Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.472
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Biochemistry (Mosc) ; 89(Suppl 1): S90-S111, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38621746

RESUMO

Reactive halogen species (RHS) are highly reactive compounds that are normally required for regulation of immune response, inflammatory reactions, enzyme function, etc. At the same time, hyperproduction of highly reactive compounds leads to the development of various socially significant diseases - asthma, pulmonary hypertension, oncological and neurodegenerative diseases, retinopathy, and many others. The main sources of (pseudo)hypohalous acids are enzymes from the family of heme peroxidases - myeloperoxidase, lactoperoxidase, eosinophil peroxidase, and thyroid peroxidase. Main targets of these compounds are proteins and peptides, primarily methionine and cysteine residues. Due to the short lifetime, detection of RHS can be difficult. The most common approach is detection of myeloperoxidase, which is thought to reflect the amount of RHS produced, but these methods are indirect, and the results are often contradictory. The most promising approaches seem to be those that provide direct registration of highly reactive compounds themselves or products of their interaction with components of living cells, such as fluorescent dyes. However, even such methods have a number of limitations and can often be applied mainly for in vitro studies with cell culture. Detection of reactive halogen species in living organisms in real time is a particularly acute issue. The present review is devoted to RHS, their characteristics, chemical properties, peculiarities of interaction with components of living cells, and methods of their detection in living systems. Special attention is paid to the genetically encoded tools, which have been introduced recently and allow avoiding a number of difficulties when working with living systems.


Assuntos
Halogênios , Peroxidases , Peroxidases/metabolismo , Halogênios/metabolismo , Peroxidase/metabolismo , Peroxidase de Eosinófilo , Antioxidantes
2.
Anal Chim Acta ; 1297: 342386, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38438231

RESUMO

In this work, we developed a new strategy to fabricate a series of transition metallic nanoparticles (NPs) embedded on B, N co-doped carbon nanotubes (CNTs) arrays modified flexible carbon fiber electrodes (M@BNCNTs/CF, M = Co, Fe, Ni) via facile inkjet printing assisted with chemical vapor deposition using Ionic liquid as solvent of printing ink and heteroatom dopants. Furthermore, Pt NPs via impregnation-thermal reduction process was anchored on the surface of Co@BNCNTs/CF (Pt-Co@BNCNTs/CF), which holds enhanced peroxidase-like activity and could be directly used as freestanding electrode to detect H2O2, exhibiting a low detection limit of 0.19 µM with wide linear range (0.5 µM-9.4 mM), and high sensitivity (1679 µA cm-2 mM-1). The excellent sensing performance of Pt-Co@BNCNTs/CF is attributed to the Pt, Co NPs anchored on CNTs with great catalytic activity, and the doping B, N would cause graphitic carbon with more defects to improve its inherent reactivity toward H2O2. Besides, CNTs arrays with high surface area also enlarge the exposure of active sites. Moreover, the Pt-Co@NBCNTs/CF microelectrode has been successfully applied in monitoring H2O2 secreted from human colonic cancer cells and normal colonic epithelial cells, which could offer crucial data for distinguishing various cell types and identifying cancer cells from normal cells. This work opens a new horizon to fabricate flexible miniaturized sensing device for extracellular analysis and offers an extended strategy to fabricate other metallic NPs embedded in heteroatoms doped CNTs functionalized flexible fiber electrode, by choosing diverse metal ions and ILs as inkjet printing precursors.


Assuntos
Nanotubos de Carbono , Humanos , Microeletrodos , Peróxido de Hidrogênio , Transporte Biológico , Peroxidases
3.
ACS Appl Bio Mater ; 7(3): 1778-1789, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38437514

RESUMO

Inspired by the two kinds of naturally occurring peroxidases (POD) with vanadium or heme (iron)-based active catalytic centers, we have developed a dual metal-based nanozyme with dual V and Fe-based active catalytic centers. Co-doping of graphene with heteroatoms has a synergistic effect on the catalytic properties of the nanomaterial as the distances of migration of the substrates drastically reduce. However, a few studies have reported the codoping of heterometallic elements in the graphene structure due to the complexity of the synthesis procedures. Herein, we report the synthesis of in situ doped bimetallic VNFe@C mesoporous graphitic spheroids nanozyme via pyrolysis without the assistance of any template assisted method. The Prussian-blue analog-based precursor material was synthesized by a facile one-step low-temperature synthesis procedure. The bimetallic spheroids showed an excellent affinity toward H2O2, with a Km value of 0.26 mM when compared to 0.436 for the natural POD, which is much better than the natural POD, which was utilized to detect tumor cells in vitro through the intracellular H2O2 produced by these cells under high oxidative stress. The VNFe@C mesoporous spheroids generate dual reactive oxygen species, including the •OH and •O2H- radicals, in the presence of H2O2, which are responsible for the POD-like activity of these nanozymes, while the bimetallic V/Fe doping plays a synergistic role in the enhancement of the activity of codoped graphitic spheroids.


Assuntos
Grafite , Peroxidase , Peróxido de Hidrogênio , Peroxidases , Catálise
4.
ACS Nano ; 18(11): 8083-8098, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38456744

RESUMO

Active polymetallic atomic clusters can initiate heterogeneous catalytic reactions in the tumor microenvironment, and the products tend to cause manifold damage to cell metabolic functions. Herein, bimetallic PtPd atomic clusters (BAC) are constructed by the stripping of Pt and Pd nanoparticles on nitrogen-doped carbon and follow-up surface PEGylation, aiming at efficacious antineoplastic therapy through heterogeneous catalytic processes. After endocytosed by tumor cells, BAC with catalase-mimic activity can facilitate the decomposition of endogenous H2O2 into O2. The local oxygenation not only alleviates hypoxia to reduce the invasion ability of cancer cells but also enhances the yield of •O2- from O2 catalyzed by BAC. Meanwhile, BAC also exhibit peroxidase-mimic activity for •OH production from H2O2. The enrichment of reactive oxygen species (ROS), including the radicals of •OH and •O2-, causes significant oxidative cellular damage and triggers severe apoptosis. In another aspect, intrinsic glutathione (GSH) peroxidase-like activity of BAC can indirectly upregulate the level of lipid peroxides and promote ferroptosis. Such deleterious redox dyshomeostasis caused by ROS accumulation and GSH consumption also results in immunogenic cell death to stimulate antitumor immunity for metastasis suppression. Collectively, this paradigm is expected to inspire more facile designs of polymetallic atomic clusters in disease therapy.


Assuntos
Antineoplásicos , Ferroptose , Neoplasias , Humanos , Peróxido de Hidrogênio , Espécies Reativas de Oxigênio , Apoptose , Peroxidases , Antineoplásicos/farmacologia , Catálise , Glutationa , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Microambiente Tumoral
5.
Talanta ; 273: 125898, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38479032

RESUMO

Currently, nanozymes have made important research progress in the fields of catalysis, biosensing and tumor therapy, but most of nanozymes sensing systems are single-mode detection, which are easily affected by environment and operation, so it is crucial to construct nanozymes sensing system with dual-signal detection to obtain a more stable and reliable performance. In this paper, Ag-carbon dots (Ag-CDs) bifunctional nanomaterials were synthesized using carbon dots as reducing agent and protective agent by a facile and green one-step method. A simple and sensitive colorimetric-SERS dual-mode sensing platform was constructed for the detection of glucose and glutathione(GSH) in body fluids by taking advantage of good peroxidase-like and SERS activities of Ag-CDs. Ag-CDs catalyzes H2O2 to hydroxyl radicals(•OH), which oxidized TMB to form ox-TMB blue solution with characteristic absorption peak at 652 nm and Raman characteristic peak at 1607 cm-1. Ag-CDs sensing method exhibited high performance for glucose and GSH with detection limits for colorimetric and SERS as low as 11.30 µM and 3.54 µM, 0.38 µM and 0.24 µM respectively (S/N = 3). In addition, Ag-CDs have good stability and uniformity, ensuring long-term applicability of catalytic system. This colorimetric-SERS dual-mode sensing platform can be used for the determination of glucose and GSH in saliva and urine, and has the advantages of simple, low cost, rapid, and high accuracy, which has a potential application prospect in biosensor and medical research.


Assuntos
Carbono , Glucose , Colorimetria/métodos , Peróxido de Hidrogênio , Glutationa , Peroxidases
6.
Microb Cell Fact ; 23(1): 88, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38519954

RESUMO

BACKGROUND: The halophilic bacterium Halomonas elongata is an industrially important strain for ectoine production, with high value and intense research focus. While existing studies primarily delve into the adaptive mechanisms of this bacterium under fixed salt concentrations, there is a notable dearth of attention regarding its response to fluctuating saline environments. Consequently, the stress response of H. elongata to salt shock remains inadequately understood. RESULTS: This study investigated the stress response mechanism of H. elongata when exposed to NaCl shock at short- and long-time scales. Results showed that NaCl shock induced two major stresses, namely osmotic stress and oxidative stress. In response to the former, within the cell's tolerable range (1-8% NaCl shock), H. elongata urgently balanced the surging osmotic pressure by uptaking sodium and potassium ions and augmenting intracellular amino acid pools, particularly glutamate and glutamine. However, ectoine content started to increase until 20 min post-shock, rapidly becoming the dominant osmoprotectant, and reaching the maximum productivity (1450 ± 99 mg/L/h). Transcriptomic data also confirmed the delayed response in ectoine biosynthesis, and we speculate that this might be attributed to an intracellular energy crisis caused by NaCl shock. In response to oxidative stress, transcription factor cysB was significantly upregulated, positively regulating the sulfur metabolism and cysteine biosynthesis. Furthermore, the upregulation of the crucial peroxidase gene (HELO_RS18165) and the simultaneous enhancement of peroxidase (POD) and catalase (CAT) activities collectively constitute the antioxidant defense in H. elongata following shock. When exceeding the tolerance threshold of H. elongata (1-13% NaCl shock), the sustained compromised energy status, resulting from the pronounced inhibition of the respiratory chain and ATP synthase, may be a crucial factor leading to the stagnation of both cell growth and ectoine biosynthesis. CONCLUSIONS: This study conducted a comprehensive analysis of H. elongata's stress response to NaCl shock at multiple scales. It extends the understanding of stress response of halophilic bacteria to NaCl shock and provides promising theoretical insights to guide future improvements in optimizing industrial ectoine production.


Assuntos
Diamino Aminoácidos , Halomonas , Cloreto de Sódio/farmacologia , Cloreto de Sódio/metabolismo , Halomonas/genética , Halomonas/metabolismo , Pressão Osmótica , Perfilação da Expressão Gênica , Peroxidases/metabolismo
7.
Environ Geochem Health ; 46(3): 102, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38433158

RESUMO

Explosives are perilous and noxious to aquatic biota disrupting their endocrinal systems. Supplementarily, they exhibit carcinogenic, teratogenic and mutagenic effects on humans and animals. Henceforth, the current study has been targeted to biotransform the explosive, 2, 4, 6 trinitrophenol (TNP) by wetland peroxidase from Streptomyces coelicolor. A total peroxidase yield of 20,779 mg/l with 51.6 folds of purification was observed. In silico molecular docking cum in vitro appraisals were accomplished to assess binding energy and interacting binding site residues of peroxidase and TNP complex. TNP required a minimal binding energy of-6.91 kJ/mol and was subjected to biodeterioration (89.73%) by peroxidase in purified form, with 45 kDa and a similarity score of 34 by MASCOT protein analysis. Moreover, the peroxidase activity was confirmed with Zymogram analysis. Characterization of peroxidase revealed that optimum values of pH and temperature as 6 and 40 °C, respectively, with their corresponding stability varying from 3.5 to 7. Interestingly, the kinetic parameters such as Km and Vmax on 2,2'-azino-bis 3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and H2O2 were 19.27 µm and 0.41 µm/min; 21.4 µm and 0.1 µm/min, respectively. Among the diverse substrates, chemicals and trace elements, ABTS (40 mM), citric acid (5 mM) and Fe2+ (5 mM) displayed the highest peroxidase activity. Computational docking and in vitro results were corroborative and UV-Vis spectroscopy, HPLC, FTIR and GC-MS indicated the presence of simple metabolites of TNP such as nitrophenols and benzoquinone, showcasing the efficacy of S. coelicolor peroxidase to biotransform TNP. Henceforth, the current study offers a promising channel for biological treatment of explosive munitions, establishing a sustainable green earth.


Assuntos
Benzotiazóis , Peróxido de Hidrogênio , Peroxidase , Picratos , Ácidos Sulfônicos , Animais , Humanos , Simulação de Acoplamento Molecular , Peroxidases , Corantes
8.
BMC Med Genomics ; 17(1): 77, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515109

RESUMO

BACKGROUND: Cancer-associated fibroblasts (CAFs) play a crucial role in the tumor microenvironment of lung adenocarcinoma (LUAD) and are often associated with poorer clinical outcomes. This study aimed to screen for CAF-specific genes that could serve as promising therapeutic targets for LUAD. METHODS: We established a single-cell transcriptional profile of LUAD, focusing on genetic changes in fibroblasts. Next, we identified key genes associated with fibroblasts through weighted gene co-expression network analysis (WGCNA) and univariate Cox analysis. Then, we evaluated the relationship between glutathione peroxidase 8 (GPX8) and clinical features in multiple independent LUAD cohorts. Furthermore, we analyzed immune infiltration to shed light on the relationship between GPX8 immune microenvironment remodeling. For clinical treatment, we used the tumor immune dysfunction and exclusion (TIDE) algorithm to assess the immunotherapy prediction efficiency of GPX8. After that, we screened potential therapeutic drugs for LUAD by the connectivity map (cMAP). Finally, we conducted a cell trajectory analysis of GPX8+ CAFs to show their unique function. RESULTS: Fibroblasts were found to be enriched in tumor tissues. Then we identified GPX8 as a key gene associated with CAFs through comprehensive bioinformatics analysis. Further analysis across multiple LUAD cohorts demonstrated the relationship between GPX8 and poor prognosis. Additionally, we found that GPX8 played a role in inducing the formation of an immunosuppressive microenvironment. The TIDE method indicated that patients with low GPX8 expression were more likely to be responsive to immunotherapy. Using the cMAP, we identified beta-CCP as a potential drug-related to GPX8. Finally, cell trajectory analysis provided insights into the dynamic process of GPX8+ CAFs formation. CONCLUSIONS: This study elucidates the association between GPX8+ CAFs and poor prognosis, as well as the induction of immunosuppressive formation in LUAD. These findings suggest that targeting GPX8+ CAFs could potentially serve as a therapeutic strategy for the treatment of LUAD.


Assuntos
Adenocarcinoma de Pulmão , Fibroblastos Associados a Câncer , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/genética , Fibroblastos , Imunoterapia , Neoplasias Pulmonares/genética , Microambiente Tumoral , Prognóstico , Peroxidases
9.
J Biol Chem ; 300(4): 107147, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460940

RESUMO

Zinc is required for many critical processes, including intermediary metabolism. In Saccharomyces cerevisiae, the Zap1 activator regulates the transcription of ∼80 genes in response to Zn supply. Some Zap1-regulated genes are Zn transporters that maintain Zn homeostasis, while others mediate adaptive responses that enhance fitness. One adaptive response gene encodes the 2-cysteine peroxiredoxin Tsa1, which is critical to Zn-deficient (ZnD) growth. Depending on its redox state, Tsa1 can function as a peroxidase, a protein chaperone, or a regulatory redox sensor. In a screen for possible Tsa1 regulatory targets, we identified a mutation (cdc19S492A) that partially suppressed the tsa1Δ growth defect. The cdc19S492A mutation reduced activity of its protein product, pyruvate kinase isozyme 1 (Pyk1), implicating Tsa1 in adapting glycolysis to ZnD conditions. Glycolysis requires activity of the Zn-dependent enzyme fructose-bisphosphate aldolase 1, which was substantially decreased in ZnD cells. We hypothesized that in ZnD tsa1Δ cells, the loss of a compensatory Tsa1 regulatory function causes depletion of glycolytic intermediates and restricts dependent amino acid synthesis pathways, and that the decreased activity of Pyk1S492A counteracted this depletion by slowing the irreversible conversion of phosphoenolpyruvate to pyruvate. In support of this model, supplementing ZnD tsa1Δ cells with aromatic amino acids improved their growth. Phosphoenolpyruvate supplementation, in contrast, had a much greater effect on growth rate of WT and tsa1Δ ZnD cells, indicating that inefficient glycolysis is a major factor limiting yeast growth. Surprisingly however, this restriction was not primarily due to low fructose-bisphosphate aldolase 1 activity, but instead occurs earlier in glycolysis.


Assuntos
Glicólise , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Fatores de Transcrição , Zinco , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Zinco/metabolismo , Frutose-Bifosfato Aldolase/metabolismo , Frutose-Bifosfato Aldolase/genética , Peroxirredoxinas/metabolismo , Peroxirredoxinas/genética , Piruvato Quinase/metabolismo , Piruvato Quinase/genética , Regulação Fúngica da Expressão Gênica , Peroxidases/metabolismo , Peroxidases/genética , Mutação
10.
Appl Environ Microbiol ; 90(4): e0204423, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38483171

RESUMO

The ability of some white rot basidiomycetes to remove lignin selectively from wood indicates that low molecular weight oxidants have a role in ligninolysis. These oxidants are likely free radicals generated by fungal peroxidases from compounds in the biodegrading wood. Past work supports a role for manganese peroxidases (MnPs) in the production of ligninolytic oxidants from fungal membrane lipids. However, the fatty acid alkylperoxyl radicals initially formed during this process are not reactive enough to attack the major structures in lignin. Here, we evaluate the hypothesis that the peroxidation of fatty aldehydes might provide a source of more reactive acylperoxyl radicals. We found that Gelatoporia subvermispora produced trans-2-nonenal, trans-2-octenal, and n-hexanal (a likely metabolite of trans-2,4-decadienal) during the incipient decay of aspen wood. Fungal fatty aldehydes supported the in vitro oxidation by MnPs of a nonphenolic lignin model dimer, and also of the monomeric model veratryl alcohol. Experiments with the latter compound showed that the reactions were partially inhibited by oxalate, the chelator that white rot fungi employ to detach Mn3+ from the MnP active site, but nevertheless proceeded at its physiological concentration of 1 mM. The addition of catalase was inhibitory, which suggests that the standard MnP catalytic cycle is involved in the oxidation of aldehydes. MnP oxidized trans-2-nonenal quantitatively to trans-2-nonenoic acid with the consumption of one O2 equivalent. The data suggest that when Mn3+ remains associated with MnP, it can oxidize aldehydes to their acyl radicals, and the latter subsequently add O2 to become ligninolytic acylperoxyl radicals.IMPORTANCEThe biodegradation of lignin by white rot fungi is essential for the natural recycling of plant biomass and has useful applications in lignocellulose bioprocessing. Although fungal peroxidases have a key role in ligninolysis, past work indicates that biodegradation is initiated by smaller, as yet unidentified oxidants that can infiltrate the substrate. Here, we present evidence that the peroxidase-catalyzed oxidation of naturally occurring fungal aldehydes may provide a source of ligninolytic free radical oxidants.


Assuntos
Basidiomycota , Manganês , Polyporales , Lignina/metabolismo , Proteínas Fúngicas/metabolismo , Basidiomycota/metabolismo , Aldeídos , Peroxidases/metabolismo , Ácidos Graxos , Oxidantes
11.
Anal Chem ; 96(10): 4299-4307, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38414258

RESUMO

To boost the enzyme-like activity, biological compatibility, and antiaggregation effect of noble-metal-based nanozymes, folic-acid-strengthened Ag-Ir quantum dots (FA@Ag-Ir QDs) were developed. Not only did FA@Ag-Ir QDs exhibit excellent synergistic-enhancement peroxidase-like activity, high stability, and low toxicity, but they could also promote the lateral root propagation of Arabidopsis thaliana. Especially, ultratrace cysteine or Hg2+ could exclusively strengthen or deteriorate the inherent fluorescence property with an obvious "turn-on" or "turn-off" effect, and dopamine could alter the peroxidase-like activity with a clear hypochromic effect from blue to colorless. Under optimized conditions, FA@Ag-Ir QDs were successfully applied for the turn-on fluorescence imaging of cysteine or the stress response in cells and plant roots, the turn-off fluorescence monitoring of toxic Hg2+, or the visual detection of dopamine in aqueous, beverage, serum, or medical samples with low detection limits and satisfactory recoveries. The selective recognition mechanisms for FA@Ag-Ir QDs toward cysteine, Hg2+, and dopamine were illustrated. This work will offer insights into constructing some efficient nanozyme sensors for multichannel environmental analyses, especially for the prediagnosis of cysteine-related diseases or stress responses in organisms.


Assuntos
Mercúrio , Pontos Quânticos , Pontos Quânticos/toxicidade , Cisteína , Dopamina , Ácido Fólico , Imagem Óptica , Peroxidases , Raízes de Plantas
12.
Nano Lett ; 24(9): 2912-2920, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38391386

RESUMO

Nanozymes with peroxidase-like activity have been extensively studied for colorimetric biosensing. However, their catalytic activity and specificity still lag far behind those of natural enzymes, which significantly affects the accuracy and sensitivity of colorimetric biosensing. To address this issue, we design PdSn nanozymes with selectively enhanced peroxidase-like activity, which improves the sensitivity and accuracy of a colorimetric immunoassay. The peroxidase-like activity of PdSn nanozymes is significantly higher than that of Pd nanozymes. Theoretical calculations reveal that the p-d orbital hybridization of Pd and Sn not only results in an upward shift of the d-band center to enhance hydrogen peroxide (H2O2) adsorption but also regulates the O-O bonding strength of H2O2 to achieve selective H2O2 activation. Ultimately, the nanozyme-linked immunosorbent assay has been successfully developed to sensitively and accurately detect the prostate-specific antigen (PSA), achieving a low detection limit of 1.696 pg mL-1. This work demonstrates a promising approach for detecting PSA in a clinical diagnosis.


Assuntos
Técnicas Biossensoriais , Peróxido de Hidrogênio , Masculino , Humanos , Antígeno Prostático Específico , Imunoensaio/métodos , Antioxidantes , Peroxidases , Colorimetria/métodos , Técnicas Biossensoriais/métodos
13.
Food Chem ; 445: 138732, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38367558

RESUMO

In this study, a straightforward approach is presented for the first time to anchor Ir nanoparticles on the surface of uniform polyaniline (PANi) nanotubes (NTs), which can be used as an efficient peroxidase (POD)-like catalyst. The morphology and chemical structure of the PANi-Ir nanocomposite are characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffractometer (XRD), Raman and X-ray photoelectron spectroscopy (XPS) measurements. Owing to the strong interaction between Ir nanoparticles and PANi, a remarkable catalytic enhancement is achieved compared to the bare Ir black catalyst and individual PANi NTs, dominating withan electron transfer mechanism. Furthermore, an efficient colorimetric sensor for ascorbic acid (AA) is developed with a low detection limit of 1.0 µM (S/N = 3), and a total antioxidant capacity (TAC) sensing platform is also constructed for the rigorous detection and analysis of fruits and vegetables.


Assuntos
Compostos de Anilina , Nanopartículas , Nanotubos , Antioxidantes , Verduras , Irídio , Peroxidase , Frutas , Nanotubos/química , Nanopartículas/química , Peroxidases
14.
Chemosphere ; 346: 140557, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38303399

RESUMO

Single-atom nanozymes (SANs) are nanomaterials-based nanozymes with atomically dispersed enzyme-like active sites. SANs offer improved as well as tunable catalytic activity. The creation of extremely effective SANs and their potential uses have piqued researchers' curiosity due to their advantages of cheap cost, variable catalytic activity, high stability, and large-scale production. Furthermore, SANs with uniformly distributed active centers and definite coordination structures offer a distinctive opportunity to investigate the structure-activity correlation and control the geometric and electrical features of metal centers. SANs have been extensively explored in photo-, thermal-, and electro-catalysis. However, SANs suffer from the following disadvantages, such as efficiency, non-mimicking of the 3-D complexity of natural enzymes, limited and narrow range of artificial SANs, and biosafety aspects. Among a quite limited range of artificial SANs, the peroxidase action of SANs has attracted significant research attention in the last five years with the aim of producing reactive oxygen species for use in cancer therapy, and water treatment among many other applications. In this review, we explore the recent progress of different SANs as peroxidase mimics, the role of the metal center in enzymatic activity, possible prospects, and underlying limitations in real-time applications.


Assuntos
Materiais Biomiméticos , Nanoestruturas , Materiais Biomiméticos/química , Nanoestruturas/química , Peroxidase , Catálise , Peroxidases
15.
Int J Mol Sci ; 25(2)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38255902

RESUMO

Azo dyes are of concern due to their harmful effects on the environment and human health. The oxidation of 2,2'-dihydroxyazobenzene (DHAB) catalyzed with recombinant Coprinus cinereus (rCiP) peroxidase was investigated. The kinetic measurements were performed using the spectrophotometric and fluorimetric methods. The dependences of the initial reaction rates on enzyme, substrate and hydrogen peroxide concentrations during DHAB oxidation were established, and bimolecular constants of enzyme interaction with DHAB were calculated. This research demonstrated that the initial biocatalytic oxidation rates of DHAB depend on the pH and the estimated pKa values of the active forms of rCip. This study's findings thus contribute to a more comprehensive understanding of the biocatalytic oxidation of DHAB, providing valuable data for assessing the long-term toxicity, carcinogenesis and epigenetic effects of azo dyes in the environment.


Assuntos
Agaricales , Peroxidase , Peroxidases , Humanos , Compostos Azo , Biocatálise , Corantes
16.
Molecules ; 29(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38257387

RESUMO

The viability, productivity and survival of higher plants under the adverse factors influence are largely determined by the functional activity of the antioxidant system. The aim of our work was to investigate changes in formation of high-molecular (superoxide dismutase and peroxidase) and low-molecular (phenolics, including flavanols and proanthocyanidins) antioxidants in callus culture of Camellia sinensis under influence of phenolic precursors (L-phenylalanine-3 mM, trans-cinnamic acid-1 mM, naringenin-0.5 mM). According to the data obtained, the effect of precursors on tea callus cultures did not lead to significant increasing of superoxide dismutase and peroxidase activity in most cases. However, it led to the increased accumulation of the total phenolics content, as well as flavanols and proanthocyanidins contents. For C. sinensis callus cultures, the most promising regulator of phenolic compounds was L-phenylalanine, in the presence of which its content increased almost twice. Thus, the exogenous effect of various precursors is possible to use for the targeted regulation of certain phenolics classes accumulation in plant cells.


Assuntos
Camellia sinensis , Proantocianidinas , Antioxidantes/farmacologia , Fenóis/farmacologia , Polifenóis , Peroxidases , Fenilalanina , Superóxido Dismutase
17.
Anal Chim Acta ; 1287: 342135, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38182398

RESUMO

Di(2-ethylhexyl)phthalate (DEHP), as an environmental endocrine disruptor, has adverse effects on eco-environments and health. Thus, it is crucial to highly sensitive on-site detect DEHP. Herein, a double-enzyme active MnO2@BSA mediated dual-modality photoelectrochemical (PEC)/colorimetric aptasensing platform with the cascaded sensitization structures of ZnIn2S4 and TiO2 as signal generators was engineered for rapid and ultrasensitive detection of DEHP using an all-in-one lab-on-paper analytical device. Benefitting from cascaded sensitization effect, the ZnIn2S4/TiO2 photosensitive structures-assembled polypyrrole paper electrode gave an enhanced photocurrent signal. The MnO2@BSA nanoparticles (NPs) with peroxidase-mimic and oxidase-mimic double-enzymatic activity induced multiple signal quenching effects and catalyzed color development. Specifically, the MnO2@BSA NPs acted as peroxidase mimetics to generate catalytic precipitates, which not only obstructed interfacial electron transfer but also served as electron acceptors to accept photogenerated electrons. Besides, the steric hindrance effect from MnO2@BSA NPs-loaded branchy polymeric DNA duplex structures further decreased photocurrent signal. The target recycling reaction caused the detachment of MnO2@BSA NPs to increase PEC signal, realizing the ultrasensitive detection of DEHP with a low detection limit of 27 fM. Ingeniously, the freed MnO2@BSA NPs flowed to colorimetric zone with the aid of fluid channels and acted as oxidase mimetics to induce color intensity enhancement, resulting in the rapid visual detection of DEHP. This work provided a prospective paradigm to develop field-based paper analytical tool for DEHP detection in aqueous environment.


Assuntos
Dietilexilftalato , Polímeros , Compostos de Manganês , Estudos Prospectivos , Óxidos , Pirróis , Peroxidase , Peroxidases , Corantes
18.
J Mater Chem B ; 12(3): 800-813, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38186029

RESUMO

A multifunctional nanoplatform is obtained by modifying copper hexacyanoferrate (Cu-HCF) nanozyme with hyaluronic acid (HA) and further loading platinum (Pt) nanoparticles. This Cu-HCF-HA@Pt platform shows peroxidase-like and glutathione oxidase-like dual-enzyme catalytic activities and photothermal properties, enabling synergistic chemodynamic and photothermal tumor therapy. HA binds to the CD44 receptor, which is highly expressed on the exterior surface of tumor cells, endowing the nanoplatform with tumor specificity. Cu-HCF-HA@Pt catalyzes the decomposition of H2O2 to produce abundant hydroxyl radicals within tumor cells, increasing intracellular oxidative stress levels and inducing tumor cell apoptosis. Meanwhile, Cu-HCF-HA@Pt catalyzes the conversion of intracellular reduced glutathione (GSH) to oxidized glutathione, resulting in GSH exhaustion. The conversion of CuII to CuI in Cu-HCF via a Fenton-like reaction can improve the peroxidase-like property of Cu-HCF-HA@Pt. After the probe is targeted to the tumor site, irradiation by an 808 nm near-infrared laser causes local heating and brings about photothermal tumor apoptosis when reaching 45 °C. The prepared Cu-HCF-HA@Pt combines nanozyme-catalyzed therapy with photothermal therapy to induce apoptosis in tumor cells.


Assuntos
Cobre , Ferrocianetos , Platina , Cobre/farmacologia , Platina/farmacologia , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio , Peroxidase , Peroxidases , Corantes
19.
Biosensors (Basel) ; 14(1)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38248417

RESUMO

Due to the limitation that natural peroxidase enzymes can only function in relatively mild environments, nanozymes have expanded the application of enzymology in the biological field by dint of their ability to maintain catalytic oxidative activity in relatively harsh environments. At the same time, the development of new and highly efficient composite nanozymes has been a challenge due to the limitations of monometallic particles in applications and the inherently poor enzyme-mimetic activity of composite nanozymes. The inherent enzyme-mimicking activity is due to Au, Ag, and Pt, along with other transition metals. Moreover, the nanomaterials exhibit excellent enzyme-mimicking activity when composited with other materials. Therefore, this paper focuses on composite nanozymes with simulated peroxidase activity that have been prepared using noble metals such as Au, Ag, and Pt and other transition metal nanoparticles in recent years. Their simulated enzymatic activity is utilized for biomedical applications such as glucose detection, cancer cell detection and tumor treatment, and antibacterial applications.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Elementos de Transição , Antibacterianos , Peroxidase , Peroxidases
20.
Inorg Chem ; 63(2): 1225-1235, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38163760

RESUMO

A multifunctional single-atom nanozyme, denoted as 3D Ni,N-codoped porous carbon (Ni-NPC), was devised that exhibits remarkable adsorption capabilities and a repertoire of enzyme mimetic functions (oxidase- and peroxidase-like). These attributes stem from the distinctive mesoporous thin-shell structure and well-dispersed Ni sites. The efficient adsorption capacity of Ni-NPC was assessed with respect to three carbamate pesticides (CMPs): metolcarb, carbaryl, and isoprocarb. Moreover, a colorimetric detection method for CMP was established based on its robust peroxidase-like catalytic activity and sequential catalytic interactions with acetylcholinesterase. Furthermore, a portable colorimetric sensor based on a hydrogel sphere integrated with a smartphone platform was devised. This sensor enables rapid, on-site, and quantitative assessment of CMP, boasting an extraordinarily low detection limit of 1.5 ng mL-1. Notably, this sensor was successfully applied to the analysis of CMP levels in lake water and vegetable samples (pakchoi and rape), propelling the progress of real-time detection technologies in food and environment monitoring.


Assuntos
Praguicidas , Smartphone , Acetilcolinesterase , Praguicidas/análise , Carbamatos/química , Peroxidase , Peroxidases , Colorimetria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA