Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Front Biosci (Landmark Ed) ; 28(6): 111, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37395030

RESUMO

BACKGROUND: Common butterbur (Petasites hybridus L.) is a traditional medicinal plant with numerous therapeutic properties among which is its recently uncovered anti-tumor activity. The present study aims to examine the activity of a standardized Bulgarian Petasites hybridus L. root extract, containing the active ingredients petasins, on the human breast cancer cell line MDA-MB-231 and non-cancerous MCF-10A cells. Specifically, we examined cell death, oxidative stress, and nuclear factor kappa-B (NF-κB) signaling. METHODS: A standardized butterbur powdered extract containing a minimum of 15% petasins was used. A lipophilic extract was obtained from subterranean portion of the plant of Bulgarian populations of Petasites hybridus using liquid-liquid extraction after completely removing pyrrolizidine alkaloids. The induction of apoptosis and necrosis was analyzed by flow cytometry, and oxidative stress biomarkers and NF-κB were measured using enzyme-linked immunosorbent assay (ELISA). RESULTS: Petasites hybridus L. root extract triggered apoptosis in a cancer-specific fashion and induced a moderate oxidative stress characterized by diminished glutathione (GSH) levels and elevated malondialdehyde (MDA) levels in MDA-MB-231 72 h after treatment. NF-κB levels were higher in cancer cells after treatment with IC50 and IC75 doses, this suggested that the NF-κB pathway was activated in response to oxidative stress leading to the induction of apoptosis. MCF-10A cells were affected to a lesser extent by the Petasites hybridus extract, and the adaptive response of their antioxidant defense system halted oxidative stress. CONCLUSIONS: Overall, these results indicate that Petasites hybridus L. root extract selectively acts as a pro-oxidant in breast cancer cells and thus represents a potential therapeutic option for cancer treatment with fewer side effects.


Assuntos
Neoplasias da Mama , Petasites , Humanos , Feminino , Espécies Reativas de Oxigênio , NF-kappa B , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/induzido quimicamente , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Apoptose , Linhagem Celular
2.
Eur Rev Med Pharmacol Sci ; 27(4 Suppl): 1-5, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37350686

RESUMO

OBJECTIVE: The study aims to define butterbur's impact on nasal cells' viability and proliferation. After topically administering butterbur to the nasal epithelial cells, research has been done to see if butterbur has any harmful effect on the nasal cells. MATERIALS AND METHODS: Specimens of healthy primary nasal epithelium were collected from the subjects and incubated in cell culture in due course of septoplasty. After implementing 2.5 µM butterbur in cultured cells, cell viability was defined via trypan blue assay, and proliferation was defined via the XTT method. The number of total cells, viability, and proliferation was defined. XTT (2, 3-bis-(2-methoxy-4-nitro-5-sulphophenyl)-2H-tetrazolium-5-carboxanilide) experiments can be used to evaluate cellular toxicity. RESULTS: The findings of the XTT experiment reveal no harm to nasal cells after topical implementation of butterbur. No significant change in the proliferation of the cells, no matter what the doses are. There was no cytotoxic effect on the primary nasal cells at the end of 24 hours of implementation, and no side effects were found. There was no difference in cells' viability between the experimental group with butterbur application and the control group. CONCLUSIONS: Cytotoxicity on nasal cells was not observed after the butterbur application. Even if there have been some indications of liver toxicity, butterbur can be suggested as a safe option for seasonal allergic rhinitis. Further studies related to the toxicity of topical butterbur are also recommended, even though this study indicates no cytotoxicity from the topical application on nasal cells.


Assuntos
Petasites , Rinite Alérgica Sazonal , Humanos , Mucosa Nasal , Células Epiteliais
3.
Food Funct ; 13(20): 10811-10822, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36193798

RESUMO

Neuroinflammation is a crucial pathogenic process involved in the development and deterioration of Alzheimer's disease (AD). Petasites japonicus is known for its beneficial effects on various disease states such as allergic reaction, oxidative stress and inflammation. However, it is still unknown whether P. japonicus has protective effects on neuroinflammation, especially microgliosis related to AD. The current study aimed to investigate whether an extract of P. japonicus (named KP-1) protects from microglial cell activation in vitro and in vivo. To demonstrate the anti-neuroinflammation effects of KP-1, the current study adopted the most widely used experimental models including the lipopolysaccharide (LPS)-induced microgliosis in vitro model and amyloid beta (Aß) oligomer (AßO)-induced neuroinflammation in vivo model, respectively. As a result, KP-1 pre-treatment reduced nitric oxide (NO) production, protein levels of inducible NO synthase (iNOS) and c-Jun N-terminal kinase (JNK) phosphorylation in BV2 cells which were significantly promoted by 100 ng ml-1 LPS treatment. Similarly, KP-1 administration protected mice from AßO-induced memory impairment scored by Y-maze and novel object recognition test (NORT). Moreover, KP-1 administration suppressed AßO-induced microglial cell activation measured by counting the number of ionized calcium binding adaptor molecule 1 (Iba-1)-positive cells in both the cortex and hippocampal dentate gyrus and measuring the mRNA expression of TNFα, IL-1ß and IL-6. Furthermore, AßO-induced synaptotoxicity was prevented by KP-1 administration which is in line with behavioral changes. Collectively, these findings suggest that KP-1 could be a potential functional food for protection against neuroinflammation, and prevents or delays the progression of AD.


Assuntos
Doença de Alzheimer , Petasites , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Cálcio/metabolismo , Inflamação/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Lipopolissacarídeos/efeitos adversos , Camundongos , Microglia , Óxido Nítrico/metabolismo , Extratos Vegetais/metabolismo , RNA Mensageiro/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
4.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36142258

RESUMO

Inhibition of inflammatory responses from the spike glycoprotein of SARS-CoV-2 (Spike) by targeting NLRP3 inflammasome has recently been developed as an alternative form of supportive therapy besides the traditional anti-viral approaches. Clerodendrum petasites S. Moore (C. petasites) is a Thai traditional medicinal plant possessing antipyretic and anti-inflammatory activities. In this study, C. petasites ethanolic root extract (CpEE) underwent solvent-partitioned extraction to obtain the ethyl acetate fraction of C. petasites (CpEA). Subsequently, C. petasites extracts were determined for the flavonoid contents and anti-inflammatory properties against spike induction in the A549 lung cells. According to the HPLC results, CpEA significantly contained higher amounts of hesperidin and hesperetin flavonoids than CpEE (p < 0.05). A549 cells were then pre-treated with either C. petasites extracts or its active flavonoids and were primed with 100 ng/mL of spike S1 subunit (Spike S1) and determined for the anti-inflammatory properties. The results indicate that CpEA (compared with CpEE) and hesperetin (compared with hesperidin) exhibited greater anti-inflammatory properties upon Spike S1 induction through a significant reduction in IL-6, IL-1ß, and IL-18 cytokine releases in A549 cells culture supernatant (p < 0.05). Additionally, CpEA and hesperetin significantly inhibited the Spike S1-induced inflammatory gene expressions (NLRP3, IL-1ß, and IL-18, p < 0.05). Mechanistically, CpEA and hesperetin attenuated inflammasome machinery protein expressions (NLRP3, ASC, and Caspase-1), as well as inactivated the Akt/MAPK/AP-1 pathway. Overall, our findings could provide scientific-based evidence to support the use of C. petasites and hesperetin in the development of supportive therapies for the prevention of COVID-19-related chronic inflammation.


Assuntos
Antipiréticos , Tratamento Farmacológico da COVID-19 , Clerodendrum , Hesperidina , Petasites , Células A549 , Anti-Inflamatórios/farmacologia , Caspase 1/metabolismo , Clerodendrum/metabolismo , Citocinas/metabolismo , Flavonoides/farmacologia , Hesperidina/farmacologia , Humanos , Inflamassomos/metabolismo , Interleucina-18 , Interleucina-6 , Pulmão/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-akt , SARS-CoV-2 , Solventes , Glicoproteína da Espícula de Coronavírus , Fator de Transcrição AP-1
5.
J Ethnopharmacol ; 293: 115263, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35427728

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Petasites (butterbur, Asteraceae) species have been used since Ancient times in the traditional medicine of Asian and European countries to treat central nervous system (migraine), respiratory (asthma, allergic rhinitis, bronchitis, spastic cough), cardiovascular (hypertension), gastrointestinal (ulcers) and genitourinary (dysmenorrhea) disorders. AIM OF THE REVIEW: This study summarized and discussed the traditional uses, phytochemical, pharmacological and toxicological aspects of Petasites genus. MATERIALS AND METHODS: A systematic search of Petasites in online databases (Scopus, PubMed, ScienceDirect, Google Scholar) was performed, with the aim to find the phytochemical, toxicological and bioactivity studies. The Global Biodiversity Information Facility, Plants of the World Online, World Flora Online and The Plant List databases were used to describe the taxonomy and geographical distribution. RESULTS: The detailed phytochemistry of the potentially active compounds of Petasites genus (e.g. sesquiterpenes, pyrrolizidine alkaloids, polyphenols and essential oils components) was presented. The bioactivity studies (cell-free, cell-based, animal, and clinical) including the traditional uses of Petasites (e.g. anti-spasmolytic, hypotensive, anti-asthmatic activities) were addressed and followed by discussion of the main pharmacokinetical and toxicological issues related to the administration of butterbur-based formulations. CONCLUSIONS: This review provides a complete overview of the Petasites geographical distribution, traditional use, phytochemistry, bioactivity, and toxicity. More than 200 different sesquiterpenes (eremophilanes, furanoeremophilanes, bakkenolides), 50 phenolic compounds (phenolic acids, flavonoids, lignans) and volatile compounds (monoterpenes, sesquiterpenes) have been reported within the genus. Considering the phytochemical complexity and the polypharmacological potential, there is a growing research interest to extend the current therapeutical applications of Petasites preparations (anti-migraine, anti-allergic) to other human ailments, such as central nervous system, cardiovascular, malignant or microbial diseases. This research pathway is extremely important, especially in the recent context of the pandemic situation, when there is an imperious need for novel drug candidates.


Assuntos
Etnobotânica , Petasites , Animais , Etnofarmacologia , Medicina Tradicional , Compostos Fitoquímicos/uso terapêutico , Compostos Fitoquímicos/toxicidade , Fitoterapia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/toxicidade
6.
Fitoterapia ; 157: 105130, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35051554

RESUMO

Petasites japonicus is one of the most popular edible wild plants in Japan. Many biological effects of P. japonicus have been reported, including anti-allergy, anti-inflammation, and anticancer effects. Although its anti-obesity effect has been reported in several studies, the most important component responsible for this activity has not been fully elucidated. On screening the components that suppress adipocyte differentiation in 3T3-F442A cells, we found that the extract of the flower buds of P. japonicus has anti-adipogenic effect. Among the known major components of P. japonicus, petasin exhibited a potent anti-adipogenic effect at an IC50 value of 0.95 µM. Quantitative analysis revealed that the active component responsible for most of the anti-adipogenic effects of P. japonicus extract is petasin. Petasin suppressed the expression of markers of mature adipocytes (PPARγ, C/EBPα, and aP2). However, as isopetasin and petasol, analogs of petasin, did not exhibit these effects, it indicates that a double bond at the C11-C12 position and an angeloyl ester moiety were essential for the activity. Petasin affected the late stage of adipocyte differentiation and inhibited the expression of lipid synthesis factors (ACC1, FAS, and SCD1). Additionally, it was revealed that petasin could be efficiently extracted using hexane with minimal amount of pyrrolizidine alkaloids, the toxic components. These findings indicate that P. japonicus extract containing petasin could be a promising food material for the prevention of obesity.


Assuntos
Adiposidade/efeitos dos fármacos , Obesidade/prevenção & controle , Petasites/química , Sesquiterpenos/farmacologia , Células 3T3/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Animais , Compostos Azo , Western Blotting , Corantes , Flores/química , Concentração Inibidora 50 , Japão , Camundongos , Polifenóis/análise , Alcaloides de Pirrolizidina/química , Reação em Cadeia da Polimerase em Tempo Real , Sesquiterpenos/química , Sesquiterpenos/isolamento & purificação , Relação Estrutura-Atividade
7.
Viruses ; 14(1)2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-35062310

RESUMO

The coronavirus disease 2019 (COVID-19), caused by a novel coronavirus (SARS-CoV-2), has spread worldwide, affecting over 250 million people and resulting in over five million deaths. Antivirals that are effective are still limited. The antiviral activities of the Petasites hybdridus CO2 extract Ze 339 were previously reported. Thus, to assess the anti-SARS-CoV-2 activity of Ze 339 as well as isopetasin and neopetasin as major active compounds, a CPE and plaque reduction assay in Vero E6 cells was used for viral output. Antiviral effects were tested using the original virus (Wuhan) and the Delta variant of SARS-CoV-2. The antiviral drug remdesivir was used as control. Pre-treatment with Ze 339 in SARS-CoV-2-infected Vero E6 cells with either virus variant significantly inhibited virus replication with IC50 values of 0.10 and 0.40 µg/mL, respectively. The IC50 values obtained for isopetasin ranged between 0.37 and 0.88 µM for both virus variants, and that of remdesivir ranged between 1.53 and 2.37 µM. In conclusion, Ze 339 as well as the petasins potently inhibited SARS-CoV-2 replication in vitro of the Wuhan and Delta variants. Since time is of essence in finding effective treatments, clinical studies will have to demonstrate if Ze339 can become a therapeutic option to treat SARS-CoV-2 infections.


Assuntos
Antivirais/farmacologia , Extratos Vegetais/farmacologia , SARS-CoV-2/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Alanina/análogos & derivados , Alanina/farmacologia , Animais , Antivirais/química , Dióxido de Carbono/química , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Variação Genética , Petasites/química , Extratos Vegetais/química , SARS-CoV-2/genética , Sesquiterpenos/química , Sesquiterpenos/farmacologia , Células Vero
8.
J Clin Invest ; 131(17)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34623325

RESUMO

Mitochondrial electron transport chain complex I (ETCC1) is the essential core of cancer metabolism, yet potent ETCC1 inhibitors capable of safely suppressing tumor growth and metastasis in vivo are limited. From a plant extract screening, we identified petasin (PT) as a highly potent ETCC1 inhibitor with a chemical structure distinct from conventional inhibitors. PT had at least 1700 times higher activity than that of metformin or phenformin and induced cytotoxicity against a broad spectrum of tumor types. PT administration also induced prominent growth inhibition in multiple syngeneic and xenograft mouse models in vivo. Despite its higher potency, it showed no apparent toxicity toward nontumor cells and normal organs. Also, treatment with PT attenuated cellular motility and focal adhesion in vitro as well as lung metastasis in vivo. Metabolome and proteome analyses revealed that PT severely depleted the level of aspartate, disrupted tumor-associated metabolism of nucleotide synthesis and glycosylation, and downregulated major oncoproteins associated with proliferation and metastasis. These findings indicate the promising potential of PT as a potent ETCC1 inhibitor to target the metabolic vulnerability of tumor cells.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Sesquiterpenos/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Antineoplásicos Fitogênicos/química , Linhagem Celular Tumoral , Complexo I de Transporte de Elétrons/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Metaboloma/efeitos dos fármacos , Metformina/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Metástase Neoplásica/prevenção & controle , Neoplasias Experimentais/patologia , Petasites/química , Fenformin/farmacologia , Sesquiterpenos/química , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
9.
J Nat Med ; 74(4): 689-701, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32535872

RESUMO

From the methanolic extract of the aerial parts of Petasites japonicus, six new eremophilane-type sesquiterpenoids, petasitesterpenes I-VI were isolated together with eight known compounds including S-japonin and eremophilenolide. The chemical structures of the isolated new compounds were elucidated based on chemical/physicochemical evidence. For petasitesterpenes I and II, the absolute configurations were established by comparison of experimental and predicted electronic circular dichroism (ECD) data. Among the isolated compounds, petasitesterpenes I, II, VI, and S-japonin showed cytotoxic activity against both human astrocytoma U-251MG cancer cells (non-CSCs) and their cancer stem cells (CSCs) isolated by sphere formation. In addition, cytotoxic activities of these compounds against breast cancer MDA-MB-231 were evaluated, supporting that petasitesterpene II has more effective than other isolated compounds.


Assuntos
Células-Tronco Neoplásicas/química , Petasites/química , Plantas Medicinais/química , Sesquiterpenos/química , Humanos , Estrutura Molecular
10.
Nutrients ; 12(5)2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32365527

RESUMO

Koreans have been consuming Petasites Japonicus (PJ) as food. Although the therapeutic effect of PJ on allergic or inflammatory reactions associated with asthma has been proven, its effect on obesity is unclear. Therefore, the present study was aimed to assess the obesity related anti-inflammatory and anti-adipogenic effects of ethanol extract PJ (EPJ) on the inflammatory response in RAW 264.7 macrophages and on differentiation in 3T3-L1 adipocytes. In addition, the polyphenolic compound was quantitatively characterized from the EPJ using ultra performance liquid chromatography coupled with diode array detector, quadrupole time-of-flight-mass spectrometry (UPLC-DAD-QToF-MS). In RAW 264.7 or 3T3-L1, reduction of nitric oxide (in macrophages) production as well as monocyte chemoattractant protein-1 and tumor necrosis factor-α were observed. Treatment of EPJ in adipocyte differentiation showed an improvement in adiponectin and lipid accumulation and a significant reduction of PPARγ and FABP-4 mRNA expression levels. On the other hand, mRNA expression of UCP-1, PPARα, and ACO increased in the EPJ treated group. In addition, a total of 26 polyphenolic compounds were detected and of which 12 are reported for the first time from PJ. The higher content of diverse polyphenolic compounds presented in EPJ might be responsible for the observed anti-inflammatory and anti-adipogenic effect. These results suggest that PJ is valuable in improving obesity-related inflammatory responses.


Assuntos
Adipócitos/metabolismo , Adipogenia/efeitos dos fármacos , Anti-Inflamatórios , Fármacos Antiobesidade , Macrófagos/metabolismo , Petasites/química , Extratos Vegetais/análise , Extratos Vegetais/farmacologia , Polifenóis/análise , Polifenóis/farmacologia , Células 3T3 , Animais , Quimiocina CCL2/metabolismo , Etanol , Proteínas de Ligação a Ácido Graxo/metabolismo , Camundongos , Óxido Nítrico/metabolismo , PPAR gama/metabolismo , Extratos Vegetais/isolamento & purificação , Polifenóis/isolamento & purificação , Células RAW 264.7 , Fator de Necrose Tumoral alfa/metabolismo
11.
Mol Med Rep ; 22(1): 239-246, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32319645

RESUMO

Neuronal injury is a common, and critical, occurrence in clinical ischemic strokes, and can cause irreversible brain damage. However, the precise pathological mechanisms underlying this condition and effective treatment remain unclear. Increasing evidence shows that the nuclear factor erythroid 2­related factor 2 (Nrf2)/activated protein kinase (AMPK) signaling pathway serves a significant role in neuronal injury and is involved in neuroprotection. The present study demonstrated that petatewalide B, the active constituent of Petasites japonicus, otherwise known as butterbur, can alleviate oxygen­glucose deprivation/reoxygenation (OGD/R)­induced neuronal death via the adenosine monophosphate­AMPK/glycogen synthase kinase (GSK)­3/ß/Nrf2/antioxidant response element (ARE) signaling pathways in human neuroblastoma SH­SY5Y cells. A neuronal injury model was established by depriving SH­SY5Y cells of oxygen and glucose for 8 h, followed by 24 h of reoxygenation (OGD/R). The results indicated that the OGD/R model exhibited reduced cell viability but increased lactate dehydrogenase (LDH) release, reactive oxygen species (ROS) production and apoptosis. These were accompanied by increased levels of cleaved PARP, cleaved caspase­9, cleaved caspase­3, p53, Bax and p21, as well as decreased Bcl­2 levels. Treatment with petatewalide B was able to strengthen cell viability but reduced LDH release, ROS production and the expression levels of apoptosis­related proteins. Additionally, treatment with petatewalide B activated AMPK in the OGD/R­exposed SH­SY5Y cells and upregulated activation of the downstream transcription factor Nrf2, which accompanied heme oxygenase 1 (HO­1) and NAD(P)H quinone dehydrogenase 1 (NQO1) expression. Furthermore, silencing AMPK, Nrf2, HO­1 and NQO1 expression inhibited petatewalide B's protective effect against apoptosis in the OGD/R­exposed SH­SY5Y cells. Therefore, petatewalide B protected human neuroblastoma cells against OGD/R­induced injury by downregulating apoptosis and oxidative stress via upregulation of the AMPK/Nrf2 signaling pathway, suggesting that petatewalide B may be a prospective protector against neuronal injury, having possible therapeutic and medical implications.


Assuntos
Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Traumatismo por Reperfusão/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular , Glucose/metabolismo , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Fármacos Neuroprotetores/química , Oxigênio/metabolismo , Petasites/química , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia
12.
Oxid Med Cell Longev ; 2020: 3178214, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33456667

RESUMO

The liver is the most vital organ that could be influenced by inducers of hypersensitivity such as ovalbumin. The current study was carried out to explore the effects of butterbur (Petasites hybridus) extract on the ovalbumin-induced liver hypersensitivity in Swiss albino male mice. Animals were divided into 4 groups, 1st group served as a control group, 2nd group treated with daily oral administration of 75 mg/kg of butterbur extract, 3rd group received single oral dose 100 mg/kg of ovalbumin to induce hypersensitivity, and 4th group treated with oral administration of butterbur extract one-day post to the hypersensitivity induction. Ovalbumin induces a significant increase in the activity of liver enzymes and MDA and decreased the activity of CAT after the ovalbumin treatment. Histopathological investigations revealed marked pathological alterations in liver tissues in the form of hyaline degeneration and fibrosis. Additionally, heavy immune response indicated by immunostaining of MDA and TNF-α could be observed. In contrast, posttreatment with butterbur extract after hypersensitivity induction resulted in a significant decrease of liver enzymes and oxidative stress and reduced the inflammation and fibrosis of liver tissues. These results suggest that butterbur extract is considered as anti-inflammatory and antioxidant therapeutic herb for hypersensitivity treatment of liver.


Assuntos
Fígado/patologia , Petasites/química , Extratos Vegetais/farmacologia , Animais , Fígado/efeitos dos fármacos , Fígado/fisiopatologia , Testes de Função Hepática , Masculino , Malondialdeído/metabolismo , Camundongos , Ovalbumina , Estresse Oxidativo/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
13.
Chem Biodivers ; 16(3): e1800531, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30600899

RESUMO

Essential oil compositions of fresh leaves, flower stems and rhizomes obtained by hydrodistillation from different Croatian populations of Petasites albus (L.) Gaertn. and Petasites hybridus (L.) G.Gaertn., B.Mey. & Scherb. (four of each species) were investigated using gas chromatography-flame ionization detection and gas chromatography-mass spectrometry. Altogether, 118 constituents were identified, accounting for 81.19-96.81 % of total oil composition. All essential oils were characterized by oxygenated sesquiterpenes, with distinct compounds recorded for both investigated species. Clear separation between the two species was confirmed by principal component analysis and hierarchical cluster analysis. This is the first study that recorded intraspecific variations of essential oil constituents from P. albus and P. hybridus. Obtained results could contribute to the understanding of their medicinal and nutritional value.


Assuntos
Asteraceae/química , Flores/química , Óleos Voláteis/química , Petasites/química , Folhas de Planta/química , Rizoma/química , Óleos Voláteis/isolamento & purificação
14.
Immunopharmacol Immunotoxicol ; 40(3): 232-241, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29433360

RESUMO

OBJECTIVES: Abnormal microglia secrete neuroinflammatory factors that play a pivotal role in neurodegenerative-disorder development. Thus, regulating abnormal microglia-activation could be a promising therapeutic strategy. The purposes of this study included investigating the effect of Petatewalide B on lipopolysaccharide- (LPS-) stimulated microglia and exploring the role of the AMPK/Nrf2- (adenosine monophosphate-activated protein kinase/nuclear factor erythroid 2-related factor 2) signaling pathway in the anti-neuroinflammatory function of Petatewalide B. METHODS: We divided the microglia into four groups: a control group, a Petatewalide B-treated group, an LPS-treated group, and an LPS and Petatewalide B-treated group. The four groups of microglia were experimented with, using the NO, ELISA, and promoter assays, and western blotting was conducted to determine LPS-stimulated neuroinflammatory responses. RESULTS: We found that pretreatment with Petatewalide B strongly alleviates interleukin- (IL-) 1ß, IL-6, and tumor-necrosis-factor-α (TNF-α) production, and suppresses iNOS and nitric oxide (NO) overexpression in LPS-stimulated microglia. The AMPK/Nrf2-signaling pathway is important for inducing anti-neuroinflammatory responses. Mechanistic studies report that Petatewalide B increases nuclear-Nrf2 translocation, and heme oxygenase-1 (HO-1) and NAD(P)H: quinone oxidoreductase 1 (NQO1) expression in a dose-dependent manner. Furthermore, Petatewalide B significantly up-regulates HO-1 and NQO1 by specifically improving antioxidant-response-elements-transcription activity. We then investigated whether Nrf2/HO-1/NQO1 contribute to the anti-neuroinflammatory properties of Petatewalide B. Nrf2, HO-1, and NQO1 small-integrating-ribonucleic-acids (siRNAs) significantly blocked Petatewalide B-attenuated iNOS-promoter-activity in LPS-stimulated microglia. Furthermore, Petatewalide B also up-regulated AMPK-phosphorylation in a dose-dependent manner. We next evaluated whether blocking AMPK-phosphorylation using an inhibitor (compound C) would critically affect anti-neuroinflammatory responses. We found that the AMPK-phosphorylation is associated with nuclear-Nrf2 translocation and elevated HO-1 and NQO1 expression levels. Our data also showed that AMPK-inhibitor pretreatment significantly reverses Petatewalide B-attenuated iNOS-promoter-activity in LPS-stimulated microglia. CONCLUSIONS: Our findings provide the possible mechanism of the anti-neuroinflammatory properties of Petatewalide B that result from beneficial responses in the AMPK/Nrf2-signaling pathway.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Anti-Inflamatórios/farmacologia , Lipopolissacarídeos/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , Petasites/química , Sesquiterpenos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Anti-Inflamatórios/química , Linhagem Celular , Camundongos , Sesquiterpenos/química
15.
Int J Mol Med ; 41(3): 1683-1692, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29286084

RESUMO

Abnormal neuroinflammatory responses have diverse roles in neuronal death, oxidative stress and neurodegenerative diseases, such as Alzheimer's and Parkinson's disease. Microglia regulate these responses via molecular signaling cascades that involve inflammatory cytokines and complement proteins. Bakkenolide B from Petasites japonicus exhibits significant anti­inflammatory and anti­allergic bioactivities. The present study investigated the anti­neuroinflammatory effects and underlying molecular mechanisms of bakkenolide B on the lipopolysaccharide (LPS)­mediated neuroinflammatory response in microglia. The results indicated that bakkenolide B pretreatment significantly reduced microglial production of interleukin (IL)­1ß, IL­6, IL­12, and tumor necrosis factor (TNF)­α. Furthermore, this effect was associated with reduced production of reactive oxygen species. The role of bakkenolide B was then evaluated in the upregulation of nuclear factor erythroid 2­related factor 2 (Nrf2)/antioxidant response element (ARE) signaling pathways. The results suggested that bakkenolide B significantly upregulated Nrf2/ARE pathway­related downstream factors, such as NADPH dehydrogenase quinone­1 (NQO­1) and heme oxygenase­1 (HO­1). Silencing of Nrf2, HO­1 and NQO­1 diminished the anti­neuroinflammatory properties of bakkenolide B. AMP­activated protein kinase (AMPK) activates the Nrf2/ARE signaling pathway, and the results of the present study demonstrated that bakkenolide B increased AMPK phosphorylation in microglia. In addition, an AMPK inhibitor abolished the bakkenolide B­induced increase in nuclear Nrf2, NQO­1 and HO­1 protein expression. Finally, an AMPK inhibitor diminished the bakkenolide B­mediated inhibition of LPS­stimulated TNF­α production. Taken together, the present results demonstrate that bakkenolide B may be an effective and therapeutically relevant AMPK/Nrf2 pathway activator for suppressing abnormal neuro-inflammation in neurodegenerative diseases.


Assuntos
Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Microglia/metabolismo , Petasites/química , Sesquiterpenos/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Elementos de Resposta Antioxidante/genética , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Lipopolissacarídeos , Camundongos , Microglia/efeitos dos fármacos , Modelos Biológicos , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio , Sesquiterpenos/química , Transdução de Sinais/efeitos dos fármacos
16.
Biomed Chromatogr ; 31(12)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28623844

RESUMO

The Korean Petasites japonicus is a perennial plant used in folk medicine as a remedy for many diseases and popularly consumed as spring greens. Ten polyphenols were characterized from the leaves, stems and roots of this plant via high-performance liquid chromatography-tandem mass spectrometry. Individual polyphenols were quantified for the first time using calibration curves of six structurally related external standards. Validation data indicated that coefficients of determinations (R2 ) were ≥0.9702 for all standards. Recoveries measured at 50 and 100 mg/L were 80.0-91.9 and 80.3-105.3%, respectively. Precisions at these two concentration levels were 0.7-6.1 and 1.1-5.5%, respectively. The total number of identified components was largest for the leaves and smallest for the stems. The leaf and root polyphenolic extracts showed anti-inflammatory effects by inducing LPS-activated COX-2 and iNOS protein levels in mouse macrophage RAW 264.7 cells. The antioxidant capacity of the polyphenols, when evaluated for DPPH (α,α-diphenyl-ß-picrylhydrazyl)ˑ , ABTS+ [2-2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)] and superoxide radical scavenging activities, and in ferric reducing ability of plasma (FRAP) assays, was highest in the leaf and lowest in the stem. This trend suggests that the antioxidant capacities depend primarily on polyphenol concentration in each tissue. The current findings suggest that polyphenols derived from P. japonicas tissues could have potential as functional health foods.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Cromatografia Líquida de Alta Pressão/métodos , Petasites/química , Extratos Vegetais/química , Polifenóis/farmacologia , Animais , Anti-Inflamatórios/química , Antioxidantes/química , Ciclo-Oxigenase 2/análise , Ciclo-Oxigenase 2/metabolismo , Expressão Gênica/efeitos dos fármacos , Camundongos , Óxido Nítrico Sintase Tipo II/análise , Óxido Nítrico Sintase Tipo II/metabolismo , Polifenóis/química , Células RAW 264.7 , Espectrometria de Massas em Tandem/métodos
17.
Biofactors ; 43(3): 388-399, 2017 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-28139053

RESUMO

Ze339, an herbal extract from Petasites hybridus leaves is effective in treatment of allergic rhinitis by inhibition of a local production of IL-8 and eicosanoid LTB4 in allergen-challenged patients. However, the mechanism of action and anti-inflammatory potential in virally induced exacerbation of the upper airways is unknown. This study investigates the anti-inflammatory mechanisms of Ze339 on primary human nasal epithelial cells (HNECs) upon viral, bacterial and pro-inflammatory triggers. To investigate the influence of viral and bacterial infections on the airways, HNECs were stimulated with viral mimics, bacterial toll-like-receptor (TLR)-ligands or cytokines, in presence or absence of Ze339. The study uncovers Ze339 modulated changes in pro-inflammatory mediators and decreased neutrophil chemotaxis as well as a reduction of the nuclear translocation and phosphorylation of STAT molecules. Taken together, this study suggests that phyto drug Ze339 specifically targets STAT-signalling pathways in HNECs and has high potential as a broad anti-inflammatory drug that exceeds current indication. © 2016 BioFactors, 43(3):388-399, 2017.


Assuntos
Células Epiteliais/efeitos dos fármacos , Petasites/química , Extratos Vegetais/farmacologia , Fatores de Transcrição STAT/antagonistas & inibidores , Sesquiterpenos/farmacologia , Movimento Celular/efeitos dos fármacos , Quimiocinas/antagonistas & inibidores , Quimiocinas/biossíntese , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Flagelina/antagonistas & inibidores , Flagelina/farmacologia , Regulação da Expressão Gênica , Humanos , Interferon gama/antagonistas & inibidores , Interferon gama/farmacologia , Interleucina-4/antagonistas & inibidores , Interleucina-4/farmacologia , Lipopeptídeos/antagonistas & inibidores , Lipopeptídeos/farmacologia , Cavidade Nasal/citologia , Cavidade Nasal/efeitos dos fármacos , Cavidade Nasal/metabolismo , Neutrófilos/efeitos dos fármacos , Folhas de Planta/química , Poli I-C/antagonistas & inibidores , Poli I-C/farmacologia , Cultura Primária de Células , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais
18.
J Ethnopharmacol ; 178: 17-24, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26674157

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The giant butterbur Petasites japonicus is used to treat asthma and allergic diseases in traditional Korean, Japanese, and Chinese medicine. AIM OF THE STUDY: To elucidate the anti-allergic effect of Petasites genus, we studied effects of several compounds from Petasites japonicus leaves and found a novel bakkenolide-type sesquiterpine. In the present study, anti-allergic and anti-inflammatory effects of the new compound was examined using in vivo and in vitro experiments. MATERIALS AND METHODS: The novel compound was isolated from Petasites japonicus leaves and named petatewalide B. Antigen-induced degranulation and Ca(2+) mobilization were measured in RBL-2H3 mast cells by measuring ß-hexosaminidase activity and fluorescence change of Ca(2+) probe, fura-2. Induction of inducible nitric oxide synthase and cyclooxygenase 2 was measured by Western blotting in peritoneal macrophages. In addition, ovalbumin-induced asthma model was used for in vivo efficacy test of petatewalide B. Membrane potential was estimated by measuring fluorescence change of DiBAC in C6 glioma cells. RESULTS: Petatewalide B inhibited the antigen-induced degranulation of ß-hexosaminidase in RBL-2H3 mast cells, but did not affect antigen-induced Ca(2+) increase in the cells. Petatewalide B also showed inhibition of the LPS-induced induction of iNOS, but not COX-2 in mouse peritoneal macrophages. Nitric oxide production was also inhibited by petatewalide B in macrophages. In the ovalbumin-induced asthma model, petatewalide B strongly inhibited accumulations of eosinophils, macrophages, and lymphocytes in bronchoalveolar lavage fluid. Petatewalide B increased the membrane potential of C6 glioma cells in a concentration-dependent manner. CONCLUSION: Petatewalide B from Petasites genus not only has anti-allergic and anti-inflammatory effects but also induces a transient increase of membrane potential in C6 glioma cells.


Assuntos
Antialérgicos/química , Antialérgicos/farmacologia , Asma/tratamento farmacológico , Petasites/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Cálcio/metabolismo , Linhagem Celular Tumoral , Ciclo-Oxigenase 2/metabolismo , Masculino , Mastócitos/efeitos dos fármacos , Mastócitos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Folhas de Planta/química , Ratos , Sesquiterpenos/química , Sesquiterpenos/farmacologia , beta-N-Acetil-Hexosaminidases/metabolismo
19.
Yao Xue Xue Bao ; 51(8): 1285-9, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-29906019

RESUMO

A new sesquiterpene, bakkenolide-Ⅵa (1), was isolated from the rhizome of Petasites japonicas (Sieb. et Zucc.) Maxim. The structure was characterized on the basis of various NMR ((1)H, (13)C, (1)H-(1)H COSY, HMQC, HMBC and NOESY) and mass spectrometry data. Bakkenolide-Ⅵa showed potent cerebral hypoxia- ischemia protective activity in mice subjected to decapitation through prolonging the survival time and gasping time. It also exhibited a protective activity against hypoxia injury in PC12 cells in anaerobic culture by inhibition of lactate dehydrogenase (LDH) release.


Assuntos
Hipóxia-Isquemia Encefálica/tratamento farmacológico , Petasites/química , Rizoma/química , Sesquiterpenos/química , Animais , Hipóxia Celular , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Camundongos , Células PC12 , Extratos Vegetais/química , Ratos , Sesquiterpenos/isolamento & purificação
20.
PLoS One ; 10(7): e0133077, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26207817

RESUMO

Oriental natural plants have been used as medical herbs for the treatment of various diseases for over 2,000 years. In this study, we evaluated the effect of several natural plants on the preservation of male fertility by assessing the ability of plant extracts to stimulate spermatogonial stem cell (SSC) proliferation by using a serum-free culture method. In vitro assays showed that Petasites japonicus extracts, especially the butanol fraction, have a significant effect on germ cells proliferation including SSCs. The activity of SSCs cultured in the presence of the Petasites japonicus butanol fraction was confirmed by normal colony formation and spermatogenesis following germ cell transplantation of the treated SSCs. Our findings could lead to the discovery of novel factors that activate SSCs and could be useful for the development of technologies for the prevention of male infertility.


Assuntos
Petasites/química , Extratos Vegetais/farmacologia , Espermatogônias/efeitos dos fármacos , Espermatogônias/metabolismo , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Animais , Técnicas de Cultura de Células , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Meios de Cultura Livres de Soro , Fertilidade/efeitos dos fármacos , Masculino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA