Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomed Res Int ; 2019: 7127869, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31032360

RESUMO

Natural enzyme mimics have attracted considerable attention due to leakage of enzymes and their easy denaturation during their storage and immobilization procedure. Here in this study, for the first time, a new iron oxide hydroxide, ferrihydrite - Fe1.44O0.32 (OH) 3.68 magnetic nanoparticles were synthesized by bacterial strain named Comamonas testosteroni. The characterization of the produced magnetic nanoparticles was confirmed by transmission electron microscopy (TEM), Fourier-transform spectroscopy (FTIR), X-ray diffraction (XRD), and magnetization hysteresis loops. Further, these extracted nanoparticles were proven to have biogenic magnetic behavior and to exhibit enhanced peroxidase-like activity. It is capable of catalyzing the oxidation of 3, 3', 5, 5'-Tetramethylbenzidine (TMB) by H2O2 to produce blue color (typical color reactions). Catalysis was examined to follow Michaelis-Menton kinetics and the good affinity to both H2O2 and TMB. The K m value of the Fe1.44O0.32 (OH) 3.68 with H2O2 and TMB as the substrate was 0.0775 and 0.0155 mM, respectively, which were lower than that of the natural enzyme (HRP). Experiments of electron spin resonance (ESR) spectroscopy proved that the BMNPs could catalyze H2O2 to produce hydroxyl radicals. As a new peroxidase mimetic, the BMNPs were exhibited to offer a simple, sensitive, and selective colorimetric method for determination of H2O2 and glucose and efficiently catalyze the detection of glucose in real blood samples.


Assuntos
Comamonas testosteroni/química , Glucose/química , Peróxido de Hidrogênio/química , Peroxidase/química , Benzidinas/química , Biomimética , Técnicas Biossensoriais , Catálise , Espectroscopia de Ressonância de Spin Eletrônica , Compostos Férricos/síntese química , Compostos Férricos/química , Compostos Férricos/farmacologia , Glucose/isolamento & purificação , Peróxido de Hidrogênio/isolamento & purificação , Cinética , Nanopartículas de Magnetita , Microscopia Eletrônica de Transmissão , Oxirredução/efeitos dos fármacos , Peroxidase/síntese química , Peroxidase/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
2.
J Inorg Biochem ; 103(3): 381-8, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19135258

RESUMO

Mimetics of antioxidant enzymes such as superoxide dismutases (SOD) or catalases are reported as potential new drugs able to reduce oxidative stress damage. In particular, manganese(III) complexes of salen-type ligands have been studied as both SOD and catalase mimetics. In this paper, we report the synthesis of two novel conjugates of salen-type ligands with the beta-cyclodextrin, the 6-deoxy-6-[(S-cysteamidopropyl(1,2-diamino)N,N'-bis(salicylidene))]-beta-cyclodextrin and the 6-deoxy-6-[(S-cysteamidopropyl(1,2-diamino)N,N'-bis(3-methoxysalicylidene))]-beta-cyclodextrin, their spectroscopic characterization, and the synthesis and the characterization of their manganese(III) complexes. The SOD-like activity of the metal complexes was investigated by the indirect Fridovich method. The catalase like activity was tested using a Clark-type oxygen electrode. The peroxidase activity was tested using the ABTS (2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)) assay. The glycoconjugation of salen-manganese(III) complexes yields compounds with enhanced SOD activity. These complexes also show catalase and peroxidase activities higher than the simple salen complexes (EUK 113 and EUK 108).


Assuntos
Materiais Biomiméticos/química , Catalase/química , Cobre/química , Manganês/química , Superóxido Dismutase/química , beta-Ciclodextrinas/química , Materiais Biomiméticos/síntese química , Catalase/síntese química , Estresse Oxidativo , Peroxidase/síntese química , Peroxidase/química , Superóxido Dismutase/síntese química , beta-Ciclodextrinas/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA