Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 685
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 703: 149681, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38382360

RESUMO

BACKGROUND: Neutrophil infiltration and hypoxic pulmonary vasoconstriction induced by hypobaric hypoxic stress are vital in high-altitude pulmonary edema (HAPE). Myeloperoxidase (MPO), an important enzyme in neutrophils, is associated with inflammation and oxidative stress and is also involved in the regulation of nitric oxide synthase (NOS), an enzyme that catalyzes the production of the vasodilatory factor nitric oxide (NO). However, the role of neutrophil MPO in HAPE's progression is still uncertain. Therefore, we hypothesize that MPO is involved in the development of HAPE via NOS. METHODS: In Xining, China (altitude: 2260 m), C57BL/6 N wild-type and mpo-/- mice served as normoxic controls, while a hypobaric chamber simulated 7000 m altitude for hypoxia. L-NAME, a nitric oxide synthase (NOS) inhibitor to inhibit NO production, was the experimental drug, and D-NAME, without NOS inhibitory effects, was the control. After measuring pulmonary artery pressure (PAP), samples were collected and analyzed for blood neutrophils, oxidative stress, inflammation, vasoactive substances, pulmonary alveolar-capillary barrier permeability, and lung tissue morphology. RESULTS: Wild-type mice's lung injury scores, permeability, and neutrophil counts rose at 24 and 48 h of hypoxia exposure. Under hypoxia, PAP increased from 12.89 ± 1.51 mmHg under normoxia to 20.62 ± 3.33 mmHg significantly in wild-type mice and from 13.24 ± 0.79 mmHg to 16.50 ± 2.07 mmHg in mpo-/- mice. Consistent with PAP, inducible NOS activity, lung permeability, lung injury scores, oxidative stress response, and inflammation showed more significant increases in wild-type mice than in mpo-/- mice. Additionally, endothelial NOS activity and NO levels decreased more pronouncedly in wild-type mice than in mpo-/- mice. NOS inhibition during hypoxia led to more significant increases in PAP, permeability, and lung injury scores compared to the drug control group, especially in wild-type mice. CONCLUSION: MPO knockout reduces oxidative stress and inflammation to preserve alveolar-capillary barrier permeability and limits the decline in endothelial NOS activity to reduce PAP elevation during hypoxia. MPO inhibition emerges as a prospective therapeutic strategy for HAPE, offering avenues for precise interventions.


Assuntos
Doença da Altitude , Peroxidase , Edema Pulmonar , Animais , Camundongos , Altitude , Hipertensão Pulmonar , Hipóxia/complicações , Inflamação/complicações , Pulmão/irrigação sanguínea , Lesão Pulmonar/complicações , Camundongos Endogâmicos C57BL , Neutrófilos , Óxido Nítrico Sintase , Peroxidase/genética , Peroxidase/metabolismo , Edema Pulmonar/metabolismo
2.
Basic Res Cardiol ; 118(1): 36, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37656254

RESUMO

Cardiotoxicity is a major complication of anthracycline therapy that negatively impacts prognosis. Effective pharmacotherapies for prevention of anthracycline-induced cardiomyopathy (AICM) are currently lacking. Increased plasma levels of the neutrophil-derived enzyme myeloperoxidase (MPO) predict occurrence of AICM in humans. We hypothesized that MPO release causally contributes to AICM. Mice intravenously injected with the anthracycline doxorubicin (DOX) exhibited higher neutrophil counts and MPO levels in the circulation and cardiac tissue compared to saline (NaCl)-treated controls. Neutrophil-like HL-60 cells exhibited increased MPO release upon exposition to DOX. DOX induced extensive nitrosative stress in cardiac tissue alongside with increased carbonylation of sarcomeric proteins in wildtype but not in Mpo-/- mice. Accordingly, co-treatment of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) with DOX and MPO aggravated loss of hiPSC-CM-contractility compared to DOX treatment alone. DOX-treated animals exhibited pronounced cardiac apoptosis and inflammation, which was attenuated in MPO-deficient animals. Finally, genetic MPO deficiency and pharmacological MPO inhibition protected mice from the development of AICM. The anticancer efficacy of DOX was unaffected by MPO deficiency. Herein we identify MPO as a critical mediator of AICM. We demonstrate that DOX induces cardiac neutrophil infiltration and release of MPO, which directly impairs cardiac contractility through promoting oxidation of sarcomeric proteins, cardiac inflammation and cardiomyocyte apoptosis. MPO thus emerges as a promising pharmacological target for prevention of AICM.


Assuntos
Cardiomiopatias , Células-Tronco Pluripotentes Induzidas , Peroxidase , Animais , Humanos , Camundongos , Antraciclinas/toxicidade , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/prevenção & controle , Doxorrubicina/toxicidade , Inflamação , Peroxidase/genética
4.
Nat Rev Rheumatol ; 18(10): 559-574, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36109667

RESUMO

Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) comprises granulomatosis with polyangiitis (GPA), microscopic polyangiitis (MPA) and eosinophilic granulomatosis with polyangiitis (EGPA), that share features of pauci-immune small-vessel vasculitis and the positivity of ANCA targeting proteinase-3 (PR3-ANCA) or myeloperoxidase (MPO-ANCA). AAV syndromes are rare, complex diseases and their aetio-pathogenesis is mainly driven by the interaction between environmental and genetic factors. In patients with GPA and MPA, the genetic associations are stronger with ANCA specificity (PR3- versus MPO-ANCA) than with the clinical diagnosis, which, in keeping with the known clinical and prognostic differences between PR3-ANCA-positive and MPO-ANCA-positive patients, supports an ANCA-based re-classification of these disorders. EGPA is also made up of genetically distinct subsets, which can be stratified on ANCA-status (MPO ANCA-positive versus ANCA-negative); these subsets differ in clinical phenotype and possibly in their response to treatment. Interestingly, MPO-ANCA-positive patients with either MPA or EGPA have overlapping genetic determinants, thus strengthening the concept that this EGPA subset is closely related to the other AAV syndromes. The genetics of AAV provides us with essential information to understand its varied phenotype. This Review discusses the main findings of genetic association studies in AAV, their pathogenic implications and their potential effect on classification, management and prognosis.


Assuntos
Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos , Síndrome de Churg-Strauss , Granulomatose com Poliangiite , Poliangiite Microscópica , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/diagnóstico , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/genética , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/terapia , Anticorpos Anticitoplasma de Neutrófilos , Síndrome de Churg-Strauss/diagnóstico , Síndrome de Churg-Strauss/genética , Humanos , Mieloblastina/genética , Peroxidase/genética
5.
Biochem Biophys Res Commun ; 622: 108-114, 2022 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-35843089

RESUMO

Apolipoprotein A-I (apoA-I), the main protein component of High-Density Lipoprotein (HDL), is modified in plasma and the arterial wall by various enzymes. Myeloperoxidase (MPO), a leukocyte-derived peroxidase, is highly expressed during inflammation and associates with HDL reducing its functionality and contributing to atherosclerosis. In the present study we sought to explore further the effect of MPO on HDL structure and functionality in vivo using adenovirus-mediated gene transfer of human MPO combined with human apoA-I forms containing substitutions at MPO-sensitive sites or wild type apoA-I. We found that overexpression of MPO in mice significantly increased plasma apoA-I and HDL levels without affecting the expression of genes involved in HDL biogenesis or catabolism in the liver. Overexpression of MPO in the liver reduced the expression of pro-inflammatory genes and increased or did not affect the expression of anti-inflammatory genes suggesting that MPO had no toxic effects in this organ. In the plasma of mice overexpressing MPO, no significant alterations in HDL size or electrophoretic mobility was observed with the exception of mice expressing apoA-I (M148A) which showed enriched pre-ß relative to α HDL particles, suggesting that the apoA-I (M148A) mutation may interfere with HDL remodelling. Overexpression of MPO was associated with reduced anti-oxidant capacity of HDL particles in all mice. Interestingly, HDL particles bearing apoA-I (Y192A) showed enhanced ABCA1-dependent cholesterol efflux from macrophages which was not affected by MPO and these mice had reduced levels of LDL-c. These findings provide new insights on the role of specific amino acid residues of apoA-I in HDL structure and function following modification by MPO. This knowledge may facilitate the development of novel therapies based on improved HDL forms for patients with chronic diseases that are characterized by dysfunctional HDL.


Assuntos
Infecções por Adenoviridae , Apolipoproteína A-I , Transportador 1 de Cassete de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenoviridae/genética , Adenoviridae/metabolismo , Animais , Apolipoproteína A-I/metabolismo , Humanos , Lipoproteínas HDL , Camundongos , Peroxidase/genética , Peroxidase/metabolismo
6.
Leukemia ; 36(8): 2086-2096, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35761024

RESUMO

Myeloperoxidase (MPO) gene alterations with variable clinical penetrance have been found in hereditary MPO deficiency, but their leukemia association in patients and carriers has not been established. Germline MPO alterations were found to be significantly enriched in myeloid neoplasms: 28 pathogenic/likely pathogenic variants were identified in 100 patients. The most common alterations were c.2031-2 A > C, R569W, M519fs* and Y173C accounting for about half of the cases. While functional experiments showed that the marrow stem cell pool of Mpo-/- mice was not increased, using competitive repopulation demonstrated that Mpo-/- grafts gained growth advantage over MPO wild type cells. This finding also correlated with increased clonogenic potential after serial replating in the setting of H2O2-induced oxidative stress. Furthermore, we demonstrated that H2O2-induced DNA damage and activation of error-prone DNA repair may result in secondary genetic damage potentially predisposing to leukemia leukemic evolution. In conclusion, our study for the first time demonstrates that germline MPO variants may constitute risk alleles for MN evolution.


Assuntos
Leucemia , Transtornos Mieloproliferativos , Neoplasias , Animais , Células Germinativas/metabolismo , Humanos , Peróxido de Hidrogênio/farmacologia , Leucemia/genética , Camundongos , Peroxidase/genética , Peroxidase/metabolismo
7.
Eur J Med Genet ; 65(2): 104426, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35026467

RESUMO

Whole exome sequencing (WES) is a powerful tool for the cataloguing of population-specific genetic diseases. Within this proof-of-concept study we evaluated whether analysis of a small number of individual exomes is capable of identifying recurrent pathogenic alleles. We considered 106 exomes of subjects of Russian origin and revealed 13 genetic variants, which occurred more than twice and fulfilled the criteria for pathogenicity. All these alleles turned out to be indeed recurrent, as revealed by the analysis of 1045 healthy Russian donors. Eight of these variants (NAGA c.973G>A, ACADM c.985A>C, MPO c.2031-2A>C, SLC3A1 c.1400T>C, LRP2 c.6160G>A, BCHE c.293A>G, MPO c.752T>C, FCN3 c.349delC) are non-Russian-specific, as their high prevalence was previously demonstrated in other European populations. The remaining five disease-associated alleles appear to be characteristic for subjects of Russian origin and include CLCN1 c.2680C>T (myotonia congenita), DHCR7 c.453G>A (Smith-Lemli-Opitz syndrome), NUP93 c.1162C>T (steroid-resistant nephrotic syndrome, type 12), SLC26A2 c.1957T>A (multiple epiphyseal dysplasia) and EIF3F c.694T>G (mental retardation). These recessive disease conditions may be of particular relevance for the Russian Federation and other countries with a significant Slavic population.


Assuntos
Frequência do Gene , Doenças Genéticas Inatas/genética , População/genética , Adulto , Sistemas de Transporte de Aminoácidos Básicos/genética , Sistemas de Transporte de Aminoácidos Neutros/genética , Butirilcolinesterase/genética , Feminino , Humanos , Lectinas/genética , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Masculino , Peroxidase/genética , Federação Russa , Sequenciamento do Exoma/estatística & dados numéricos , alfa-N-Acetilgalactosaminidase/genética
8.
Biofactors ; 48(2): 454-468, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34741558

RESUMO

Peripheral artery disease (PAD) is an atherosclerotic disorder affecting arteries of the lower limbs, the major risk factors including dyslipidemia and diabetes mellitus (DM). We aimed to identify alterations of the proteins in high-density lipoproteins (HDL) associated with HDL dysfunction in PAD patients. HDL2 and HDL3 were isolated from plasma of PAD patients with/without DM (PAD-DM/PAD) and healthy subjects (N). Apolipoprotein AI (ApoAI), ApoAII, ApoCIII, clusterin (CLU), paraoxonase 1 (PON1), myeloperoxidase (MPO), and ceruloplasmin (CP) were measured in HDL2 /HDL3 and plasma. Oxidation and glycation of the analyzed proteins were assessed as malondialdehyde-protein adducts (MDA) and advanced glycation end-products (AGE), respectively. The anti-inflammatory effect of HDL3 was estimated as its potential to reduce monocyte adhesion to tumor necrosis factor α-activated endothelial cells. We show that in PAD patients compared to N subjects: (i) HDL2 presented increased levels of MDA-PON1, AGE-PON1, AGE-ApoAI, ApoAII, ApoCIII, and CP levels, and decreased PON1 levels; (ii) HDL3 had increased levels of MDA- and AGE-CLU and -ApoAI, MDA-PON1, ApoCIII, CLU, MPO, CP, and reduced PON1 levels. All these alterations were exacerbated by DM. These changes were more pronounced in HDL3 , which had reduced anti-inflammatory potential in PAD and became pro-inflammatory in PAD-DM. In PAD patients' plasma, CLU levels and MPO specific activity increased, while PON1 specific activity decreased. In conclusion, HDL function is altered in PAD patients due to multiple modifications of associated proteins that are aggravated by DM. Plasma CLU, MPO, and PON1 could constitute indicators of HDL dysfunction and contribute to risk stratification in PAD patients.


Assuntos
Arildialquilfosfatase , Clusterina , Diabetes Mellitus Tipo 2 , Doença Arterial Periférica , Peroxidase , Arildialquilfosfatase/genética , Arildialquilfosfatase/metabolismo , Clusterina/genética , Clusterina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Células Endoteliais/metabolismo , Humanos , Lipoproteínas HDL , Peroxidase/genética , Peroxidase/metabolismo
9.
Int J Mol Sci ; 22(23)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34884437

RESUMO

N-acetylcysteine (NAC), often used as an antioxidant-scavenging reactive oxygen species (ROS) in vitro, was recently shown to increase the cytotoxicity of other compounds through ROS-dependent and ROS-independent mechanisms. In this study, NAC itself was found to induce extensive ROS production in human leukemia HL-60 and U937 cells. The cytotoxicity depends on ROS-modulating enzyme expression. In HL-60 cells, NAC activated NOX2 to produce superoxide (O2•-). Its subsequent conversion into H2O2 by superoxide dismutase 1 and 3 (SOD1, SOD3) and production of ClO- from H2O2 by myeloperoxidase (MPO) was necessary for cell death induction. While the addition of extracellular SOD potentiated NAC-induced cell death, extracellular catalase (CAT) prevented cell death in HL-60 cells. The MPO inhibitor partially reduced the number of dying HL-60 cells. In U937 cells, the weak cytotoxicity of NAC is probably caused by lower expression of NOX2, SOD1, SOD3, and by the absence of MOP expression. However, even here, the addition of extracellular SOD induced cell death in U937 cells, and this effect could be reversed by extracellular CAT. NAC-induced cell death exhibited predominantly apoptotic features in both cell lines. Conclusions: NAC itself can induce extensive production of O2•- in HL-60 and U937 cell lines. The fate of the cells then depends on the expression of enzymes that control the formation and conversion of ROS: NOX, SOD, and MPO. The mode of cell death in response to NAC treatment bears apoptotic and apoptotic-like features in both cell lines.


Assuntos
Acetilcisteína/farmacologia , Leucemia/genética , NADPH Oxidase 2/genética , Estresse Oxidativo/efeitos dos fármacos , Peroxidase/genética , Superóxido Dismutase/genética , Catalase/genética , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HL-60 , Humanos , Leucemia/tratamento farmacológico , Leucemia/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Células U937
10.
BMC Plant Biol ; 21(1): 564, 2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34844562

RESUMO

BACKGROUND: Plant transformation with rol oncogenes derived from wild strains of Rhizobium rhizogenes is a popular biotechnology tool. Transformation effects depend on the type of rol gene, expression level, and the number of gene copies incorporated into the plant's genomic DNA. Although rol oncogenes are known as inducers of plant secondary metabolism, little is known about the physiological response of plants subjected to transformation. RESULTS: In this study, the physiological consequences of rolB oncogene incorporation into the DNA of Dionaea muscipula J. Ellis was evaluated at the level of primary and secondary metabolism. Examination of the teratoma (transformed shoots) cultures of two different clones (K and L) showed two different strategies for dealing with the presence of the rolB gene. Clone K showed an increased ratio of free fatty acids to lipids, superoxide dismutase activity, synthesis of the oxidised form of glutathione, and total pool of glutathione and carotenoids, in comparison to non-transformed plants (control). Clone L was characterised by increased accumulation of malondialdehyde, proline, activity of superoxide dismutase and catalase, total pool of glutathione, ratio of reduced form of glutathione to oxidised form, and accumulation of selected phenolic acids. Moreover, clone L had an enhanced ratio of total triglycerides to lipids and accumulated saccharose, fructose, glucose, and tyrosine. CONCLUSIONS: This study showed that plant transformation with the rolB oncogene derived from R. rhizogenes induces a pleiotropic effect in plant tissue after transformation. Examination of D. muscipula plant in the context of transformation with wild strains of R. rhizogenes can be a new source of knowledge about primary and secondary metabolites in transgenic organisms.


Assuntos
Agrobacterium/metabolismo , Proteínas de Bactérias/metabolismo , Droseraceae/metabolismo , Plantas Geneticamente Modificadas , Transformação Genética , Agrobacterium/genética , Proteínas de Bactérias/genética , Metabolismo dos Carboidratos , Carotenoides , Catalase/genética , Catalase/metabolismo , DNA de Plantas , Droseraceae/genética , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Metabolismo dos Lipídeos , Malondialdeído , Oncogenes , Peroxidase/genética , Peroxidase/metabolismo , Fenóis/metabolismo , Superóxido Dismutase/metabolismo , Tirosina/metabolismo
11.
Elife ; 102021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34751132

RESUMO

Encapsulin nanocompartments are an emerging class of prokaryotic protein-based organelle consisting of an encapsulin protein shell that encloses a protein cargo. Genes encoding nanocompartments are widespread in bacteria and archaea, and recent works have characterized the biochemical function of several cargo enzymes. However, the importance of these organelles to host physiology is poorly understood. Here, we report that the human pathogen Mycobacterium tuberculosis (Mtb) produces a nanocompartment that contains the dye-decolorizing peroxidase DyP. We show that this nanocompartment is important for the ability of Mtb to resist oxidative stress in low pH environments, including during infection of host cells and upon treatment with a clinically relevant antibiotic. Our findings are the first to implicate a nanocompartment in bacterial pathogenesis and reveal a new mechanism that Mtb uses to combat oxidative stress.


Assuntos
Mycobacterium tuberculosis/fisiologia , Organelas/metabolismo , Estresse Oxidativo , Peroxidase/metabolismo , Animais , Antituberculosos/farmacologia , Macrófagos/microbiologia , Camundongos Endogâmicos BALB C , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/metabolismo , Organelas/genética , Peroxidase/genética , Pirazinamida/farmacologia , Tuberculose/patologia
12.
Redox Biol ; 46: 102090, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34438259

RESUMO

Peroxidasin, a heme peroxidase, has been shown to play a role in cancer progression. mRNA expression has been reported to be upregulated in metastatic melanoma cell lines and connected to the invasive phenotype, but little is known about how peroxidasin acts in cancer cells. We have analyzed peroxidasin protein expression and activity in eight metastatic melanoma cell lines using an ELISA developed with an in-house peroxidasin binding protein. RNAseq data analysis confirmed high peroxidasin mRNA expression in the five cell lines classified as invasive and low expression in the three non-invasive cell lines. Protein levels of peroxidasin were higher in the cell lines with an invasive phenotype. Active peroxidasin was secreted to the cell culture medium, where it accumulated over time, and peroxidasin protein levels in the medium were also much higher in invasive than non-invasive cell lines. The only well-established physiological role of peroxidasin is in the formation of a sulfilimine bond, which cross-links collagen IV in basement membranes via catalyzed oxidation of bromide to hypobromous acid. We found that peroxidasin secreted from melanoma cells formed sulfilimine bonds in uncross-linked collagen IV, confirming peroxidasin activity and hypobromous acid formation. Moreover, 3-bromotyrosine, a stable product of hypobromous acid reacting with tyrosine residues, was detected in invasive melanoma cells, substantiating that their expression of peroxidasin generates hypobromous acid, and showing that it does not exclusively react with collagen IV, but also with other biomolecules.


Assuntos
Melanoma , Peroxidase , Linhagem Celular , Proteínas da Matriz Extracelular/genética , Humanos , Melanoma/genética , Peroxidase/genética , Peroxidasina
13.
Pharmacol Rep ; 73(5): 1448-1456, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34383255

RESUMO

BACKGROUND: The pathogenesis of acute pancreatitis (AP) initiation and progression is still unknown, and effective treatment is limited to supportive care. Many phytochemicals have the potential to alleviate AP symptoms and may be a useful and effective supplement to standard AP treatment. The objective of the study was to examine the potential role of chlorogenic acid (CGA), a polyphenol known for anti-inflammatory effect, in the treatment of experimental AP in mice. METHODS: Two intraperitoneal (ip) injections of L-arginine (dosage 400 mg/100 g BW) were given 1 h apart to generate the AP murine model. Mice were separated into two experimental groups after 12 h from the first L-arginine injection: AP mice treated with CGA (oral gavage (po) every 12 h; 20 mg/kg BW) and non-treated AP mice (po vehicle, 5% dimethyl sulfoxide every 12 h). Every 12 h, control mice were given an equivalent volume of vehicle. At 72 h, mice were slaughtered. Histology, as well as myeloperoxidase (MPO) and amylase activity assays, were performed on pancreatic tissues. RESULTS: In murine mouse model of AP po administration of CGA decreased MPO vs. AP (40.40 ± 2.10 U vs. 7.39 ± 0.34; p < 0.001) as well as amylase activity vs. AP (1444 ± 56 mU/mL vs. 3340 ± 144 mU/mL, Fig. 2B; p < 0.001). When comparing CGA mice to AP mice, histological research demonstrated that the severity of AP was reduced following CGA treatment. CONCLUSIONS: The current study found that CGA might have anti-inflammatory effect on L-arginine-induced pancreatitis. Dietary intervention with CGA may be advised as a supportive treatment for AP, according to our findings.


Assuntos
Ácido Clorogênico/uso terapêutico , Inflamação/tratamento farmacológico , Pancreatite/tratamento farmacológico , Animais , Arginina/toxicidade , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pancreatite/induzido quimicamente , Peroxidase/genética , Peroxidase/metabolismo , Distribuição Aleatória
14.
PLoS One ; 16(7): e0254632, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34280220

RESUMO

Superoxide radicals and other reactive oxygen species (ROS) are implicated in influenza A virus-induced inflammation. In this in vitro study, we evaluated the effects of TG6-44, a novel quinazolin-derived myeloperoxidase-specific ROS inhibitor, on influenza A virus (A/X31) infection using THP-1 lung monocytic cells and freshly isolated peripheral blood mononuclear cells (PBMC). TG6-44 significantly decreased A/X31-induced ROS and virus-induced inflammatory mediators in THP-1 cells (IL-6, IFN-γ, MCP-1, TNF-α, MIP-1ß) and in human PBMC (IL-6, IL-8, TNF-α, MCP-1). Interestingly, TG6-44-treated THP-1 cells showed a decrease in percent cells expressing viral nucleoprotein, as well as a delay in translocation of viral nucleoprotein into the nucleus. Furthermore, in influenza A virus-infected cells, TG6-44 treatment led to suppression of virus-induced cell death as evidenced by decreased caspase-3 activation, decreased proportion of Annexin V+PI+ cells, and increased Bcl-2 phosphorylation. Taken together, our results demonstrate the anti-inflammatory and anti-infective effects of TG6-44.


Assuntos
Mediadores da Inflamação/farmacologia , Inflamação/tratamento farmacológico , Vírus da Influenza A/efeitos dos fármacos , Peroxidase/antagonistas & inibidores , Espécies Reativas de Oxigênio/antagonistas & inibidores , Sobrevivência Celular/efeitos dos fármacos , Quimiocina CCL2/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/patologia , Inflamação/virologia , Vírus da Influenza A/patogenicidade , Interleucina-6/genética , Interleucina-8/genética , Leucócitos Mononucleares/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Peroxidase/genética , Quinazolinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Superóxidos/metabolismo , Fator de Necrose Tumoral alfa/genética
15.
J Hazard Mater ; 417: 126049, 2021 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-34000701

RESUMO

To evaluate the multiplicity of reactions to toxic metalloid arsenic (As) with specific emphasis on the role of plant peroxidases, a model plant Nicotiana benthamiana was cultivated in in vitro conditions at various doses of As (applied as As5+ up to 80 µM). After 28-day cultivation, several physiological characteristics such as plant growth, photosynthetic pigment concentration, As concentration, peroxidase (POX) expression levels, and POX activity were evaluated. A newly sequenced gene for POX has been identified, that belongs to the Class III plant extracellular peroxidases, and its relationship to the genus Solanum as the most relative species has been confirmed. In the control and selected As treatments (20As, 50As, and 80As), newly identified POX expression and POX activity were continuously detected during the whole cultivation period. The plant reactions to As stress were distinguished into three groups: low As, moderate As, and high As. A tight relationship was found between the photosynthetic pigments and POX expression. Accumulation of As in roots and shoots showed correlations with POX activities. The results showed that the diversity of reactions depends on As dose and time exposure and indicate an interface of peroxidase functional role with other physiological processes in plants suffering from As toxicity.


Assuntos
Arsênio , Peroxidase , Arsênio/toxicidade , Catalase/metabolismo , Estresse Oxidativo , Peroxidase/genética , Peroxidase/metabolismo , Peroxidases/genética , Peroxidases/metabolismo , Raízes de Plantas/metabolismo , Nicotiana/metabolismo
16.
Biochem Pharmacol ; 188: 114544, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33831396

RESUMO

Although YM155 is reported to suppress survivin (also known as BIRC5) expression in cancer cells, its cytotoxic mechanism in human acute myeloid leukemia (AML) cells has not been clearly resolved. In this study, we analyzed the mechanistic pathways that modulate the sensitivity of human AML U937 and HL-60 cells to YM155. YM155 induced apoptosis in AML cells, which was characterized by p38 MAPK phosphorylation and downregulation of survivin and MCL1 expression. Phosphorylated p38 MAPK causes autophagy-mediated Sp1 degradation, thereby inhibiting the transcription of survivin and MCL1. The reduction of survivin and MCL1 levels further facilitated Sp1 protein degradation through autophagy. The restoration of Sp1, survivin, or MCL1 expression protected U937 and HL-60 cells from YM155-mediated cytotoxicity. U937 and HL-60 cells were continuously exposed to hydroquinone (HQ) to generate U937/HQ and HL-60/HQ cells, which showed increased SLC35F2 expression. The increase in SLC35F2 expression led to an increase in the sensitivity of U937/HQ cells to YM155-mediated cytotoxicity, whereas no such effect was observed in HL-60/HQ cells. Of note, myeloperoxidase (MPO) activity in HL-60 and HL-60/HQ cells enhanced YM155 cytotoxicity in these cells, and the enforced expression of MPO also increased the sensitivity of U937 cells to YM155. Taken together, we conclude that p38 MAPK-modulated autophagy inhibits Sp1-mediated survivin and MCL1 expression, which, in turn, leads to the death of U937 and HL-60 cells following YM155 treatment. In addition, our data indicate that SLC35F2 increases the sensitivity of U937 cells to YM155-mediated cytotoxicity, whereas MPO enhances YM155 cytotoxicity in U937 and HL-60 cells.


Assuntos
Imidazóis/toxicidade , Proteínas de Membrana Transportadoras/biossíntese , Proteína de Sequência 1 de Leucemia de Células Mieloides/biossíntese , Naftoquinonas/toxicidade , Peroxidase/biossíntese , Fator de Transcrição Sp1/biossíntese , Survivina/biossíntese , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Citotoxinas/toxicidade , Relação Dose-Resposta a Droga , Regulação Neoplásica da Expressão Gênica , Células HL-60 , Humanos , Leucemia/genética , Leucemia/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Peroxidase/genética , Fator de Transcrição Sp1/antagonistas & inibidores , Fator de Transcrição Sp1/genética , Survivina/antagonistas & inibidores , Survivina/genética , Células U937
17.
Mol Biol Rep ; 48(4): 3423-3430, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33928442

RESUMO

Inflammatory bowel disease (IBD) is considered a chronic inflammatory gastrointestinal disease with treatment options which exhibit low efficacies and lead to considerable side effects. Hence, the challenge to alleviate IBD complications is remained to be resolved. The purpose of this study is evaluating anti-inflammatory impacts of gabapentin on acetic acid-induced colitis in rats. Colitis was induced by the instillation of 2 mL of 3% acetic acid solution into rat's colons. Rats were randomly allocated into six groups including normal group, colitis control group, gabapentin-treated groups (25, 50, and 100 mg/kg; i.p.), and dexamethasone-treated group (1 mg/kg; i.p.). Based on the macroscopic assessment besides histological and biochemical findings [myeloperoxidase (MPO), pro-inflammatory cytokines], the efficacy of gabapentin was investigated. Gabapentin (50 and 100 mg/kg), and dexamethasone considerably reduced macroscopic and microscopic colonic lesions induced by acetic acid in rats in comparison with colitis control group. These results were confirmed by reduced levels of MPO activity and colonic concentrations of interleukin-6, interleukin-1 beta, and tumor necrosis factor-alpha, in inflamed colon tissue. Our data demonstrated that gabapentin exerts profitable impacts in experimental colitis that might be ascribed to its anti-inflammatory features and thus can be a potential therapeutic agent for IBD treatment.


Assuntos
Anti-Inflamatórios/farmacologia , Colite/tratamento farmacológico , Citocinas , Gabapentina/farmacologia , Ácido Acético/toxicidade , Animais , Colite/induzido quimicamente , Colite/genética , Colite/metabolismo , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/patologia , Regulação da Expressão Gênica , Interleucina-1beta/genética , Interleucina-6/genética , Masculino , Peroxidase/genética , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfa/genética
18.
J Mol Neurosci ; 71(9): 1914-1932, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33864596

RESUMO

Dysregulation of the oxidant-antioxidant system contributes to the pathogenesis of cerebral stroke (CS). Epigenetic changes of redox homeostasis genes, such as glutamate-cysteine ligase (GCLM), glutathione-S-transferase-P1 (GSTP1), thioredoxin reductase 1 (TXNRD1), and myeloperoxidase (MPO), may be biomarkers of CS. In this study, we assessed the association of DNA methylation levels of these genes with CS and clinical features of CS. We quantitatively analyzed DNA methylation patterns in the promoter or regulatory regions of 4 genes (GCLM, GSTP1, TXNRD1, and MPO) in peripheral blood leukocytes of 59 patients with CS in the acute phase and in 83 relatively healthy individuals (controls) without cardiovascular and cerebrovascular diseases. We found that in both groups, the methylation level of CpG sites in genes TXNRD1 and GSTP1 was ≤ 5%. Lower methylation levels were registered at a CpG site (chr1:94,374,293, GRCh37 [hg19]) in GCLM in patients with ischemic stroke compared with the control group (9% [7%; 11.6%] (median and interquartile range) versus 14.7% [10.4%; 23%], respectively, p < 0.05). In the leukocytes of patients with CS, the methylation level of CpG sites in the analyzed region of MPO (chr17:56,356,470, GRCh3 [hg19]) on average was significantly lower (23.5% [19.3%; 26.7%]) than that in the control group (35.6% [30.4%; 42.6%], p < 0.05). We also found increased methylation of MPO in smokers with CS (27.2% [23.5%; 31.1%]) compared with nonsmokers with CS (21.7% [18.1%; 24.8%]). Thus, hypomethylation of CpG sites in GCLM and MPO in blood leukocytes is associated with CS in the acute phase.


Assuntos
Metilação de DNA , Leucócitos/metabolismo , Peroxidase/genética , Acidente Vascular Cerebral/genética , Biomarcadores/sangue , Feminino , Glutamato-Cisteína Ligase/genética , Glutationa S-Transferase pi/genética , Humanos , Masculino , Pessoa de Meia-Idade , Fumar/epidemiologia , Fumar/genética , Acidente Vascular Cerebral/sangue , Acidente Vascular Cerebral/epidemiologia , Tiorredoxina Redutase 1/genética
19.
Mediators Inflamm ; 2021: 1315797, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33642941

RESUMO

Stroke is the second leading cause of death worldwide. Patients who have a stroke are susceptible to many gastrointestinal (GI) complications, such as dysphagia, GI bleeding, and fecal incontinence. However, there are few studies focusing on the GI tract after stroke. The current study is to investigate the changes of intestinal structure and function in mice after ischemic stroke. Ischemic stroke was made as a disease model in mice, in which brain and ileal tissues were collected for experiments on the 1st and 7th day after stroke. Intestinal motility of mice was inhibited, and intestinal permeability was increased after stroke. Hematoxylin-eosin (HE) staining showed the accumulation of leucocytes in the intestinal mucosa. Myeloperoxidase (MPO) activity and inflammatory proteins (nuclear factor kappa-B (NF-κB), inducible nitric oxide synthase (iNOS)) in the small intestine were significantly increased in mice after stroke. The expression of tight junction (TJ) proteins (zonula occludens-1 (ZO-1), occludin, and claudin-1) was downregulated, and transmission electron microscopy (TEM) showed broken TJ of the intestinal mucosa after stroke. Glial fibrillary acidic protein (GFAP) and the apoptosis-associated proteins (tumor necrosis factor (TNF-α), caspase-3, and cleaved caspase-3) were notably upregulated as well. Ischemic stroke led to negative changes on intestinal structure and function. Inflammatory mediators and TNF-α-induced death receptor signaling pathways may be involved and disrupt the small intestinal barrier function. These results suggest that stroke patients should pay attention to GI protection.


Assuntos
Intestinos/fisiologia , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/fisiopatologia , Actinas/genética , Actinas/metabolismo , Animais , Apoptose/fisiologia , Western Blotting , Claudina-1/genética , Claudina-1/metabolismo , Inflamação/metabolismo , Inflamação/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Neuroglia/metabolismo , Neuroglia/fisiologia , Ocludina/genética , Ocludina/metabolismo , Peroxidase/genética , Peroxidase/metabolismo , Proteína da Zônula de Oclusão-1/genética , Proteína da Zônula de Oclusão-1/metabolismo
20.
J Pediatr Hematol Oncol ; 43(7): e941-e945, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33661166

RESUMO

This study was performed to investigate the gene polymorphisms of the myeloperoxidase (MPO) enzyme and to determine whether MPO gene polymorphisms influence the response to iron therapy in pediatric patients with iron deficiency anemia (IDA). In this case-control study, 50 Turkish children with IDA and 50 healthy controls were enrolled. Three MPO gene alleles were selected for genotyping in the study: GG, AG, and AA. The relationships of alleles with IDA were analyzed and compared in patients and controls. Pretreatment and posttreatment laboratory parameters and gene polymorphisms were compared in the patient group. There was a significant difference between patients with IDA and controls regarding genotype frequencies of the AA, GG, and AG alleles (P=0.005). However, the AG allele was found to be associated with variations in hemoglobin, red blood cell, hematocrit, mean corpuscular volumes, and mean corpuscular Hb concentrations levels. The frequency of AA, GG, and AG alleles of the MPO gene was potentially associated with changes in iron metabolism and the AG allele led to variations in various hemogram parameters.


Assuntos
Anemia Ferropriva/patologia , Biomarcadores/análise , Peroxidase/genética , Polimorfismo Genético , Adolescente , Alelos , Anemia Ferropriva/epidemiologia , Anemia Ferropriva/genética , Estudos de Casos e Controles , Criança , Feminino , Seguimentos , Genótipo , Humanos , Masculino , Prognóstico , Turquia/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA