Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Clin Immunol ; 263: 110228, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38663494

RESUMO

Asthma is a heterogeneous disease characterized by chronic airway inflammation, reversible airflow limitation, and airway remodeling. Eosinophil peroxidase (EPX) is the most abundant secondary granule protein unique to activated eosinophils. In this study, we aimed to illustrate the effect of EPX on the epithelial-mesenchymal transition (EMT) in BEAS-2B cells. Our research found that both EPX and ADAM33 were negatively correlated with FEV1/FVC and FEV1%pred, and positively correlated with IL-5 levels. Asthma patients had relatively higher levels of ADAM33 and EPX compared to the healthy control group. The expression of TSLP, TGF-ß1 and ADAM33 in the EPX intervention group was significantly higher. Moreover, EPX could promote the proliferation, migration and EMT of BEAS-2B cells, and the effect of EPX on various factors was significantly improved by the PI3K inhibitor LY294002. The findings from this study could potentially offer a novel therapeutic target for addressing airway remodeling in bronchial asthma, particularly focusing on EMT.


Assuntos
Remodelação das Vias Aéreas , Asma , Brônquios , Peroxidase de Eosinófilo , Células Epiteliais , Transição Epitelial-Mesenquimal , Fator de Crescimento Transformador beta1 , Humanos , Asma/metabolismo , Asma/patologia , Asma/fisiopatologia , Asma/imunologia , Masculino , Feminino , Células Epiteliais/metabolismo , Peroxidase de Eosinófilo/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Pessoa de Meia-Idade , Adulto , Brônquios/patologia , Interleucina-5/metabolismo , Cromonas/farmacologia , Citocinas/metabolismo , Linhagem Celular , Linfopoietina do Estroma do Timo , Proliferação de Células , Movimento Celular , Morfolinas/farmacologia , Proteínas ADAM
2.
Ann Allergy Asthma Immunol ; 132(6): 713-722.e4, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38382675

RESUMO

BACKGROUND: The pathogenesis of chronic rhinosinusitis with nasal polyps (CRSwNP) with comorbid asthma remains unclear. OBJECTIVE: To assess upper and lower airway unity and identify a possible common pathogenesis in CRSwNP with asthma. METHODS: This study analyzed the expression of proteins and metabolites in nasal lavage fluid cells (NLFCs) and induced sputum cells (ISCs). Differentially expressed proteins and their function-related metabolites in the upper and lower airways of patients having CRSwNP with or without asthma were identified; relevant signaling pathways were analyzed, and key pathway-related proteins were identified. Parallel reaction monitoring was used to verify these target proteins. RESULTS: Protein or metabolite expression between NLFCs and ISCs was highly correlated and conservative on the basis of expression profiles and weighted gene coexpression network analysis. There were 17 differentially coexpressed proteins and their function-related 13 metabolites that were identified in the NLFCs and ISCs of CRSwNP, whereas 11 proteins and 11 metabolites were identified in CRSwNP with asthma. An asthma pathway was involved in the copathogenesis of upper and lower airways in whether CRSwNP or CRSwNP with asthma. The asthma pathway-related proteins proteoglycan 2 and eosinophil peroxidase, as the core of the protein-metabolism interaction networks between the upper and lower airways, were both highly coexpressed in NLFCs and ISCs in patients having either CRSwNP or CRSwNP with asthma by parallel reaction monitoring validation. CONCLUSION: Proteomics and metabolomics reveal upper and lower airway unity. Asthma pathway-related proteins proteoglycan 2 and eosinophil peroxidase from the upper airway could be used to assess the potential risk of lower airway dysfunction in CRSwNP.


Assuntos
Asma , Metabolômica , Pólipos Nasais , Proteômica , Rinite , Sinusite , Humanos , Sinusite/metabolismo , Asma/metabolismo , Rinite/metabolismo , Proteômica/métodos , Doença Crônica , Feminino , Pólipos Nasais/metabolismo , Masculino , Adulto , Pessoa de Meia-Idade , Escarro/metabolismo , Líquido da Lavagem Nasal/química , Peroxidase de Eosinófilo/metabolismo , Proteoglicanas/metabolismo , Rinossinusite
3.
Front Immunol ; 13: 946643, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36177009

RESUMO

Objective: Eosinophils are hallmarks in allergic type 2 inflammation and are known to release cytotoxic granule proteins that contribute to inflammation. Eosinophils develop in the bone marrow from hematopoietic stem cells and once mature, have a limited lifespan in culture, making them difficult to study ex vivo. IL-33 has increasingly been shown as a key regulator of type 2 inflammation via signaling through its receptor, ST2. The present study was conducted to detail a method of eosinophil differentiation from hematopoietic stem cells and determine the response to IL-33. Methods: CD34+ and CD14+ cells were isolated from donor apheresis cones and differentiated into eosinophils or macrophage controls, respectively. Morphologic, transcriptional and protein analyses were performed to validate this method of eosinophil differentiation. The effect of IL-33 on differentiated eosinophils was assessed using qPCR, immunofluorescence, and multiplex cytokine array. Results: CD34 differentiated eosinophils appear morphologically similar by H&E and express eosinophil peroxidase (EPX) protein as well as the conventional eosinophil transcripts EPX, CLC, and MBP. In addition, differentiated eosinophils expressed both isoforms of the IL-33 receptor, ST2L and sST2 throughout the differentiation process. Transcript levels of both IL-33 receptors were up-regulated by treatment with IL-33 at earlier timepoints in the differentiation. These cells also expressed IL-4 and IL-13 mRNA which were up-regulated by IL-33 as well. Notably, IL-13 expression was significantly higher with IL-33 treatment compared to media control at every timepoint measured. IL-33 significantly increased cellular secretion of IL-13 protein at most timepoints throughout differentiation. IL-8, LIF, CCL1, CCL5, CCL7, and CCL8 were also significantly secreted after IL-33 stimulation. Conclusions: Our findings suggest that CD34 differentiated eosinophils are morphologically and phenotypically similar to peripheral eosinophils. The release of specific cytokines in direct response to IL-33 may contribute to the pathogenesis of type 2 inflammation and facilitates new avenues for studying eosinophils as effector cells in vitro.


Assuntos
Eosinófilos , Interleucina-33 , Antígenos CD34/metabolismo , Citocinas/metabolismo , Peroxidase de Eosinófilo/metabolismo , Eosinófilos/metabolismo , Humanos , Inflamação/metabolismo , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Interleucina-13/metabolismo , Interleucina-33/metabolismo , Interleucina-4/metabolismo , Interleucina-8/metabolismo , RNA Mensageiro/metabolismo
4.
Nutrients ; 14(18)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36145082

RESUMO

The intestine requires a great deal of energy to maintain its health and function; thus, energy deficits in the intestinal mucosa may lead to intestinal damage. Aspartate (Asp) is an essential energy source in the intestinal mucosa and plays a vital part in gut health. In the current study, we hypothesized that dietary supplementation of Asp could alleviate DSS-induced colitis via improvement in the colonic morphology, oxidative stress, cell apoptosis, and microbiota composition in a mouse model of dextran. Asp administration decreased the disease activity index, apoptosis, myeloperoxidase, eosinophil peroxidase, and proinflammatory cytokine (IL-1ß and TNF-α) concentrations in the colonic tissue, but improved the body weight, average daily food intake, colonic morphology, and antioxidant-related gene (GPX1 and GPX4) expression in DSS-treated mice. Expression levels of RIPK1 and RIPK3 were increased in the colon following Asp administration in the DSS-induced mice, whereas the MLKL protein expression was decreased. 16S rRNA sequencing showed that Asp treatment increased the abundance of Lactobacillus and Alistipes at the gene level, and Bacteroidetes at the phylum level, but decreased the abundance of Actinobacteria and Verrucomicrobia at the phylum level. Asp may positively regulate the recovery of DSS-induced damage by improving the immunity and antioxidative capacity, regulating RIPK signaling and modulating the gut microbiota composition.


Assuntos
Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Animais , Antioxidantes/metabolismo , Ácido Aspártico/metabolismo , Colite/induzido quimicamente , Colite Ulcerativa/microbiologia , Colo/metabolismo , Citocinas/genética , Sulfato de Dextrana , Modelos Animais de Doenças , Peroxidase de Eosinófilo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Peroxidase/metabolismo , RNA Ribossômico 16S/genética , Fator de Necrose Tumoral alfa/metabolismo
5.
Ear Nose Throat J ; 100(5_suppl): 738S-745S, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32077309

RESUMO

BACKGROUND: Aspirin-exacerbated respiratory disease (AERD) is characterized by eosinophilic rhinosinusitis, nasal polyposis, aspirin sensitivity, and asthma. Aims/Objectives: This study aims to identify a mechanism to target for the future treatment of AERD via the elucidation of the effect of systemic steroids on the expression of hematopoietic prostaglandin D2 synthase (HPGDS) and chemotaxic prostaglandin D2 (DP2) receptor relative to eosinophil activation in the nasal polyps of patients with AERD. MATERIALS AND METHODS: Among 37 patients undergoing endoscopic sinus surgery, 28 received systemic steroids preoperatively. Nasal polyps were harvested from all 37 patients. After routine processing of paraffin sections, immunohistochemistry was performed using specific antibodies for HPGDS, eosinophil peroxidase (EPX), and DP2. RESULTS: Expression of HPGDS, DP2, and EPX by eosinophils was higher and more frequent in patients with non-preoperative steroid therapy. Likewise, HPGDS and DP2 were highly expressed in activated eosinophils in the nasal polyps, but not in normal eosinophils. CONCLUSION AND SIGNIFICANCE: This study provides clear evidence that systemic steroid therapy inhibits eosinophil activation and decreases HPGDS and DP2 expression in patients with AERD, indicating a reduction in prostaglandin D2 production and hence control hyperplasia of nasal polyps.


Assuntos
Corticosteroides/uso terapêutico , Asma Induzida por Aspirina/tratamento farmacológico , Eosinófilos/efeitos dos fármacos , Oxirredutases Intramoleculares/metabolismo , Pólipos Nasais/tratamento farmacológico , Receptores Imunológicos/metabolismo , Receptores de Prostaglandina/metabolismo , Adulto , Idoso , Asma Induzida por Aspirina/metabolismo , Inibição de Migração Celular , Inibidores de Ciclo-Oxigenase/efeitos adversos , Regulação para Baixo/efeitos dos fármacos , Peroxidase de Eosinófilo/metabolismo , Eosinófilos/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pólipos Nasais/metabolismo
6.
FASEB J ; 34(3): 4702-4717, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32030825

RESUMO

Serine has critical roles in maintaining cell growth and redox balance in cancer cells. However, the role of exogenous serine played in oxidative response and proliferation in normal mammalian intestine need to be further elucidated. We used a mouse model and intestinal porcine epithelial cells (IPEC-J2) to reveal that exogenous serine deficiency did not lead to redox imbalance and inhibition of proliferation in the intestine. However, serine deficiency exacerbated oxidative stress, mitochondrial dysfunction, apoptosis, and inhibition of proliferation in IPEC-J2 cells challenged by hydrogen peroxide, while serine supplementation rescued redox imbalance and those proliferation defects. Importantly, serine supplementation restored the glutathione content and decreased the accumulation of reactive oxygen species, while no such effects were observed when glutathione synthesis was inhibited. Additionally, serine supplementation increased nuclear nrf2 expression in IPEC-J2 cells. These results suggested that serine alleviates oxidative stress through supporting glutathione synthesis and activating nrf2 signaling. We further found that serine supplementation activated the mTOR pathway, while inhibition of mTOR diminished the effects of serine on promoting proliferation, suggesting critical roles of the mTOR pathway in this context. Taken together, our study underlines the importance of serine in the maintenance of redox status and proliferation in the intestine and reveals a novel potential mechanism that mediates these effects.


Assuntos
Proliferação de Células/fisiologia , Serina/metabolismo , Animais , Ciclo Celular/fisiologia , Linhagem Celular , Sobrevivência Celular/fisiologia , Peroxidase de Eosinófilo/metabolismo , Glutationa/metabolismo , Mucosa Intestinal/metabolismo , L-Lactato Desidrogenase/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Peroxidase/metabolismo , Transdução de Sinais , Suínos , Serina-Treonina Quinases TOR/metabolismo
7.
J Cell Physiol ; 235(1): 267-280, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31206674

RESUMO

Studies have shown autophagy participation in the immunopathology of inflammatory diseases. However, autophagy role in asthma and in eosinophil extracellular traps (EETs) release is poorly understood. Here, we attempted to investigate the autophagy involvement in EETs release and in lung inflammation in an experimental asthma model. Mice were sensitized with ovalbumin (OVA), followed by OVA challenge. Before the challenge with OVA, mice were treated with an autophagy inhibitor, 3-methyladenine (3-MA). We showed that 3-MA treatment decreases the number of eosinophils, eosinophil peroxidase (EPO) activity, goblet cells hyperplasia, proinflammatory cytokines, and nuclear factor kappa B (NFκB) p65 immunocontent in the lung. Moreover, 3-MA was able to improve oxidative stress, mitochondrial energy metabolism, and Na+ , K+ -ATPase activity. We demonstrated that treatment with autophagy inhibitor 3-MA reduced EETs formation in the airway. On the basis of our results, 3-MA treatment can be an interesting alternative for reducing lung inflammation, oxidative stress, mitochondrial damage, and EETs formation in asthma.


Assuntos
Adenina/análogos & derivados , Antiasmáticos/farmacologia , Asma/tratamento farmacológico , Autofagia/imunologia , Armadilhas Extracelulares/imunologia , Adenina/farmacologia , Animais , Asma/induzido quimicamente , Asma/patologia , Líquido da Lavagem Broncoalveolar/citologia , Citocinas/metabolismo , Modelos Animais de Doenças , Metabolismo Energético/efeitos dos fármacos , Peroxidase de Eosinófilo/metabolismo , Eosinófilos/imunologia , Feminino , Células Caliciformes/patologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/metabolismo , Ovalbumina , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição RelA/metabolismo
8.
J Cell Physiol ; 234(12): 23633-23646, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31180592

RESUMO

In asthma, there are high levels of inflammatory mediators, reactive oxygen species (ROS), and eosinophil extracellular traps (EETs) formation in airway. Here, we attempted to investigate the ROS involvement in EETs release and airway inflammation in OVA-challenged mice. Before the intranasal challenge with ovalbumin (OVA), animals were treated with two ROS inhibitors, N-acetylcysteine (NAC) or diphenyleneiodonium (DPI). We showed that NAC treatment reduced inflammatory cells in lung. DPI and NAC treatments reduced eosinophil peroxidase (EPO), goblet cells hyperplasia, proinflammatory cytokines, NFκB p65 immunocontent, and oxidative stress in lung. However, only the NAC treatment improved mitochondrial energy metabolism. Moreover, the treatments with DPI and NAC reduced EETs release in airway. This is the first study to show that ROS are needed for EETs formation in asthma. Based on our results, NAC and DPI treatments can be an interesting alternative for reducing airway inflammation, mitochondrial damage, and EETs release in asthma.


Assuntos
Asma/patologia , Eosinófilos/metabolismo , Armadilhas Extracelulares/metabolismo , Pulmão/patologia , Espécies Reativas de Oxigênio/metabolismo , Acetilcisteína/farmacologia , Animais , Citocinas/metabolismo , Metabolismo Energético/fisiologia , Peroxidase de Eosinófilo/metabolismo , Feminino , Células Caliciformes/patologia , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/metabolismo , Oniocompostos/farmacologia , Ovalbumina/toxicidade , Estresse Oxidativo/fisiologia , Fator de Transcrição RelA/metabolismo
9.
Chem Biol Interact ; 305: 48-53, 2019 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-30922765

RESUMO

The formation of isonicotinyl-nicotinamide adenine dinucleotide (INH-NAD+) by the mycobacterial catalase-peroxidase enzyme, KatG, was known to be the major component of the mode of action of isoniazid (INH), an anti-tuberculosis drug. However, there are other enzymes that may catalyze this reaction. We have previously reported that neutrophil myeloperoxidase (MPO) is capable of metabolizing INH through the formation of INH-NAD+ adduct, which could be attributed to being a possible mode of action of INH. However, eosinophilic infiltration of the lungs is more pronounced and characteristic of granulomas in Mycobacterium tuberculosis-infected patients. Thus, the aim of the present study is to investigate the role of eosinophil peroxidase (EPO), a key eosinophil enzyme, during INH metabolism and the formation of its active metabolite, INH-NAD+ using purified EPO and eosinophils isolated from asthmatic donors. UV-Vis spectroscopy revealed INH oxidation by EPO led to a new product (λmax = 326 nm) in the presence of NAD+. This adduct was confirmed to be INH-NAD+ using LC-MS analysis where the intact adduct was detected (m/z = 769). Furthermore, EPO catalyzed the oxidation of INH and formed several free radical intermediates as assessed by electron paramagnetic resonance (EPR) spin-trapping; a carbon-centred radical, which is considered to be the reactive metabolite that binds with NAD+, was found when superoxide dismutase was included in the reaction. Our findings suggest that eosinophilic EPO may also play a role in the pharmacological activity of INH through the formation of INH-NAD+ adduct, and supports further evidence that human cells and enzymes are capable of producing the active metabolite involved in tuberculosis treatment.


Assuntos
Peroxidase de Eosinófilo/metabolismo , Eosinófilos/enzimologia , Isoniazida/análogos & derivados , Isoniazida/metabolismo , NAD/análogos & derivados , NAD/metabolismo , Asma/metabolismo , Asma/patologia , Cromatografia Líquida de Alta Pressão , Espectroscopia de Ressonância de Spin Eletrônica , Eosinófilos/química , Eosinófilos/efeitos dos fármacos , Humanos , Isoniazida/sangue , Isoniazida/química , Isoniazida/farmacologia , Espectrometria de Massas , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/patogenicidade , NAD/sangue , NAD/química , Oxirredução , Fator de Ativação de Plaquetas/farmacologia , Superóxido Dismutase/metabolismo
10.
Am J Pathol ; 189(1): 132-146, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30553437

RESUMO

Cartilage oligomeric matrix protein (COMP) is a large, multifunctional extracellular protein that, when mutated, is retained in the rough endoplasmic reticulum (ER). This retention elicits ER stress, inflammation, and oxidative stress, resulting in dysfunction and death of growth plate chondrocytes. While identifying the cellular pathologic mechanisms underlying the murine mutant (MT)-COMP model of pseudoachondroplasia, increased midline-1 (MID1) expression and mammalian target of rapamycin complex 1 (mTORC1) signaling was found. This novel role for MID1/mTORC1 signaling was investigated since treatments shown to repress the pathology also reduced Mid1/mTORC1. Although ER stress-inducing drugs or tumor necrosis factor α (TNFα) in rat chondrosarcoma cells increased Mid1, oxidative stress did not, establishing that ER stress- or TNFα-driven inflammation alone is sufficient to elevate MID1 expression. Since MID1 ubiquitinates protein phosphatase 2A (PP2A), a negative regulator of mTORC1, PP2A was evaluated in MT-COMP growth plate chondrocytes. PP2A was decreased, indicating de-repression of mTORC1 signaling. Rapamycin treatment in MT-COMP mice reduced mTORC1 signaling and intracellular retention of COMP, and increased proliferation, but did not change inflammatory markers IL-16 and eosinophil peroxidase. Lastly, mRNA from tuberous sclerosis-1/2-null mice brain tissue exhibiting ER stress had increased Mid1 expression, confirming the relationship between ER stress and MID1/mTORC1 signaling. These findings suggest a mechanistic link between ER stress and MID1/mTORC1 signaling that has implications extending to other conditions involving ER stress.


Assuntos
Acondroplasia , Proteína de Matriz Oligomérica de Cartilagem , Sistemas de Liberação de Medicamentos , Alvo Mecanístico do Complexo 1 de Rapamicina , Acondroplasia/tratamento farmacológico , Acondroplasia/genética , Acondroplasia/patologia , Animais , Biomarcadores/metabolismo , Proteína de Matriz Oligomérica de Cartilagem/genética , Proteína de Matriz Oligomérica de Cartilagem/metabolismo , Linhagem Celular Tumoral , Condrócitos/metabolismo , Condrócitos/patologia , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/genética , Retículo Endoplasmático Rugoso/genética , Retículo Endoplasmático Rugoso/metabolismo , Retículo Endoplasmático Rugoso/patologia , Peroxidase de Eosinófilo/genética , Peroxidase de Eosinófilo/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Interleucina-16/genética , Interleucina-16/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Transgênicos , Mutação/genética , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Proteínas/genética , Proteínas/metabolismo , Ratos , Transdução de Sinais/genética , Sirolimo/farmacologia , Proteína 1 do Complexo Esclerose Tuberosa/genética , Proteína 1 do Complexo Esclerose Tuberosa/metabolismo , Proteína 2 do Complexo Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Ubiquitina-Proteína Ligases
11.
J Am Chem Soc ; 140(37): 11771-11776, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30156836

RESUMO

The specific detection of eosinophil peroxidase (EPO) activity requires the difficult distinction between hypobromous acid generated by EPO and hypochlorous acid generated by other haloperoxidases. Here we report a fluorogenic probe that is halogenated with high kinetic selectivity (≥1200:1) for HOBr over HOCl. Heavy-atom effects do not quench the dibrominated product because of its self-assembly into emissive J-aggregates that provide a turn-on signal. Applications of this fluorogen to EPO activity assays, dipstick sensors, fluorescence imaging of EPO activity, assays of oxidative stress in cancer cells, and immune response detection in live mice are reported.


Assuntos
Peroxidase de Eosinófilo/análise , Corantes Fluorescentes/química , Imagem Óptica , Animais , Bromatos/química , Peroxidase de Eosinófilo/metabolismo , Corantes Fluorescentes/síntese química , Ácido Hipocloroso/química , Cinética , Camundongos , Estrutura Molecular , Tamanho da Partícula , Células RAW 264.7 , Propriedades de Superfície
12.
J Lipid Res ; 59(4): 696-705, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29444934

RESUMO

α-Chlorofatty aldehydes (α-ClFALDs) and α-bromofatty aldehydes (α-BrFALDs) are produced in activated neutrophils and eosinophils. This study investigated the ability of α-BrFALD and α-ClFALD to react with the thiols of GSH and protein cysteinyl residues. Initial studies showed that 2-bromohexadecanal (2-BrHDA) and 2-chlorohexadecanal (2-ClHDA) react with GSH producing the same fatty aldehyde-GSH adduct (FALD-GSH). In both synthetic and cellular reactions, FALD-GSH production was more robust with 2-BrHDA compared with 2-ClHDA as precursor. NaBr-supplemented phorbol myristate acetate (PMA)-activated neutrophils formed more α-BrFALD and FALD-GSH compared with non-NaBr-supplemented neutrophils. Primary human eosinophils, which preferentially produce hypobromous acid and α-BrFALD, accumulated FALD-GSH following PMA stimulation. Mice exposed to Br2 gas had increased levels of both α-BrFALD and FALD-GSH in the lungs, as well as elevated systemic plasma levels of FALD-GSH in comparison to mice exposed to air. Similar relative reactivity of α-ClFALD and α-BrFALD with protein thiols was shown using click analogs of these aldehydes. Collectively, these data demonstrate that GSH and protein adduct formation are much greater as a result of nucleophilic attack of cysteinyl residues on α-BrFALD compared with α-ClFALD, which was observed in both primary leukocytes and in mice exposed to bromine gas.


Assuntos
Aldeídos/sangue , Bromo/sangue , Peroxidase de Eosinófilo/sangue , Glutationa Transferase/sangue , Peroxidase/sangue , Animais , Bromo/administração & dosagem , Química Click , Peroxidase de Eosinófilo/metabolismo , Glutationa Transferase/metabolismo , Voluntários Saudáveis , Humanos , Camundongos , Peroxidase/metabolismo , Células RAW 264.7
13.
J Clin Invest ; 128(3): 997-1009, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29400693

RESUMO

BACKGROUND: The link between mucus plugs and airflow obstruction has not been established in chronic severe asthma, and the role of eosinophils and their products in mucus plug formation is unknown. METHODS: In clinical studies, we developed and applied a bronchopulmonary segment-based scoring system to quantify mucus plugs on multidetector computed tomography (MDCT) lung scans from 146 subjects with asthma and 22 controls, and analyzed relationships among mucus plug scores, forced expiratory volume in 1 second (FEV1), and airway eosinophils. Additionally, we used airway mucus gel models to explore whether oxidants generated by eosinophil peroxidase (EPO) oxidize cysteine thiol groups to promote mucus plug formation. RESULTS: Mucus plugs occurred in at least 1 of 20 lung segments in 58% of subjects with asthma and in only 4.5% of controls, and the plugs in subjects with asthma persisted in the same segment for years. A high mucus score (plugs in ≥ 4 segments) occurred in 67% of subjects with asthma with FEV1 of less than 60% of predicted volume, 19% with FEV1 of 60%-80%, and 6% with FEV1 greater than 80% (P < 0.001) and was associated with marked increases in sputum eosinophils and EPO. EPO catalyzed oxidation of thiocyanate and bromide by H2O2 to generate oxidants that crosslink cysteine thiol groups and stiffen thiolated hydrogels. CONCLUSION: Mucus plugs are a plausible mechanism of chronic airflow obstruction in severe asthma, and EPO-generated oxidants may mediate mucus plug formation. We propose an approach for quantifying airway mucus plugging using MDCT lung scans and suggest that treating mucus plugs may improve airflow in chronic severe asthma. TRIAL REGISTRATION: Clinicaltrials.gov NCT01718197, NCT01606826, NCT01750411, NCT01761058, NCT01761630, NCT01759186, NCT01716494, and NCT01760915. FUNDING: NIH grants P01 HL107201, R01 HL080414, U10 HL109146, U10 HL109164, U10 HL109172, U10 HL109086, U10 HL109250, U10 HL109168, U10 HL109257, U10 HL109152, and P01 HL107202 and National Center for Advancing Translational Sciences grants UL1TR0000427, UL1TR000448, and KL2TR000428.


Assuntos
Asma/patologia , Eosinofilia/patologia , Muco/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Adulto , Asma/complicações , Estudos de Casos e Controles , Cisteína/química , Elasticidade , Peroxidase de Eosinófilo/metabolismo , Eosinofilia/complicações , Feminino , Volume Expiratório Forçado , Humanos , Hidrogéis , Masculino , Pessoa de Meia-Idade , Tomografia Computadorizada Multidetectores , Oxidantes/química , Compostos de Sulfidrila/química , Tomografia Computadorizada por Raios X
14.
Cell Immunol ; 322: 56-63, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29050663

RESUMO

Eosinophils (Eo) play a critical role in immunity and immune inflammation. The maintenance of Eo homeostasis is not fully understood yet. Vitamin D (VitD) is involved in the regulation of a large number of biochemical reactions. This study tests a hypothesis that VitD receptor (VDR) contributes to the homeostasis of Eos. In this study, EoL-1 cells (an Eo cell line) were cultured in the presence or absence of calcitriol. The Eo-mediators, including major basic protein (MBP), Eo peroxidase (EPX), Eo cationic protein (ECP) and Eo-derived neurotoxin (EDN), were assessed in the culture supernatant and in EoL-1 cells. We observed that, in a VitD deficient environment, EoL-1 cells produced high levels of the Eo-mediators, including MBP, EPX, ECP and EDN, which could be suppressed by the addition of calcitriol to the culture. EoL-1 cells expressed VitD receptor (VDR), which was up regulated by exposure to calcitriol. VDR formed complexes with the transcription factors of the Eo-mediators, which prevented the transcription factors to bind to the promoters of the Eo-mediators, and therefore prevented the Eo-mediated gene transcription. The Eo spontaneous activation was also found in the intestinal mucosa of VDR-deficient mice, in which the intestinal epithelial barrier dysfunction was observed. In conclusion, VDR contributes to the maintenance of the homeostasis of Eos by regulating the gene transcription of the Eo mediators. The VDR-deficiency is one of the causative factors inducing Eo spontaneous activation. This phenomenon may be taken into account in the management of the Eo-related diseases.


Assuntos
Calcitriol/farmacologia , Eosinófilos/imunologia , Receptores de Calcitriol/genética , Deficiência de Vitamina D/metabolismo , Animais , Linhagem Celular Tumoral , Proteína Catiônica de Eosinófilo/metabolismo , Proteína Básica Maior de Eosinófilos/metabolismo , Peroxidase de Eosinófilo/metabolismo , Neurotoxina Derivada de Eosinófilo/metabolismo , Eosinófilos/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Regiões Promotoras Genéticas/genética , Ligação Proteica , Fatores de Transcrição/metabolismo , Transcrição Gênica/genética
15.
Free Radic Res ; 51(7-8): 708-722, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28776450

RESUMO

Asthma is an allergic inflammation driven by the Th2 immune response with release of cytokines such as IL-4 and IL-13, which contribute to the airflow limitations and airway hyperresponsiveness (AHR). The involvement of oxidative stress in this process is well-established, but the specific role of the superoxide anion and nitric oxide in asthma are poorly understood. Thus, the aim of this study was to investigate the mechanisms underlying the superoxide anion/nitric oxide production and detoxification in a murine asthma model. BALB/c male mice were sensitised and challenged with ovalbumin (OVA). Pretreatments with either apocynin (14 mg/kg) or allopurinol (25 mg/kg) (superoxide anion synthesis inhibitors), aminoguanidine (50 mg/kg) (nitric oxide synthesis inhibitor) or diethyldithiocarbamate (100 mg/kg) (superoxide dismutase inhibitor) were performed 1 h before the challenge. Our data showed that apocynin and allopurinol ameliorated AHR and reduced eosinophil peroxidase, as well as IL-4 and IL-13 levels. Apocynin also abrogated leukocyte peribronchiolar infiltrate and increased IL-1ß secretion. Aminoguanidine preserved lung function and shifted the Th2 to the Th1 response with a reduction of IL-4 and IL-13 and increase in IL-1ß production. Diethyldithiocarbamate prevented neither allergen-induced AHR nor eosinophil peroxidase (EPO) generation. All treatments protected against oxidative damage observed by a reduction in TBARS levels. Taken together, these results suggest that AHR in an asthma model can be avoided by the down-regulation of superoxide anion and nitric oxide synthesis in a mechanism that is independent of a redox response. This down-regulation is also associated with a transition in the typical immunological Th2 response toward the Th1 profile.


Assuntos
Asma/imunologia , Inflamação/imunologia , Óxido Nítrico/antagonistas & inibidores , Hipersensibilidade Respiratória/imunologia , Superóxidos/antagonistas & inibidores , Acetofenonas/administração & dosagem , Alopurinol/administração & dosagem , Animais , Asma/metabolismo , Asma/patologia , Modelos Animais de Doenças , Peroxidase de Eosinófilo/imunologia , Peroxidase de Eosinófilo/metabolismo , Guanidinas/administração & dosagem , Humanos , Hipersensibilidade/imunologia , Hipersensibilidade/metabolismo , Hipersensibilidade/patologia , Inflamação/metabolismo , Inflamação/patologia , Interleucina-13/imunologia , Interleucina-13/metabolismo , Interleucina-1beta/imunologia , Interleucina-1beta/metabolismo , Interleucina-4/imunologia , Interleucina-4/metabolismo , Camundongos , Óxido Nítrico/imunologia , Ovalbumina/imunologia , Estresse Oxidativo/imunologia , Espécies Reativas de Oxigênio/imunologia , Espécies Reativas de Oxigênio/metabolismo , Hipersensibilidade Respiratória/metabolismo , Hipersensibilidade Respiratória/patologia , Superóxidos/imunologia , Células Th1/imunologia , Células Th2/imunologia
16.
Int J Oncol ; 50(4): 1191-1200, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28260049

RESUMO

Myeloperoxidase (MPO) and eosinophil peroxidase (EPO) are heme-containing enzymes, well known for their antimicrobial activity, are released in high quantities by infiltrating immune cells in breast cancer. However, the functional importance of their presence within the tumour microenvironment is unclear. We have recently described a new role for peroxidases as key regulators of fibroblast and endothelial cell functionality. In the present study, we investigate for the first time, the ability of peroxidases to promote breast cancer development and progression. Using the 4T1 syngeneic murine orthotopic breast cancer model, we examined whether increased levels of peroxidases in developing mammary tumours influences primary tumour growth and metastasis. We showed that MPO and EPO stimulation increased mammary tumour growth and enhanced lung metastases, effects that were associated with reduced tumour necrosis, increased collagen deposition and neo-vascularisation within the primary tumour. In vitro, peroxidase treatment, robustly stimulated human mammary fibroblast migration and collagen type I and type VI secretion. Mechanistically, peroxidases induced the transcription of pro-tumorigenic and metastatic MMP1, MMP3 and COX-2 genes. Taken together, these findings identify peroxidases as key contributors to cancer progression by augmenting pro-tumorigenic collagen production and angiogenesis. Importantly, this identifies inflammatory peroxidases as therapeutic targets in breast cancer therapy.


Assuntos
Neoplasias da Mama/metabolismo , Peroxidase de Eosinófilo/metabolismo , Neoplasias Pulmonares/secundário , Neovascularização Patológica/metabolismo , Peroxidase/metabolismo , Proteínas Recombinantes/metabolismo , Microambiente Tumoral , Animais , Mama/irrigação sanguínea , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Movimento Celular , Colágeno Tipo I/metabolismo , Colágeno Tipo IV/metabolismo , Ciclo-Oxigenase 2/metabolismo , Progressão da Doença , Feminino , Fibroblastos , Humanos , Neoplasias Mamárias Experimentais , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Terapia de Alvo Molecular , Cultura Primária de Células
17.
Am J Vet Res ; 78(1): 36-41, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28029282

RESUMO

OBJECTIVE To evaluate a method for identifying intact and degranulated eosinophils in the small intestine of dogs with inflammatory bowel disease (IBD) by use of a monoclonal antibody (mAb) against eosinophil peroxidase (EPX). ANIMALS 11 untreated dogs with IBD, 5 dogs with IBD treated with prednisolone, and 8 control dogs with no clinical evidence of gastrointestinal tract disease and no immunosuppressive treatment. PROCEDURES 4-µm-thick sections of paraffin-embedded tissues from necropsy specimens were immunostained with EPX mAb. Stained intact and degranulated eosinophils in consecutive microscopic fields (400X magnification) of the upper (villus tips) and lower (between the muscularis mucosae and crypts) regions of the lamina propria of the jejunum were manually counted. RESULTS Compared with control and treated IBD dogs, untreated IBD dogs had a significantly higher number of degranulated eosinophils in the lower region of the lamina propria. However, no significant differences were detected in the number of intact eosinophils in this region among groups. In the upper region of the lamina propria, untreated IBD dogs had a significantly higher number of degranulated and intact eosinophils, compared with control and treated IBD dogs. Number of degranulated and intact eosinophils did not differ significantly between control and treated IBD dogs. CONCLUSIONS AND CLINICAL RELEVANCE Immunohistologic analysis with EPX mAb yielded prominent granule staining that allowed reliable morphological identification of degranulated and intact eosinophils, which may provide a strategy for quantitative and selective evaluation of eosinophils in gastrointestinal biopsy specimens and a potential method to diagnose IBD and evaluate treatment outcome.


Assuntos
Biomarcadores/metabolismo , Doenças do Cão/diagnóstico , Peroxidase de Eosinófilo/metabolismo , Eosinófilos/enzimologia , Doenças Inflamatórias Intestinais/veterinária , Animais , Anticorpos Monoclonais , Biópsia/veterinária , Doenças do Cão/sangue , Cães , Peroxidase de Eosinófilo/imunologia , Feminino , Doenças Inflamatórias Intestinais/diagnóstico , Intestino Delgado/patologia , Masculino , Coloração e Rotulagem/veterinária
18.
J Leukoc Biol ; 101(1): 321-328, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27531929

RESUMO

Although eosinophils as a group are readily identified by their unique morphology and staining properties, flow cytometry provides an important means for identification of subgroups based on differential expression of distinct surface Ags. Here, we characterize an eosinophil subpopulation defined by high levels of expression of the neutrophil Ag Gr1 (CD45+CD11c-SiglecF+Gr1hi). SiglecF+Gr1hi eosinophils, distinct from the canonical SiglecF+Gr1- eosinophil population, were detected in allergen-challenged wild-type and granule protein-deficient (EPX-/- and MBP-1-/-) mice, but not in the eosinophil-deficient ΔdblGATA strain. In contrast to Gr1+ neutrophils, which express both cross-reacting Ags Ly6C and Ly6G, SiglecF+Gr1hi eosinophils from allergen-challenged lung tissue are uniquely Ly6G+ Although indistinguishable from the more-numerous SiglecF+Gr1- eosinophils under light microscopy, FACS-isolated populations revealed prominent differences in cytokine contents. The lymphocyte-targeting cytokines CXCL13 and IL-27 were identified only in the SiglecF+Gr1hi eosinophil population (at 3.9 and 4.8 pg/106 cells, respectively), as was the prominent proinflammatory mediator IL-13 (72 pg/106 cells). Interestingly, bone marrow-derived (SiglecF+), cultured eosinophils include a more substantial Gr1+ subpopulation (∼50%); Gr1+ bmEos includes primarily a single Ly6C+ and a smaller, double-positive (Ly6C+Ly6G+) population. Taken together, our findings characterize a distinct SiglecF+Gr1hi eosinophil subset in lungs of allergen-challenged, wild-type and granule protein-deficient mice. SiglecF+Gr1hi eosinophils from wild-type mice maintain a distinct subset of cytokines, including those active on B and T lymphocytes. These cytokines may facilitate eosinophil-mediated immunomodulatory responses in the allergen-challenged lung as well as in other distinct microenvironments.


Assuntos
Alérgenos/imunologia , Antígenos de Diferenciação Mielomonocítica/metabolismo , Antígenos/metabolismo , Eosinófilos/imunologia , Pulmão/patologia , Animais , Antígenos Ly/metabolismo , Células da Medula Óssea/metabolismo , Quimiocinas/metabolismo , Grânulos Citoplasmáticos/metabolismo , Proteína Básica Maior de Eosinófilos/deficiência , Proteína Básica Maior de Eosinófilos/metabolismo , Peroxidase de Eosinófilo/deficiência , Peroxidase de Eosinófilo/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico
19.
PLoS One ; 11(10): e0162895, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27695125

RESUMO

Prior investigations showed that increased levels of cyclic AMP down-regulate lung inflammatory changes, stimulating the interest in phosphodiesterase (PDE)4 as therapeutic target. Here, we described the synthesis, pharmacological profile and docking properties of a novel sulfonamide series (5 and 6a-k) designed as PDE4 inhibitors. Compounds were screened for their selectivity against the four isoforms of human PDE4 using an IMAP fluorescence polarized protocol. The effect on allergen- or LPS-induced lung inflammation and airway hyper-reactivity (AHR) was studied in A/J mice, while the xylazine/ketamine-induced anesthesia test was employed as a behavioral correlate of emesis in rodents. As compared to rolipram, the most promising screened compound, 6a (LASSBio-448) presented a better inhibitory index concerning PDE4D/PDE4A or PDE4D/PDE4B. Accordingly, docking analyses of the putative interactions of LASSBio-448 revealed similar poses in the active site of PDE4A and PDE4C, but slight unlike orientations in PDE4B and PDE4D. LASSBio-448 (100 mg/kg, oral), 1 h before provocation, inhibited allergen-induced eosinophil accumulation in BAL fluid and lung tissue samples. Under an interventional approach, LASSBio-448 reversed ongoing lung eosinophilic infiltration, mucus exacerbation, peribronchiolar fibrosis and AHR by allergen provocation, in a mechanism clearly associated with blockade of pro-inflammatory mediators such as IL-4, IL-5, IL-13 and eotaxin-2. LASSBio-448 (2.5 and 10 mg/kg) also prevented inflammation and AHR induced by LPS. Finally, the sulfonamide derivative was shown to be less pro-emetic than rolipram and cilomilast in the assay employed. These findings suggest that LASSBio-448 is a new PDE4 inhibitor with marked potential to prevent and reverse pivotal pathological features of diseases characterized by lung inflammation, such as asthma.


Assuntos
Inibidores da Fosfodiesterase 4/farmacologia , Sulfonamidas/farmacologia , Animais , Domínio Catalítico , AMP Cíclico/análise , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/efeitos dos fármacos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Peroxidase de Eosinófilo/metabolismo , Cobaias , Humanos , Inflamação/tratamento farmacológico , Pulmão/efeitos dos fármacos , Pulmão/enzimologia , Masculino , Camundongos , Simulação de Acoplamento Molecular/métodos , Contração Muscular/efeitos dos fármacos , Músculo Liso/química , Músculo Liso/efeitos dos fármacos , Peroxidase/metabolismo , Inibidores da Fosfodiesterase 4/síntese química , Isoformas de Proteínas/efeitos dos fármacos , Hipersensibilidade Respiratória/tratamento farmacológico , Sulfonamidas/síntese química , Traqueia/efeitos dos fármacos
20.
Clin Immunol ; 171: 1-11, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27519953

RESUMO

Eosinophils account for 1-3% of peripheral blood leukocytes and accumulate at sites of allergic inflammation, where they play a pathogenic role. Studies have shown that treatment with mepolizumab (an anti-IL-5 monoclonal antibody) is beneficial to patients with severe eosinophilic asthma, however, the mechanism of precisely how eosinophils mediate these pathogenic effects is uncertain. Eosinophils contain several cationic granule proteins, including Eosinophil Peroxidase (EPO). The main significance of this work is the discovery of EPO as a novel ligand for the HER2 receptor. Following HER2 activation, EPO induces activation of FAK and subsequent activation of ß1-integrin, via inside-out signaling. This complex results in downstream activation of ERK1/2 and a sustained up regulation of both MUC4 and the HER2 receptor. These data identify a receptor for one of the eosinophil granule proteins and demonstrate a potential explanation of the proliferative effects of eosinophils.


Assuntos
Peroxidase de Eosinófilo/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Integrina beta1/metabolismo , Mucina-4/genética , Receptor ErbB-2/metabolismo , Linhagem Celular , Peroxidase de Eosinófilo/genética , Quinase 1 de Adesão Focal/genética , Humanos , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Receptor ErbB-2/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA