Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nature ; 629(8014): 1082-1090, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38750354

RESUMO

Cell types with specialized functions fundamentally regulate animal behaviour, and yet the genetic mechanisms that underlie the emergence of novel cell types and their consequences for behaviour are not well understood1. Here we show that the monogamous oldfield mouse (Peromyscus polionotus) has recently evolved a novel cell type in the adrenal gland that expresses the enzyme AKR1C18, which converts progesterone into 20α-hydroxyprogesterone. We then demonstrate that 20α-hydroxyprogesterone is more abundant in oldfield mice, where it induces monogamous-typical parental behaviours, than in the closely related promiscuous deer mice (Peromyscus maniculatus). Using quantitative trait locus mapping in a cross between these species, we ultimately find interspecific genetic variation that drives expression of the nuclear protein GADD45A and the glycoprotein tenascin N, which contribute to the emergence and function of this cell type in oldfield mice. Our results provide an example by which the recent evolution of a new cell type in a gland outside the brain contributes to the evolution of social behaviour.


Assuntos
Glândulas Suprarrenais , Evolução Biológica , Comportamento Paterno , Peromyscus , Animais , Feminino , Masculino , 20-alfa-Di-Hidroprogesterona/metabolismo , Glândulas Suprarrenais/citologia , Glândulas Suprarrenais/enzimologia , Glândulas Suprarrenais/metabolismo , Estradiol Desidrogenases/genética , Estradiol Desidrogenases/metabolismo , Proteínas GADD45/genética , Variação Genética , Hibridização Genética , Peromyscus/classificação , Peromyscus/genética , Peromyscus/fisiologia , Progesterona/metabolismo , Locos de Características Quantitativas , Comportamento Social , Tenascina/genética
2.
J Exp Biol ; 226(5)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36808489

RESUMO

Climate warming could challenge the ability of endotherms to thermoregulate and maintain normal body temperature (Tb), but the effects of warming summer temperatures on activity and thermoregulatory physiology in many small mammals remain poorly understood. We examined this issue in deer mice (Peromyscus maniculatus), an active nocturnal species. Mice were exposed in the lab to simulated seasonal warming, in which an environmentally realistic diel cycle of ambient temperature (Ta) was gradually warmed from spring conditions to summer conditions (controls were maintained in spring conditions). Activity (voluntary wheel running) and Tb (implanted bio-loggers) were measured throughout, and indices of thermoregulatory physiology (thermoneutral zone, thermogenic capacity) were assessed after exposure. In control mice, activity was almost entirely restricted to the night-time, and Tb fluctuated ∼1.7°C between daytime lows and night-time highs. Activity, body mass and food consumption were reduced and water consumption was increased in later stages of summer warming. This was accompanied by strong Tb dysregulation that culminated in a complete reversal of the diel pattern of Tb variation, with Tb reaching extreme highs (∼40°C) during daytime heat but extreme lows (∼34°C) at cooler night-time temperatures. Summer warming was also associated with reduced ability to generate body heat, as reflected by decreased thermogenic capacity and decreased mass and uncoupling protein (UCP1) content of brown adipose tissue. Our findings suggest that thermoregulatory trade-offs associated with daytime heat exposure can affect Tb and activity at cooler night-time temperatures, impacting the ability of nocturnal mammals to perform behaviours important for fitness in the wild.


Assuntos
Atividade Motora , Peromyscus , Animais , Temperatura , Estações do Ano , Peromyscus/fisiologia , Regulação da Temperatura Corporal/fisiologia
3.
J Exp Zool A Ecol Integr Physiol ; 339(1): 13-27, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36289026

RESUMO

Mammals display diverse reproductive strategies, however, the ultimate and proximate mechanisms that underlie this diversity and its composite traits remain poorly understood from both evolutionary and physiological perspectives. The Peromyscus genus of rodents, which is found throughout the north and central Americas, has diversified along life history gradients, varying both within and among species in reproductive strategies. This variation provides a useful model for studying reproductive diversity. Here, we combine a literature review with new analyses of captive colony breeding records from six Peromyscus species to assess our current understanding of how plasticity and local adaptation contribute to diversity in two classes of reproductive traits: phenology and litter investment. There is substantial evidence that many traits underlying phenology and litter investment have diverged among populations in ways that are likely to be locally adaptive, though plasticity in these traits remains common. However, these conclusions are largely based on data collected from the two most widespread Peromyscus species: P. maniculatus and P. leucopus. The majority of Peromyscus species diversity remains understudied regarding reproductive phenology and litter traits. We conclude by discussing key challenges and considerations relevant to using Peromyscus as a mammalian model for reproductive trait diversity and evolution moving forward.


Assuntos
Peromyscus , Reprodução , Animais , Peromyscus/fisiologia , Reprodução/fisiologia , Adaptação Fisiológica
4.
Physiol Behav ; 209: 112615, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31299371

RESUMO

Folic acid and other dietary methyl donors are widely supplemented due to their ability to prevent neural tube defects. Dietary methyl donors are also added to other consumables such as energy drinks due to energy-promoting attributes and other perceived benefits. However, there is mounting evidence that indicates developmental exposure to high levels of dietary methyl donors may have deleterious effects. We assessed whether behavior was affected in the social North American rodent species Peromyscus polionotus exposed to a diet enriched with folic acid, Vitamin B12, choline, and betaine/trimethylglycine(TMG). P. polionotus (PO) animals are very social and exhibit little repetitive behavior, particularly compared to their sister species, P. maniculatus. We assayed the effects of dietary methyl-donor supplementation on anxiety-like repetitive and social behaviors by testing young adult animals for novel cage behavior and in social interaction tests. Animals of both sexes exposed to the diet had increased repetitive behaviors and reduced social interactions. Males exposed to the diet became more aggressive compared to their control counterparts. Since methyl-diet animals were larger than control animals, DEXA scans and hormone analyses were performed. Animals exposed to the diet had increased body fat percentages and experienced hormonal changes typically associated with excess fat storage and anxiety-like behavior changes. Therefore, these data suggest the wide use of these dietary supplements makes further investigation imperative.


Assuntos
Comportamento Animal , Dieta , Peromyscus/fisiologia , Absorciometria de Fóton , Animais , Ansiedade/psicologia , Betaína/antagonistas & inibidores , Colina/efeitos adversos , Metilação de DNA , Feminino , Ácido Fólico/efeitos adversos , Hormônio Liberador de Gonadotropina/metabolismo , Masculino , Comportamento Social , Vitamina B 12/efeitos adversos
5.
Behav Processes ; 166: 103889, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31226336

RESUMO

Placentophagia increases parental motivation in sexually inexperienced adult female rodents. We hypothesized that placenta ingestion has similar effects in virgin male California mice (Peromyscus californicus), a monogamous rodent in which fathers provide extensive care for their offspring. To test this hypothesis, we administered either a conspecific's placenta in oil or oil alone to adult virgin males via oral gavage. One, 7 or 24 hours later, each male underwent a 1-hour behavior test with either an unfamiliar pup or a novel object marble), immediately after which the mouse was perfused and the brain collected. Neural activation (Fos-immunoreactivity) was quantified in brain regions involved in parental care (bed nucleus of the stria terminalis, medial preoptic area, amygdala). We found few significant effects of placenta treatment, but at 7 h post-gavage, placenta-treated males had decreased latencies to approach both pups and marbles, compared to oil-treated controls (p = 0.05). Placenta-treated males also showed lower Fos-immunoreactivity in the dorsal bed nucleus of the stria terminalis, irrespective of stimulus type, compared to controls, both 1 h (p = 0.04) and 7 h (p = 0.05) post-treatment. These results suggest that placentophagia does not directly affect paternal motivation but might increase willingness to interact with novel stimuli in virgin male California mice.


Assuntos
Comportamento Animal/fisiologia , Ingestão de Alimentos/fisiologia , Motivação/fisiologia , Comportamento Paterno/fisiologia , Peromyscus/fisiologia , Placenta , Animais , Encéfalo/metabolismo , Feminino , Masculino , Camundongos , Neurônios/metabolismo , Gravidez , Proteínas Proto-Oncogênicas c-fos/metabolismo
6.
Environ Monit Assess ; 190(2): 104, 2018 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-29380143

RESUMO

Biomarker responses and histopathological lesions have been documented in laboratory mammals exposed to elevated concentrations of lead and cadmium. The exposure of white-footed mice (Peromyscus leucopus) to these metals and the potential associated toxic effects were examined at three contaminated sites in the Southeast Missouri Lead Mining District and at a reference site in MO, USA. Mice from the contaminated sites showed evidence of oxidative stress and reduced activity of red blood cell δ-aminolevulinic acid dehydratase (ALAD). Histological examinations of the liver and kidney, cytologic examination of blood smears, and biomarkers of lipid peroxidation and DNA damage failed to show indications of toxic effects from lead. The biomagnification factor of cadmium (hepatic concentration/soil concentration) at a site with a strongly acid soil was 44 times the average of the biomagnification factors at two sites with slightly alkaline soils. The elevated concentrations of cadmium in the mice did not cause observable toxicity, but were associated with about a 50% decrease in expected tissue lead concentrations and greater ALAD activity compared to the activity at the reference site. Lead was associated with a decrease in concentrations of hepatic glutathione and thiols, whereas cadmium was associated with an increase. In addition, to support risk assessment efforts, we developed linear regression models relating both tissue lead dosages (based on a previously published a laboratory study) and tissue lead concentrations in Peromyscus to soil lead concentrations.


Assuntos
Cádmio/metabolismo , Monitoramento Ambiental , Chumbo/metabolismo , Peromyscus/fisiologia , Animais , Biomarcadores/metabolismo , Cádmio/análise , Cádmio/toxicidade , Chumbo/análise , Chumbo/toxicidade , Fígado/química , Camundongos , Mineração , Missouri , Sintase do Porfobilinogênio
7.
Dis Model Mech ; 11(1)2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29343615

RESUMO

Modeling breast cancer in general and hormone-sensitive breast cancer, in particular in mice, has several limitations. These are related to the inbred nature of laboratory mice, and do not allow adequate appreciation of the contribution of the host's genetic heterogeneity in tumor growth. In addition, the naturally low estrogen levels of mice makes estradiol supplementation obligatory for tumor growth. Here, we show that Peromyscus californicus, following cyclosporine-mediated immunosuppression, supports the growth of both MDA-MB-231 estrogen-independent and MCF7 estrogen receptor-positive breast cancers without exogenous estradiol supplementation. Tumor growth was inhibited by fulvestrant or letrozole, confirming that MCF7 xenografts remain hormone dependent in vivo and suggesting that P. californicus can be used as an alternative to conventional mice for the study of hormone-sensitive breast cancer. The fact that Peromyscus stocks are outbred also facilitates the study of breast cancer in genetically heterogenous populations.


Assuntos
Neoplasias da Mama/patologia , Peromyscus/fisiologia , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Horm Behav ; 96: 147-155, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28954216

RESUMO

In many biparental species, mothers and fathers experience similar modifications to circulating hormones. With these modifications come alterations in neural structure and function suggesting that neuroendocrine mechanisms may underlie postpartum plasticity in both males and females. In the biparental California mouse (Peromyscus californicus), adult neurogenesis is maintained and anxiety-like behavior is attenuated in fathers during the mid-postpartum period. Given a causal relationship between estrogen and regulation of both adult neurogenesis and anxiety, we aimed to elucidate the role of estrogen-dependent mechanisms in paternal experience-related modifications to hippocampal neuroplasticity in California mice. In Experiment 1, hippocampal estrogen receptor beta (ERß) mRNA expression, along with circulating estradiol concentrations, were determined throughout the postpartum period. An upregulation in ERß expression was observed in postnatal day 16 males compared to virgins. Additionally, a rise in circulating estradiol concentrations was detected on postnatal day 2 compared to virgins; levels began to decline toward virgin levels on postnatal day 16 and postnatal day 30. In Experiment 2, we determined the role of estrogen-dependent mechanisms in adult neurogenesis and anxiety-like behavior by treating virgin and paternal males with saline or the selective estrogen receptor modulator, tamoxifen (TMX), during the time of axon extension (i.e., one week after bromodeoxyuridine injection). While TMX failed to alter elevated plus maze performance, TMX treatment inhibited survival of adult born neurons but only in paternal mice. These findings highlight the potential for estrogen-dependent pathways to mediate hippocampal adult neurogenesis in paternal mice.


Assuntos
Estrogênios/farmacologia , Hipocampo/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Comportamento Paterno/efeitos dos fármacos , Animais , Ansiedade/fisiopatologia , Comportamento Animal/efeitos dos fármacos , Pai , Feminino , Hipocampo/fisiologia , Masculino , Camundongos , Neurogênese/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Comportamento Paterno/fisiologia , Peromyscus/fisiologia
9.
Semin Cell Dev Biol ; 61: 150-155, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27375227

RESUMO

Animals of the genus Peromyscus have been a particularly informative model for many areas of study, including behavior, evolution, anatomy, physiology and genetics. While their use in modeling human disease and pathology has been relatively restricted, certain qualities of Peromyscine mice may make them a good candidate for such studies. Pathophysiological conditions where Peromyscus may be of particular value involve aging, reactive oxygen species-associated pathologies, metabolism and detoxification, diabetes, and certain cancers. In this review article we will summarize pathological conditions where Peromyscus have been used effectively, we will discuss factors limiting the use of Peromyscus in studying pathology and we will indicate areas at which the use of this model may be of special value.


Assuntos
Modelos Animais de Doenças , Peromyscus/fisiologia , Adaptação Fisiológica , Envelhecimento/fisiologia , Animais , Carcinogênese/patologia , Humanos , Hipóxia/fisiopatologia
10.
Integr Comp Biol ; 55(2): 281-93, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25980562

RESUMO

Across invertebrates and vertebrates, steroids are potent signaling molecules that affect nearly every cell in the organism, including cells of the nervous system. Historically, researchers have focused on the genomic (or "nuclear-initiated") effects of steroids. However, all classes of steroids also have rapid non-genomic (or "membrane-initiated") effects, although there is far less basic knowledge of these non-genomic effects. In particular, steroids synthesized in the brain ("neurosteroids") have genomic and non-genomic effects on behavior. Here, we review evidence that estradiol has rapid effects on aggression, an important social behavior, and on intracellular signaling cascades in relevant regions of the brain. In particular, we focus on studies of song sparrows (Melospiza melodia) and Peromyscus mice, in which estradiol has rapid behavioral effects under short photoperiods only. Furthermore, in captive Peromyscus, estrogenic compounds (THF-diols) in corncob bedding profoundly alter the rapid effects of estradiol. Environmental factors in the laboratory, such as photoperiod, diet, and bedding, are critical variables to consider in experimental design. These studies are consistent with the hypothesis that locally-produced steroids are more likely than systemic steroids to act via non-genomic mechanisms. Furthermore, these studies illustrate the dynamic balance between genomic and non-genomic signaling for estradiol, which is likely to be relevant for other steroids, behaviors, and species.


Assuntos
Agressão , Aves/fisiologia , Encéfalo/fisiologia , Estradiol/metabolismo , Camundongos/fisiologia , Transdução de Sinais , Animais , Peromyscus/fisiologia , Aves Canoras/fisiologia
11.
J Neuroendocrinol ; 27(4): 245-52, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25659593

RESUMO

Fatherhood in biparental mammals is accompanied by distinct neuroendocrine changes in males, involving some of the same hormones involved in maternal care. In the monogamous, biparental California mouse (Peromyscus californicus), paternal care has been linked to changes in the central and/or peripheral availability of oestrogen, progesterone, vasopressin and oxytocin, although it is not known whether these endocrine fluctuations are associated with changes in receptor availability in the brain. Thus, we compared mRNA expression of oestrogen receptor (ER)α, progesterone receptor (PR), vasopressin receptor (V1a) and oxytocin receptor (OTR) in brain regions implicated in paternal care [i.e. medial preoptic area (MPOA)], fear [i.e. medial amygdala (MeA)] and anxiety [i.e. bed nucleus of the stria terminalis (BNST)] between first-time fathers (n = 8) and age-matched virgin males (n = 7). Males from both reproductive conditions behaved paternally towards unrelated pups, whereas fathers showed significantly shorter latencies to behave paternally and less time investigating pups. Furthermore, fathers showed significantly lower PR, OTR and V1a receptor mRNA expression in the BNST compared to virgins. Fathers also showed a marginally significant (P = 0.07) reduction in progesterone receptor mRNA expression in the MPOA, although fatherhood was not associated with any other changes in receptor mRNA in the MPOA or MeA. The results of the present study indicate that behavioural and endocrine changes associated with the onset of fatherhood, and/or with cohabitation with a (breeding) female, are accompanied by changes in mRNA expression of hormone and neuropeptide receptors in the brain.


Assuntos
Receptor alfa de Estrogênio/genética , Peromyscus/fisiologia , Receptores de Ocitocina/genética , Receptores de Progesterona/genética , Receptores de Vasopressinas/genética , Reprodução/fisiologia , Animais , Comportamento Animal , Receptor alfa de Estrogênio/metabolismo , Feminino , Masculino , Comportamento Paterno/fisiologia , Peromyscus/genética , RNA Mensageiro/metabolismo , Receptores de Ocitocina/metabolismo , Receptores de Progesterona/metabolismo , Receptores de Vasopressinas/metabolismo , Reprodução/genética , Caracteres Sexuais
12.
Physiol Behav ; 128: 86-91, 2014 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-24518867

RESUMO

Photoperiodic regulation of aggression has been well established in several vertebrate species, with rodents demonstrating increased aggression in short day photoperiods as compared to long day photoperiods. Previous work suggests that estrogens regulate aggression via rapid nongenomic pathways in short days and act more slowly in long days, most likely via genomic pathways. The current study therefore examines the role of melatonin in mediating aggression and estrogen-dependent gene transcription. In Experiment 1, male California mice were housed under long day photoperiods and were treated with either 0.3 µg/g of melatonin, 40 mg/kg of the melatonin receptor antagonist luzindole, or vehicle for 10 days. We found that melatonin administration significantly increased aggression as compared to mice receiving vehicle, but this phenotype was not completely ameliorated by luzindole. In Experiment 2, male California mice were injected with either 1mg/kg of the aromatase inhibitor letrozole or vehicle, and oxytocin receptor (OTR), estrogen receptor alpha (ERα), and c-fos gene expression was examined in the bed nucleus of the stria terminalis (BNST) and medial preoptic area (MPOA). In the BNST, but not MPOA, OTR mRNA was significantly downregulated following letrozole administration, indicating that OTR is an estrogen-dependent gene in the BNST. In contrast, ERα was not estrogen dependent in either brain region. In the MPOA, OTR mRNA was inhibited by melatonin, and luzindole suppressed this effect. C-fos and ERα did not differ between treatments in any brain region examined. These results suggest that it is unlikely that melatonin facilitates aggression via broad spectrum regulation of estrogen-dependent gene expression. Instead, melatonin may act via regulation of other transcription factors such as extracellular signal regulated kinase.


Assuntos
Agressão/efeitos dos fármacos , Melatonina/farmacologia , Receptores de Melatonina/antagonistas & inibidores , Agressão/fisiologia , Agressão/psicologia , Animais , Receptor alfa de Estrogênio/biossíntese , Estrogênios/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Letrozol , Masculino , Melatonina/fisiologia , Nitrilas/farmacologia , Peromyscus/metabolismo , Peromyscus/fisiologia , Peromyscus/psicologia , Proteínas Proto-Oncogênicas c-fos/biossíntese , Receptores de Melatonina/fisiologia , Receptores de Ocitocina/biossíntese , Triazóis/farmacologia , Triptaminas/farmacologia
13.
PLoS One ; 8(2): e55698, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23405200

RESUMO

Bisphenol A (BPA), a pervasive, endocrine disrupting compound (EDC), acts as a mixed agonist-antagonist with respect to estrogens and other steroid hormones. We hypothesized that sexually selected traits would be particularly sensitive to EDC. Consistent with this concept, developmental exposure of males from the polygynous deer mouse, Peromyscus maniculatus, to BPA resulted in compromised spatial navigational ability and exploratory behaviors, while there was little effect on females. Here, we have examined a related, monogamous species, the California mouse (Peromyscus californicus), where we predicted that males would be less sensitive to BPA in terms of navigational and exploratory behaviors, while displaying other traits related to interactions with females and territorial marking that might be vulnerable to disruption. As in the deer mouse experiments, females were fed either a phytoestrogen-free CTL diet through pregnancy and lactation or the same diet supplemented with BPA (50 mg/kg feed weight) or ethinyl estradiol (EE) (0.1 part per billion) to provide a "pure" estrogen control. After weaning, pups were maintained on CTL diet until they had reached sexual maturity, at which time behaviors were evaluated. In addition, territorial marking was assessed in BPA-exposed males housed alone and when a control male was visible in the testing arena. In contrast to deer mice, BPA and EE exposure had no effect on spatial navigational skills in either male or female California mice. While CTL females exhibited greater exploratory behavior than CTL males, BPA exposure abolished this sex difference. BPA-exposed males, however, engaged in less territorial marking when CTL males were present. These studies demonstrate that developmental BPA exposure can disrupt adult behaviors in a sex- and species-dependent manner and are consistent with the hypothesis that sexually selected traits are particularly vulnerable to endocrine disruption and should be a consideration in risk assessment studies.


Assuntos
Compostos Benzidrílicos/farmacologia , Estrogênios não Esteroides/farmacologia , Comportamento Exploratório/efeitos dos fármacos , Modelos Animais , Peromyscus/fisiologia , Fenóis/farmacologia , Efeitos Tardios da Exposição Pré-Natal , Comportamento Sexual Animal/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Peso Corporal/efeitos dos fármacos , Estrogênios/farmacologia , Etinilestradiol/farmacologia , Comportamento Exploratório/fisiologia , Feminino , Lactação/efeitos dos fármacos , Masculino , Camundongos , Fitoestrógenos/farmacologia , Gravidez , Comportamento Sexual Animal/fisiologia
14.
Gen Comp Endocrinol ; 176(3): 391-9, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22245263

RESUMO

Many temperate-zone animals use changes in photoperiod to time breeding. Shorter term cues, like food availability, are integrated with photoperiod to adjust reproductive timing under unexpected conditions. Many mice of the genus Peromyscus breed in the summer. California mice (Peromyscus californicus), however, can breed year round, but tend to begin breeding in the winter. Glial cells may be involved in transduction of environmental signals that regulate gonadotrophin releasing hormone I (GnRH) activity. We examined the effects of diet and photoperiod on reproduction in female California mice. Mice placed on either short days (8L:16D) or long days (16L:8D) were food restricted (80% of normal intake) or fed ad libitum. Short day-food restricted mice showed significant regression of the reproductive system. GnRH-immunoreactivity was increased in the tuberal hypothalamus of long day-food restricted mice. This may be associated with the sparing effect long days have when mice are food restricted. The number of GFAP-immunoreactive fibers in proximity to GnRH nerve terminals correlated negatively with uterine size in ad libitum but not food restricted mice, suggesting diet may alter glial regulation of the reproductive axis. There was a trend towards food restriction increasing uterine expression of c-fos mRNA, an estrogen dependent gene. Similar to other seasonally breeding rodents, short days render the reproductive system of female California mice more susceptible to effects of food restriction. This may be vestigial, or it may have evolved to mitigate consequences of unexpectedly poor winter food supplies.


Assuntos
Privação de Alimentos/fisiologia , Hormônio Liberador de Gonadotropina/fisiologia , Hipotálamo/fisiologia , Peromyscus/fisiologia , Reprodução/fisiologia , Animais , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/fisiologia , Feminino , Proteína Glial Fibrilar Ácida , Hipotálamo/citologia , Imuno-Histoquímica/veterinária , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Neuroglia/fisiologia , Fotoperíodo , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/fisiologia , RNA Mensageiro/química , RNA Mensageiro/genética , Distribuição Aleatória , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Estatísticas não Paramétricas , Útero/fisiologia
15.
Horm Behav ; 61(1): 100-7, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22101260

RESUMO

Female assessment of male attractiveness and how preferred qualities impact reproductive success is central to the study of mate choice. Male attractiveness may depend on traits beneficial to the reproductive success (RS) of any female, termed 'universal quality', and/or on behavioral and biological interactions between potential mates that reflect 'compatibility'. The steroid hormone testosterone (T) often underlies male attractiveness in rodents and is associated with enhanced paternal care in the monogamous and biparental California mouse (Peromyscus californicus). We hypothesized that (1) T-characteristics are universally attractive to female California mice and that (2) if reproductive success is higher for females mated with preferred males, then females mated with males preferred by other females will also have higher reproductive success. Alternatively, we speculated that pair compatibility, based on emergent pair qualities, is important for a species with coordinated offspring care. We assessed individual T-characteristics in three ways: (1) T-response to GnRH challenges (2) baseline T-level and (3) T-response to a female. Testosterone-response did not predict female preference, but females spent more time investigating males with higher baseline T (accounting for only 9.6% of the variation in investigation time). None of the T-measures was associated with RS. Females paired with males they preferred produced litters more quickly and had higher RS than females paired with their non-preferred males. Naïve females who did not undergo preference tests had equivalent RS regardless of whether their mate was preferred or non-preferred by another female. These data suggest that higher male T elicits investigation, but female preference in the California mouse is more strongly linked with compatibility because individual preference was a better predictor of RS than any T measure.


Assuntos
Fertilidade/fisiologia , Preferência de Acasalamento Animal/fisiologia , Peromyscus/fisiologia , Testosterona/sangue , Animais , Feminino , Hormônio Liberador de Gonadotropina/farmacologia , Masculino , Preferência de Acasalamento Animal/efeitos dos fármacos
16.
Endocrinology ; 153(2): 949-53, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22186416

RESUMO

There is growing appreciation that estrogen signaling pathways can be modulated by naturally occurring environmental compounds such as phytoestrogens and the more recently discovered xenoestrogens. Many researchers studying the effects of estrogens on brain function or behavior in animal models choose to use phytoestrogen-free food for this reason. Corncob bedding is commonly used in animal facilities across the United States and has been shown to inhibit estrogen-dependent reproductive behavior in rats. The mechanism for this effect was unclear, because the components of corncob bedding mediating this effect did not bind estrogen receptors. Here, we show in the California mouse (Peromyscus californicus) that estrogens decrease aggression when cardboard-based bedding is used but that this effect is absent when corncob bedding is used. California mice housed on corncob bedding also had fewer estrogen receptor-α-positive cells in the bed nucleus of the stria terminalis and ventromedial hypothalamus compared with mice housed on cardboard-based bedding. In addition, corncob bedding suppressed the expression of phosphorylated ERK in these brain regions as well as in the medial amygdala and medial preoptic area. Previous reports of the effects of corncob bedding on reproductive behavior are not widely appreciated. Our observations on the effects of corncob bedding on behavior and brain function should draw attention to the importance that cage bedding can exert on neuroendocrine research.


Assuntos
Agressão , Comportamento Animal/fisiologia , Receptor alfa de Estrogênio/metabolismo , Regulação da Expressão Gênica/fisiologia , Abrigo para Animais , Peromyscus/fisiologia , Agressão/efeitos dos fármacos , Animais , Encéfalo/metabolismo , Encéfalo/fisiologia , Antagonistas de Estrogênios/farmacologia , Receptor alfa de Estrogênio/genética , Fadrozol/farmacologia , Furanos/sangue , Masculino , Distribuição Aleatória , Zea mays/química
17.
Brain Behav Evol ; 77(3): 159-75, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21546770

RESUMO

Rodent paternal models provide unique opportunities to investigate the emergence of affiliative social behavior in mammals. Using biparental and uniparental Peromyscus species (californicus and maniculatus, respectively) we assessed paternal responsiveness by exposing males to biological offspring, unrelated conspecific pups, or familiar brothers following a 24-hour separation. The putative paternal circuit we investigated included brain areas involved in fear/anxiety [cingulate cortex (Cg), medial amygdala (MeA), paraventricular nucleus of the hypothalamus (PVN), and lateral septum (LS)], parental motivation [medial preoptic area (MPOA)], learning/behavioral plasticity (hippocampus), olfaction [pyriform cortex (PC)], and social rewards (nucleus accumbens). Paternal experience in californicus males reduced fos immunoreactivity (ir) in several fear/anxiety areas; additionally, all californicus groups exhibited decreased fos-ir in the PC. Enhanced arginine vasopressin (AVP) and oxytocin (OT)-ir cell bodies and fibers, as well as increased neuronal restructuring in the hippocampus, were also observed in californicus mice. Multidimensional scaling analyses revealed distinct brain activation profiles differentiating californicus biological fathers, pup-exposed virgins, and pup-naïve virgins. Specifically, associations among MPOA fos, CA1 fos, dentate gyrus GFAP, CA2 nestin-, and PVN OT-ir characterized biological fathers; LS fos-, Cg fos-, and AVP-ir characterized pup-exposed virgins, and PC-, PVN-, and MeA fos-ir characterized pup-naïve virgins. Thus, whereas fear/anxiety areas characterized pup-naïve males, neurobiological factors involved in more diverse functions such as learning, motivation, and nurturing responses characterized fatherhood in biparental californicus mice. Less distinct paternal-dependent activation patterns were observed in uniparental maniculatus mice. These data suggest that dual neurobiological circuits, leading to the inhibition of social-dependent anxiety as well as the activation of affiliative responses, characterize the transition from nonpaternal to paternal status in californicus mice.


Assuntos
Comportamento Animal/fisiologia , Encéfalo/fisiologia , Vias Neurais/fisiologia , Comportamento Paterno/fisiologia , Peromyscus/fisiologia , Comportamento Social , Tonsila do Cerebelo/fisiologia , Animais , Mapeamento Encefálico , Giro do Cíngulo/fisiologia , Hipocampo/fisiologia , Proteínas de Filamentos Intermediários/metabolismo , Masculino , Proteínas do Tecido Nervoso/metabolismo , Nestina , Plasticidade Neuronal/fisiologia , Núcleo Accumbens/fisiologia , Proteínas Oncogênicas v-fos/metabolismo , Núcleo Hipotalâmico Paraventricular/fisiologia , Área Pré-Óptica/fisiologia , Reconhecimento Psicológico/fisiologia , Núcleos Septais/fisiologia , Especificidade da Espécie
18.
Physiol Behav ; 103(3-4): 404-11, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21397620

RESUMO

The deer mouse presents with spontaneous stereotypic movements that resemble the repetitive behaviours of obsessive-compulsive disorder (OCD), and demonstrates a selective response to serotonin reuptake inhibitors. OCD has been linked to altered redox status and since increased dopamine signalling can promote stereotypies as well as oxidative stress, we investigated whether the severity of deer mouse stereotypy may be associated with altered dopamine turnover and cortico-striatal redox status. Deer mice were separated into high (HSB), low (LSB) and non-stereotypy (NS) groups. Frontal cortical and striatal dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), as well as superoxide dismutase (SOD) activity, reduced (GSH) and oxidised (GSSG) glutathione and glutathione redox index, were analysed as markers for regional dopamine turnover and oxidative stress, respectively. Dopamine and its metabolites and SOD activity did not differ across the stereotypy groups. Significantly reduced GSH and GSSG and increased glutathione redox index were only observed in the frontal cortex of HSB animals. Frontal cortical GSH and GSSG were inversely correlated while glutathione redox index was positively correlated with stereotypy. Deer mouse stereotypy is thus characterised by a deficient glutathione system in the frontal cortex but not striatum, and provides a therapeutic rationale for using glutathione-active antioxidants in OCD. The evidence for a primary frontal lesion has importance for future OCD research.


Assuntos
Encéfalo/metabolismo , Córtex Cerebral/metabolismo , Corpo Estriado/metabolismo , Dopamina/metabolismo , Estresse Oxidativo/fisiologia , Comportamento Estereotipado/fisiologia , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Análise de Variância , Animais , Encéfalo/anatomia & histologia , Glutationa/metabolismo , Ácido Homovanílico/metabolismo , Oxirredutases/metabolismo , Peromyscus/metabolismo , Peromyscus/fisiologia , Análise de Regressão , Superóxido Dismutase/metabolismo
19.
Proc Natl Acad Sci U S A ; 106(34): 14450-5, 2009 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-19667207

RESUMO

Adaptive modifications of heteromeric proteins may involve genetically based changes in single subunit polypeptides or parallel changes in multiple genes that encode distinct, interacting subunits. Here we investigate these possibilities by conducting a combined evolutionary and functional analysis of duplicated globin genes in natural populations of deer mice (Peromyscus maniculatus) that are adapted to different elevational zones. A multilocus analysis of nucleotide polymorphism and linkage disequilibrium revealed that high-altitude adaptation of deer mouse hemoglobin involves parallel functional differentiation at multiple unlinked gene duplicates: two alpha-globin paralogs on chromosome 8 and two beta-globin paralogs on chromosome 1. Differences in O(2)-binding affinity of the alternative beta-chain hemoglobin isoforms were entirely attributable to allelic differences in sensitivity to 2,3-diphosphoglycerate (DPG), an allosteric cofactor that stabilizes the low-affinity, deoxygenated conformation of the hemoglobin tetramer. The two-locus beta-globin haplotype that predominates at high altitude is associated with suppressed DPG-sensitivity (and hence, increased hemoglobin-O(2) affinity), which enhances pulmonary O(2) loading under hypoxia. The discovery that allelic differences in DPG-sensitivity contribute to adaptive variation in hemoglobin-O(2) affinity illustrates the value of integrating evolutionary analyses of sequence variation with mechanistic appraisals of protein function. Investigation into the functional significance of the deer mouse beta-globin polymorphism was motivated by the results of population genetic analyses which revealed evidence for a history of divergent selection between elevational zones. The experimental measures of O(2)-binding properties corroborated the tests of selection by demonstrating a functional difference between the products of alternative alleles.


Assuntos
Altitude , Evolução Molecular , Hemoglobinas/genética , Peromyscus/genética , Adaptação Fisiológica/genética , Animais , Sítios de Ligação/genética , Clonagem Molecular , Colorado , Duplicação Gênica , Geografia , Haplótipos , Hemoglobinas/química , Hemoglobinas/metabolismo , Desequilíbrio de Ligação , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Oxigênio/metabolismo , Peromyscus/classificação , Peromyscus/fisiologia , Polimorfismo Genético , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Análise de Sequência de DNA , Especificidade da Espécie , Globinas beta/química , Globinas beta/genética , Globinas beta/metabolismo
20.
Horm Behav ; 53(1): 200-7, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17991466

RESUMO

Environmental and social factors have important effects on aggressive behaviors. We examined the effect of reproductive experience on aggression in a biparental species of mouse, Peromyscus californicus. Estrogens are important in mediating aggressive behavior so we also examined estrogen receptor expression and c-fos for insights into possible mechanisms of regulation. Parental males were significantly more aggressive than virgin males, but no significant differences in estrogen receptor alpha or beta expression were detected. Patterns of c-fos following aggression tests suggested possible parallels with maternal aggression. Parental males had more c-fos positive cells in the medial amygdala, and medial preoptic area relative to virgin males. The medial preoptic area is generally considered to be relatively less important for male-male aggression in rodents, but is known to have increased activity in the context of maternal aggression. We also demonstrated through habituation-dishabituation tests that parental males show exaggerated investigation responses to chemical cues from a male intruder, suggesting that heightened sensory responses may contribute to increased parental aggression. These data suggest that, in biparental species, reproductive experience leads to the onset of paternal aggression that may be analogous to maternal aggression.


Assuntos
Agressão/fisiologia , Comportamento Paterno , Peromyscus/fisiologia , Área Pré-Óptica/metabolismo , Comportamento Social , Tonsila do Cerebelo/metabolismo , Animais , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Comportamento Exploratório/fisiologia , Feminino , Habituação Psicofisiológica/fisiologia , Masculino , Comportamento Materno , Peromyscus/psicologia , Prática Psicológica , Proteínas Proto-Oncogênicas c-fos/metabolismo , Distribuição Aleatória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA