cytoplasmic fraction. An enterokinase cleavage site in between Thy1-scFv and the upstream tags was used to regenerate the protein with 97.7 ± 2.3% purity without any tags. Thy1-scFv showed functionality towards its target on flow cytometry assays. Finally, in vivo molecular imaging using Thy1-scFv conjugated to an ultrasound contrast agent (MBThy1-scFv) demonstrated signal enhancement on a transgenic pancreatic ductal adenocarcinoma (PDAC) mouse model (3.1 ± 1.2 a.u.) compared to non-targeted control (0.4 ± 0.4 a.u.) suggesting potential for PDAC early diagnosis. Overall, our strategy facilitates the expression and purification of Thy1-scFv while introducing its ability for diagnostic molecular imaging of pancreatic cancer. The presented methodology could be expanded to other important eukaryotic proteins for various applications, including but not limited to molecular imaging.


Assuntos
Imagem Molecular/instrumentação , Anticorpos de Cadeia Única/imunologia , Animais , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/terapia , Cromatografia de Afinidade , Meios de Contraste/química , Citoplasma/metabolismo , Modelos Animais de Doenças , Endotélio Vascular/metabolismo , Escherichia coli/metabolismo , Citometria de Fluxo , Vetores Genéticos , Histidina/química , Humanos , Corpos de Inclusão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Imagem Molecular/métodos , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/terapia , Periplasma/metabolismo , Proteínas Recombinantes/química , Timócitos/citologia , Pesquisa Translacional Biomédica
16.
Metallomics ; 13(12)2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34791351

RESUMO

The importance of copper resistance pathways in pathogenic bacteria is now well recognized, since macrophages use copper to fight bacterial infections. Additionally, considering the increase of antibiotic resistance, growing attention is given to the antimicrobial properties of copper. It is of primary importance to understand how bacteria deal with copper. The Cu-resistant cuproprotein CopI is present in many human bacterial pathogens and environmental bacteria and crucial under microaerobiosis (conditions for most pathogens to thrive within their host). Hence, understanding its mechanism of function is essential. CopI proteins share conserved histidine, cysteine, and methionine residues that could be ligands for different copper binding sites, among which the cupredoxin center could be involved in the protein function. Here, we demonstrated that Vibrio cholerae and Pseudomonas aeruginosa CopI restore the Cu-resistant phenotype in the Rubrivivax gelatinosus ΔcopI mutant. We identified that Cys125 (ligand in the cupredoxin center) and conserved histidines and methionines are essential for R. gelatinosus CopI (RgCopI) function. We also performed spectroscopic analyses of the purified RgCopI protein and showed that it is a green cupredoxin able to bind a maximum of three Cu(II) ions: (i) a green Cu site (CuT1.5), (ii) a type 2 Cu binding site (T2) located in the N-terminal region, and (iii) a third site with a yet unidentified location. CopI is therefore one member of the poorly described CuT1.5 center cupredoxin family. It is unique, since it is a single-domain cupredoxin with more than one Cu site involved in Cu resistance.


Assuntos
Azurina/metabolismo , Cobre/toxicidade , Periplasma/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Vibrio cholerae/efeitos dos fármacos , Pseudomonas aeruginosa/metabolismo , Vibrio cholerae/metabolismo
17.
Nat Commun ; 12(1): 5959, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645844

RESUMO

The directed evolution of antibodies has yielded important research tools and human therapeutics. The dependence of many antibodies on disulfide bonds for stability has limited the application of continuous evolution technologies to antibodies and other disulfide-containing proteins. Here we describe periplasmic phage-assisted continuous evolution (pPACE), a system for continuous evolution of protein-protein interactions in the disulfide-compatible environment of the E. coli periplasm. We first apply pPACE to rapidly evolve novel noncovalent and covalent interactions between subunits of homodimeric YibK protein and to correct a binding-defective mutant of the anti-GCN4 Ω-graft antibody. We develop an intein-mediated system to select for soluble periplasmic expression in pPACE, leading to an eight-fold increase in soluble expression of the Ω-graft antibody. Finally, we evolve disulfide-containing trastuzumab antibody variants with improved binding to a Her2-like peptide and improved soluble expression. Together, these results demonstrate that pPACE can rapidly optimize proteins containing disulfide bonds, broadening the applicability of continuous evolution.


Assuntos
Evolução Molecular Direcionada/métodos , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Metiltransferases/genética , Periplasma/genética , Isomerases de Dissulfetos de Proteínas/genética , Trastuzumab/genética , Sítios de Ligação , Clonagem Molecular , Colífagos/genética , Colífagos/metabolismo , Dissulfetos/química , Dissulfetos/metabolismo , Escherichia coli/metabolismo , Escherichia coli/virologia , Proteínas de Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Inteínas/genética , Metiltransferases/metabolismo , Modelos Moleculares , Periplasma/metabolismo , Periplasma/virologia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Isomerases de Dissulfetos de Proteínas/metabolismo , Domínios e Motivos de Interação entre Proteínas , Processamento de Proteína , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Trastuzumab/química , Trastuzumab/metabolismo
18.
mBio ; 12(5): e0178721, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34544275

RESUMO

Colicins are protein antibiotics deployed by Escherichia coli to eliminate competing strains. Colicins frequently exploit outer membrane (OM) nutrient transporters to penetrate the selectively permeable bacterial cell envelope. Here, by applying live-cell fluorescence imaging, we were able to monitor the entry of the pore-forming toxin colicin B (ColB) into E. coli and localize it within the periplasm. We further demonstrate that single-stranded DNA coupled to ColB can also be transported to the periplasm, emphasizing that the import routes of colicins can be exploited to carry large cargo molecules into bacteria. Moreover, we characterize the molecular mechanism of ColB association with its OM receptor FepA by applying a combination of photoactivated cross-linking, mass spectrometry, and structural modeling. We demonstrate that complex formation is coincident with large-scale conformational changes in the colicin. Thereafter, active transport of ColB through FepA involves the colicin taking the place of the N-terminal half of the plug domain that normally occludes this iron transporter. IMPORTANCE Decades of excessive use of readily available antibiotics has generated a global problem of antibiotic resistance and, hence, an urgent need for novel antibiotic solutions. Bacteriocins are protein-based antibiotics produced by bacteria to eliminate closely related competing bacterial strains. Bacteriocin toxins have evolved to bypass the complex cell envelope in order to kill bacterial cells. Here, we uncover the cellular penetration mechanism of a well-known but poorly understood bacteriocin called colicin B that is active against Escherichia coli. Moreover, we demonstrate that the colicin B-import pathway can be exploited to deliver conjugated DNA cargo into bacterial cells. Our work leads to a better understanding of the way bacteriocins, as potential alternative antibiotics, execute their mode of action as well as highlighting how they might even be exploited in the genomic manipulation of Gram-negative bacteria.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Transporte Biológico/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Colicinas/farmacologia , DNA/metabolismo , Ferro/metabolismo , Receptores de Superfície Celular/metabolismo , Antibacterianos/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Bacteriocinas/genética , Proteínas de Transporte/genética , Membrana Celular/metabolismo , Colicinas/química , Colicinas/genética , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Modelos Moleculares , Periplasma/metabolismo , Proteínas Periplásmicas/metabolismo , Conformação Proteica , Transporte Proteico , Receptores de Superfície Celular/genética
19.
Nat Commun ; 12(1): 4687, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34344901

RESUMO

Lipoproteins are important for bacterial growth and antibiotic resistance. These proteins use lipid acyl chains attached to the N-terminal cysteine residue to anchor on the outer surface of cytoplasmic membrane. In Gram-negative bacteria, many lipoproteins are transported to the outer membrane (OM), a process dependent on the ATP-binding cassette (ABC) transporter LolCDE which extracts the OM-targeted lipoproteins from the cytoplasmic membrane. Lipid-anchored proteins pose a unique challenge for transport machinery as they have both hydrophobic lipid moieties and soluble protein component, and the underlying mechanism is poorly understood. Here we determined the cryo-EM structures of nanodisc-embedded LolCDE in the nucleotide-free and nucleotide-bound states at 3.8-Å and 3.5-Å resolution, respectively. The structural analyses, together with biochemical and mutagenesis studies, uncover how LolCDE recognizes its substrate by interacting with the lipid and N-terminal peptide moieties of the lipoprotein, and identify the amide-linked acyl chain as the key element for LolCDE interaction. Upon nucleotide binding, the transmembrane helices and the periplasmic domains of LolCDE undergo large-scale, asymmetric movements, resulting in extrusion of the captured lipoprotein. Comparison of LolCDE and MacB reveals the conserved mechanism of type VII ABC transporters and emphasizes the unique properties of LolCDE as a molecule extruder of triacylated lipoproteins.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Lipoproteínas/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Acilação , Trifosfato de Adenosina/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Sítios de Ligação , Membrana Celular/metabolismo , Microscopia Crioeletrônica , Escherichia coli/genética , Escherichia coli/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Mutação , Periplasma/metabolismo , Conformação Proteica , Transporte Proteico
20.
Proteins ; 89(11): 1473-1488, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34196044

RESUMO

In Gram-negative bacteria, the maintenance of lipid asymmetry (Mla) system is involved in the transport of phospholipids between the inner (IM) and outer membrane. The Mla system utilizes a unique IM-associated periplasmic solute-binding protein, MlaD, which possesses a conserved domain, MlaD domain. While proteins carrying the MlaD domain are known to be primarily involved in the trafficking of hydrophobic molecules, not much is known about this domain itself. Thus, in this study, the characterization of the MlaD domain employing bioinformatics analysis is reported. The profiling of the MlaD domain of different architectures reveals the abundance of glycine and hydrophobic residues and the lack of cysteine residues. The domain possesses a conserved N-terminal region and a well-preserved glycine residue that constitutes a consensus motif across different architectures. Phylogenetic analysis shows that the MlaD domain archetypes are evolutionarily closer and marked by the conservation of a functionally crucial pore loop located at the C-terminal region. The study also establishes the critical role of the domain-associated permeases and the driving forces governing the transport of hydrophobic molecules. This sheds sufficient light on the structure-function-evolutionary relationship of MlaD domain. The hexameric interface analysis reveals that the MlaD domain itself is not a sole player in the oligomerization of the proteins. Further, an operonic and interactome map analysis reveals that the Mla and the Mce systems are dependent on the structural homologs of the nuclear transport factor 2 superfamily.


Assuntos
Arabidopsis/metabolismo , Membrana Celular/metabolismo , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Membrana/química , Mycobacterium tuberculosis/metabolismo , Periplasma/metabolismo , Motivos de Aminoácidos , Arabidopsis/classificação , Arabidopsis/genética , Sítios de Ligação , Transporte Biológico , Membrana Celular/genética , Biologia Computacional/métodos , Sequência Conservada , Escherichia coli/classificação , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expressão Gênica , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Moleculares , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/genética , Periplasma/genética , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Filogenia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA