Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 19(1): 851, 2018 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-30486780

RESUMO

BACKGROUND: Spinach downy mildew caused by the oomycete Peronospora effusa is a significant burden on the expanding spinach production industry, especially for organic farms where synthetic fungicides cannot be deployed to control the pathogen. P. effusa is highly variable and 15 new races have been recognized in the past 30 years. RESULTS: We virulence phenotyped, sequenced, and assembled two isolates of P. effusa from the Salinas Valley, California, U.S.A. that were identified as race 13 and 14. These assemblies are high quality in comparison to assemblies of other downy mildews having low total scaffold count (784 & 880), high contig N50s (48 kb & 52 kb), high BUSCO completion and low BUSCO duplication scores and share many syntenic blocks with Phytophthora species. Comparative analysis of four downy mildew and three Phytophthora species revealed parallel absences of genes encoding conserved domains linked to transporters, pathogenesis, and carbohydrate activity in the biotrophic species. Downy mildews surveyed that have lost the ability to produce zoospores have a common loss of flagella/motor and calcium domain encoding genes. Our phylogenomic data support multiple origins of downy mildews from hemibiotrophic progenitors and suggest that common gene losses in these downy mildews may be of genes involved in the necrotrophic stages of Phytophthora spp. CONCLUSIONS: We present a high-quality draft genome of Peronospora effusa that will serve as a reference for Peronospora spp. We identified several Pfam domains as under-represented in the downy mildews consistent with the loss of zoosporegenesis and necrotrophy. Phylogenomics provides further support for a polyphyletic origin of downy mildews.


Assuntos
Adaptação Fisiológica/genética , Genômica , Peronospora/genética , Doenças das Plantas/microbiologia , Heterozigoto , Funções Verossimilhança , Mitocôndrias/genética , Anotação de Sequência Molecular , Peronospora/patogenicidade , Filogenia , Análise de Sequência de RNA , Sequências Repetidas Terminais/genética
2.
Sci Rep ; 8(1): 2485, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29410438

RESUMO

Downy mildew of pearl millet caused by the biotrophic oomycete Sclerospora graminicola is the most devastating disease which impairs pearl millet production causing huge yield and monetary losses. Chitosan nanoparticles (CNP) were synthesized from low molecular weight chitosan having higher degree of acetylation was evaluated for their efficacy against downy mildew disease of pearl millet caused by Sclerospora graminicola. Laboratory studies showed that CNP seed treatment significantly enhanced pearl millet seed germination percentage and seedling vigor compared to the control. Seed treatment with CNP induced systemic and durable resistance and showed significant downy mildew protection under greenhouse conditions in comparison to the untreated control. Seed treatment with CNP showed changes in gene expression profiles wherein expression of genes of phenylalanine ammonia lyase, peroxidase, polyphenoloxidase, catalase and superoxide dismutase were highly upregulated. CNP treatment resulted in earlier and higher expression of the pathogenesis related proteins PR1 and PR5. Downy mildew protective effect offered by CNP was found to be modulated by nitric oxide and treatment with CNP along with NO inhibitors cPTIO completely abolished the gene expression of defense enzymes and PR proteins. Further, comparative analysis of CNP with Chitosan revealed that the very small dosage of CNP performed at par with recommended dose of Chitosan for downy mildew management.


Assuntos
Quitosana/farmacologia , Resistência à Doença/genética , Nanopartículas/química , Óxido Nítrico/biossíntese , Pennisetum/efeitos dos fármacos , Proteínas de Plantas/genética , Acetilação , Benzoatos/farmacologia , Catalase/antagonistas & inibidores , Catalase/genética , Catalase/imunologia , Catecol Oxidase/antagonistas & inibidores , Catecol Oxidase/genética , Catecol Oxidase/imunologia , Quitosana/química , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/imunologia , Germinação/fisiologia , Imidazóis/farmacologia , Óxido Nítrico/agonistas , Óxido Nítrico/antagonistas & inibidores , Pennisetum/genética , Pennisetum/imunologia , Pennisetum/microbiologia , Peronospora/crescimento & desenvolvimento , Peronospora/patogenicidade , Peroxidase/antagonistas & inibidores , Peroxidase/genética , Peroxidase/imunologia , Fenilalanina Amônia-Liase/antagonistas & inibidores , Fenilalanina Amônia-Liase/genética , Fenilalanina Amônia-Liase/imunologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/imunologia , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/imunologia , Plântula/microbiologia , Sementes/efeitos dos fármacos , Sementes/genética , Sementes/imunologia , Sementes/microbiologia , Superóxido Dismutase/antagonistas & inibidores , Superóxido Dismutase/genética , Superóxido Dismutase/imunologia
3.
Proc Natl Acad Sci U S A ; 114(10): E2046-E2052, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28159890

RESUMO

The self-association of Toll/interleukin-1 receptor/resistance protein (TIR) domains has been implicated in signaling in plant and animal immunity receptors. Structure-based studies identified different TIR-domain dimerization interfaces required for signaling of the plant nucleotide-binding oligomerization domain-like receptors (NLRs) L6 from flax and disease resistance protein RPS4 from Arabidopsis Here we show that the crystal structure of the TIR domain from the Arabidopsis NLR suppressor of npr1-1, constitutive 1 (SNC1) contains both an L6-like interface involving helices αD and αE (DE interface) and an RPS4-like interface involving helices αA and αE (AE interface). Mutations in either the AE- or DE-interface region disrupt cell-death signaling activity of SNC1, L6, and RPS4 TIR domains and full-length L6 and RPS4. Self-association of L6 and RPS4 TIR domains is affected by mutations in either region, whereas only AE-interface mutations affect SNC1 TIR-domain self-association. We further show two similar interfaces in the crystal structure of the TIR domain from the Arabidopsis NLR recognition of Peronospora parasitica 1 (RPP1). These data demonstrate that both the AE and DE self-association interfaces are simultaneously required for self-association and cell-death signaling in diverse plant NLRs.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Proteínas de Plantas/química , Sequência de Aminoácidos , Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/imunologia , Sítios de Ligação , Morte Celular/genética , Morte Celular/imunologia , Linho/genética , Linho/imunologia , Linho/microbiologia , Interações Hospedeiro-Patógeno , Modelos Moleculares , Mutação , Peronospora/patogenicidade , Peronospora/fisiologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Nicotiana/genética , Nicotiana/imunologia , Nicotiana/microbiologia
4.
PLoS One ; 10(10): e0140015, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26452052

RESUMO

Oxathiapiprolin is a new oomycide (piperidinyl thiazole isoxazoline class) discovered by DuPont which controls diseases caused by oomycete plant pathogens. It binds in the oxysterol-binding protein domain of Oomycetes. Growth chambers studies with detached leaves and potted plants showed remarkable activity of oxathiapiprolin against Pseudoperonospora cubensis in cucurbits. The compound affected all stages in the asexual life cycle of the pathogen. It inhibited zoospore release, cystospore germination, lesion formation, lesion expansion, sporangiophore development and sporangial production. When applied to the foliage as a preventive spray no lesions developed due to inhibition of zoospore release and cystospore germination, and when applied curatively, at one or two days after inoculation, small restricted lesions developed but no sporulation occurred. When applied later to mature lesions, sporulation was strongly inhibited. Oxathiapiprolin suppressed sporulation of P. cubensis in naturally-infected leaves. It exhibited trans-laminar activity, translocated acropetaly from older to younger leaves, and moved from the root system to the foliage. Seed coating was highly effective in protecting the developed cucumber plants against downy mildew. UV microscopy observations made with cucumber leaves infected with P. cubensis revealed that inhibition of mycelium growth and sporulation induced by oxathiapiprolin was associated with callose encasement of the haustoria.


Assuntos
Antifúngicos/farmacologia , Cucurbitaceae/microbiologia , Hidrocarbonetos Fluorados/farmacologia , Peronospora/efeitos dos fármacos , Doenças das Plantas/microbiologia , Pirazóis/farmacologia , Reprodução Assexuada/efeitos dos fármacos , Estágios do Ciclo de Vida , Peronospora/patogenicidade , Peronospora/fisiologia , Componentes Aéreos da Planta/efeitos dos fármacos , Doenças das Plantas/prevenção & controle
5.
Mol Plant Microbe Interact ; 28(11): 1198-215, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26196322

RESUMO

Peronospora tabacina is an obligate biotrophic oomycete that causes blue mold or downy mildew on tobacco (Nicotiana tabacum). It is an economically important disease occurring frequently in tobacco-growing regions worldwide. We sequenced and characterized the genomes of two P. tabacina isolates and mined them for pathogenicity-related proteins and effector-encoding genes. De novo assembly of the genomes using Illumina reads resulted in 4,016 (63.1 Mb, N50 = 79 kb) and 3,245 (55.3 Mb, N50 = 61 kb) scaffolds for isolates 968-J2 and 968-S26, respectively, with an estimated genome size of 68 Mb. The mitochondrial genome has a similar size (approximately 43 kb) and structure to those of other oomycetes, plus several minor unique features. Repetitive elements, primarily retrotransposons, make up approximately 24% of the nuclear genome. Approximately 18,000 protein-coding gene models were predicted. Mining the secretome revealed approximately 120 candidate RxLR, six CRN (candidate effectors that elicit crinkling and necrosis), and 61 WY domain-containing proteins. Candidate RxLR effectors were shown to be predominantly undergoing diversifying selection, with approximately 57% located in variable gene-sparse regions of the genome. Aligning the P. tabacina genome to Hyaloperonospora arabidopsidis and Phytophthora spp. revealed a high level of synteny. Blocks of synteny show gene inversions and instances of expansion in intergenic regions. Extensive rearrangements of the gene-rich genomic regions do not appear to have occurred during the evolution of these highly variable pathogens. These assemblies provide the basis for studies of virulence in this and other downy mildew pathogens.


Assuntos
Proteínas Fúngicas/genética , Genoma Fúngico/genética , Peronospora/genética , Análise de Sequência de DNA/métodos , DNA Fúngico/química , DNA Fúngico/genética , DNA Mitocondrial/química , DNA Mitocondrial/genética , Proteínas Fúngicas/classificação , Proteínas Fúngicas/metabolismo , Genoma Mitocondrial/genética , Dados de Sequência Molecular , Oomicetos/classificação , Oomicetos/genética , Peronospora/classificação , Peronospora/patogenicidade , Filogenia , Doenças das Plantas/microbiologia , Seleção Genética , Especificidade da Espécie , Sintenia , Nicotiana/microbiologia , Virulência/genética
6.
PLoS One ; 7(4): e34701, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22496844

RESUMO

Pseudoperonospora cubensis, an obligate oomycete pathogen, is the causal agent of cucurbit downy mildew, a foliar disease of global economic importance. Similar to other oomycete plant pathogens, Ps. cubensis has a suite of RXLR and RXLR-like effector proteins, which likely function as virulence or avirulence determinants during the course of host infection. Using in silico analyses, we identified 271 candidate effector proteins within the Ps. cubensis genome with variable RXLR motifs. In extending this analysis, we present the functional characterization of one Ps. cubensis effector protein, RXLR protein 1 (PscRXLR1), and its closest Phytophthora infestans ortholog, PITG_17484, a member of the Drug/Metabolite Transporter (DMT) superfamily. To assess if such effector-non-effector pairs are common among oomycete plant pathogens, we examined the relationship(s) among putative ortholog pairs in Ps. cubensis and P. infestans. Of 271 predicted Ps. cubensis effector proteins, only 109 (41%) had a putative ortholog in P. infestans and evolutionary rate analysis of these orthologs shows that they are evolving significantly faster than most other genes. We found that PscRXLR1 was up-regulated during the early stages of infection of plants, and, moreover, that heterologous expression of PscRXLR1 in Nicotiana benthamiana elicits a rapid necrosis. More interestingly, we also demonstrate that PscRXLR1 arises as a product of alternative splicing, making this the first example of an alternative splicing event in plant pathogenic oomycetes transforming a non-effector gene to a functional effector protein. Taken together, these data suggest a role for PscRXLR1 in pathogenicity, and, in total, our data provide a basis for comparative analysis of candidate effector proteins and their non-effector orthologs as a means of understanding function and evolutionary history of pathogen effectors.


Assuntos
Processamento Alternativo , Proteínas Fúngicas/genética , Proteínas de Membrana Transportadoras/genética , Nicotiana/microbiologia , Peronospora/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Sequência de Bases , Morte Celular , Evolução Molecular , Proteínas Fúngicas/biossíntese , Proteínas de Membrana Transportadoras/biossíntese , Dados de Sequência Molecular , Peronospora/patogenicidade , Phytophthora/genética , Phytophthora/metabolismo , Phytophthora/patogenicidade , Regulação para Cima
7.
Ann Bot ; 108(5): 809-19, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21880657

RESUMO

BACKGROUND AND AIMS: The genus Nicotiana includes diploid and tetraploid species, with complementary ecological, agronomic and commercial characteristics. The species are of economic value for tobacco, as ornamentals, and for secondary plant-product biosynthesis. They show substantial differences in disease resistance because of their range of secondary products. In the last decade, sexual hybridization and transgenic technologies have tended to eclipse protoplast fusion for gene transfer. Somatic hybridization was exploited in the present investigation to generate a new hybrid combination involving two sexually incompatible tetraploid species. The somatic hybrid plants were characterized using molecular, molecular cytogenetic and phenotypic approaches. METHODS: Mesophyll protoplasts of the wild fungus-resistant species N. debneyi (2n = 4x = 48) were electrofused with those of the ornamental interspecific sexual hybrid N. × sanderae (2n = 2x = 18). From 1570 protoplast-derived cell colonies selected manually in five experiments, 580 tissues were sub-cultured to shoot regeneration medium. Regenerated plants were transferred to the glasshouse and screened for their morphology, chromosomal composition and disease resistance. KEY RESULTS: Eighty-nine regenerated plants flowered; five were confirmed as somatic hybrids by their intermediate morphology compared with parental plants, cytological constitution and DNA-marker analysis. Somatic hybrid plants had chromosome complements of 60 or 62. Chromosomes were identified to parental genomes by genomic in situ hybridization and included all 18 chromosomes from N. × sanderae, and 42 or 44 chromosomes from N. debneyi. Four or six chromosomes of one ancestral genome of N. debneyi were eliminated during culture of electrofusion-treated protoplasts and plant regeneration. Both chloroplasts and mitochondria of the somatic hybrid plants were probably derived from N. debneyi. All somatic hybrid plants were fertile. In contrast to parental plants of N. × sanderae, the seed progeny of somatic hybrid plants were resistant to infection by Peronospora tabacina, a trait introgressed from the wild parent, N. debneyi. CONCLUSIONS: Sexual incompatibility between N. × sanderae and N. debneyi was circumvented by somatic hybridization involving protoplast fusion. Asymmetrical nuclear hybridity was seen in the hybrids with loss of chromosomes, although importantly, somatic hybrids were fertile and stable. Expression of fungal resistance makes these somatic hybrids extremely valuable germplasm in future breeding programmes in ornamental tobacco.


Assuntos
Nicotiana/genética , Nicotiana/microbiologia , Peronospora/patogenicidade , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Resistência à Doença/genética , Hibridização Genética
8.
Mol Plant Pathol ; 11(1): 13-8, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20078772

RESUMO

Blue mould [Peronospora hyoscyami f. sp. tabacina (Adam) Skalicky 1964] is one of the most important foliar diseases of tobacco that causes significant losses in the Americas, south-eastern Europe and the Middle East. This review summarizes the current knowledge of the mechanisms employed by this oomycete pathogen to colonize its host, with emphasis on molecular aspects of pathogenicity. In addition, key biochemical and molecular mechanisms involved in tobacco resistance to blue mould are discussed. TAXONOMY: Kingdom: Chromista (Straminipila); Phylum: Heterokontophyta; Class: Oomycete; Order: Peronosporales; Family: Peronosporaceae; Genus: Peronospora; Species: Peronospora hyoscyami f. sp. tabacina. DISEASE SYMPTOMS: The pathogen typically causes localized lesions on tobacco leaves that appear as single, or groups of, yellow spots that often coalesce to form light-brown necrotic areas. Some of the leaves exhibit grey to bluish downy mould on their lower surfaces. Diseased leaves can become twisted, such that the lower surfaces turn upwards. In such cases, the bluish colour of the diseased plants becomes quite conspicuous, especially under moist conditions when sporulation is abundant. Hence the name of the disease: tobacco blue mould. INFECTION PROCESS: The pathogen develops haustoria within plant cells that are thought to establish the transfer of nutrients from the host cell, and may also act in the delivery of effector proteins during infection. RESISTANCE: Several defence responses have been reported to occur in the Nicotiana tabacum-P. hyoscyami f. sp. tabacina interaction. These include the induction of pathogenesis-related genes, and a correlated increase in the activities of typical pathogenesis-related proteins, such as peroxidases, chitinases, beta-1,3-glucanases and lipoxygenases. Systemic acquired resistance is one of the best characterized tobacco defence responses activated on pathogen infection.


Assuntos
Nicotiana/parasitologia , Peronospora/patogenicidade , Doenças das Plantas , Doenças das Plantas/imunologia , Doenças das Plantas/parasitologia , Nicotiana/imunologia
9.
Plant Physiol ; 144(4): 1843-51, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17573541

RESUMO

T-phylloplanin proteins secreted to aerial surfaces of tobacco (Nicotiana tabacum) by short procumbent trichomes inhibit spore germination and blue mold disease caused by the oomycete pathogen Peronospora tabacina. Many other plants were found to contain water-washed leaf surface proteins (phylloplanins), but the functions and properties of these are not known. Here we extend earlier evidence for the antifungal activity of T-phylloplanins using a reverse genetics approach. RNA interference of the T-phylloplanin gene in tobacco 'T.I. 1068' resulted in loss of T-phylloplanin mRNA and protein, loss of in vitro spore germination inhibition activity, and leaf infection inhibition activity of leaf water washes from RNA interference plants, and young knockdown plants were susceptible to disease. The glycoprotein character, adaxial-leaf-surface enrichment of, and renewability of T-phylloplanins are also described. We also report that leaf water washes of sunflower (Helianthus annuus) and jimson weed (Datura metel), but not soybean (Glycine max), like that of tobacco, possess ProteinaseK- and boiling-sensitive P. tabacina spore germination and tobacco leaf infection inhibition activities. Results establish that T-phylloplaninins of tobacco are active in P. tabacina inhibition, and indicate that leaf surface proteins of certain non-Nicotiana species that are not susceptible to P. tabacina disease can inhibit germination of spores of this oomycete pathogen and inhibit tobacco leaf infection by this pathogen.


Assuntos
Antifúngicos/análise , Nicotiana/química , Peronospora/fisiologia , Proteínas de Plantas/química , Esporos Fúngicos/fisiologia , Datura/química , Glicoproteínas/química , Helianthus/química , Dados de Sequência Molecular , Peronospora/patogenicidade , Doenças das Plantas , Folhas de Planta/química , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Interferência de RNA , Glycine max/química , Nicotiana/microbiologia , Nicotiana/fisiologia
10.
Virology ; 320(1): 107-20, 2004 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-15003867

RESUMO

Helper component-protease (HC-Pro) is a plant viral suppressor of RNA silencing, and transgenic tobacco expressing HC-Pro has increased susceptibility to a broad range of viral pathogens. Here we report that these plants also exhibit enhanced resistance to unrelated heterologous pathogens. Tobacco mosaic virus (TMV) infection of HC-Pro-expressing plants carrying the N resistance gene results in fewer and smaller lesions compared to controls without HC-Pro. The resistance to TMV is compromised but not eliminated by expression of nahG, which prevents accumulation of salicylic acid (SA), an important defense signaling molecule. HC-Pro-expressing plants are also more resistant to tomato black ring nepovirus (TBRV) and to the oomycete Peronospora tabacina. Enhanced TBRV resistance is SA-independent, whereas the response to P. tabacina is associated with early induction of markers characteristic of SA-dependent defense. Thus, a plant viral suppressor of RNA silencing enhances resistance to multiple pathogens via both SA-dependent and SA-independent mechanisms.


Assuntos
Cisteína Endopeptidases/genética , Nicotiana/genética , Interferência de RNA , Vírus do Mosaico do Tabaco/genética , Proteínas Virais/genética , Cisteína Endopeptidases/biossíntese , Nepovirus/patogenicidade , Peronospora/patogenicidade , Folhas de Planta/virologia , Plantas Geneticamente Modificadas/imunologia , Plantas Geneticamente Modificadas/virologia , Ácido Salicílico/análise , Ácido Salicílico/metabolismo , Nicotiana/imunologia , Nicotiana/virologia , Vírus do Mosaico do Tabaco/patogenicidade , Proteínas Virais/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA