Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38930979

RESUMO

Secondary metabolites, bioactive compounds produced by living organisms, can unveil symbiotic relationships in nature. In this study, soilborne entomopathogenic nematodes associated with symbiotic bacteria (Xenorhabdus stockiae and Photorhabdus luminescens) were extracted from solvent supernatant containing secondary metabolites, demonstrating significant inhibitory effects against E. coli, S. aureus, B. subtilus, P. mirabilis, E. faecalis, and P. stutzeri. The characterization of these secondary metabolites by Fourier transforms infrared spectroscopy revealed amine groups of proteins, hydroxyl and carboxyl groups of polyphenols, hydroxyl groups of polysaccharides, and carboxyl groups of organic acids. Furthermore, the obtained crude extracts were analyzed by high-performance liquid chromatography for the basic identification of potential bioactive peptides. Gas chromatography-mass spectrometry analysis of ethyl acetate extracts from Xenorhabdus stockiae identified major compounds including nonanoic acid derivatives, proline, paromycin, octodecanal derivatives, trioxa-5-aza-1-silabicyclo, 4-octadecenal, methyl ester, oleic acid, and 1,2-benzenedicarboxylicacid. Additional extraction from Photorhabdus luminescens yielded functional compounds such as indole-3-acetic acid, phthalic acid, 1-tetradecanol, nemorosonol, 1-eicosanol, and unsaturated fatty acids. These findings support the potential development of novel natural antimicrobial agents for future pathogen suppression.


Assuntos
Antibacterianos , Cromatografia Gasosa-Espectrometria de Massas , Simbiose , Cromatografia Líquida de Alta Pressão/métodos , Antibacterianos/farmacologia , Antibacterianos/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Metabolismo Secundário , Photorhabdus/química , Photorhabdus/metabolismo , Xenorhabdus/química , Xenorhabdus/metabolismo , Testes de Sensibilidade Microbiana , Animais
2.
Nature ; 616(7956): 357-364, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36991127

RESUMO

Endosymbiotic bacteria have evolved intricate delivery systems that enable these organisms to interface with host biology. One example, the extracellular contractile injection systems (eCISs), are syringe-like macromolecular complexes that inject protein payloads into eukaryotic cells by driving a spike through the cellular membrane. Recently, eCISs have been found to target mouse cells1-3, raising the possibility that these systems could be harnessed for therapeutic protein delivery. However, whether eCISs can function in human cells remains unknown, and the mechanism by which these systems recognize target cells is poorly understood. Here we show that target selection by the Photorhabdus virulence cassette (PVC)-an eCIS from the entomopathogenic bacterium Photorhabdus asymbiotica-is mediated by specific recognition of a target receptor by a distal binding element of the PVC tail fibre. Furthermore, using in silico structure-guided engineering of the tail fibre, we show that PVCs can be reprogrammed to target organisms not natively targeted by these systems-including human cells and mice-with efficiencies approaching 100%. Finally, we show that PVCs can load diverse protein payloads, including Cas9, base editors and toxins, and can functionally deliver them into human cells. Our results demonstrate that PVCs are programmable protein delivery devices with possible applications in gene therapy, cancer therapy and biocontrol.


Assuntos
Membrana Celular , Sistemas de Liberação de Medicamentos , Células Eucarióticas , Photorhabdus , Proteínas , Animais , Humanos , Camundongos , Membrana Celular/metabolismo , Células Eucarióticas/citologia , Células Eucarióticas/metabolismo , Photorhabdus/química , Photorhabdus/metabolismo , Proteína 9 Associada à CRISPR/metabolismo , Toxinas Biológicas/metabolismo , Proteínas/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Transporte Proteico
3.
Microbiol Spectr ; 10(1): e0257721, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35138171

RESUMO

Entomopathogenic Photorhabdus bacteria (Enterobacteriaceae: Gamma-proteobacteria), the natural symbionts of Heterorhabditis nematodes, are a rich source for the discovery of biologically active secondary metabolites (SMs). This study describes the isolation of three nematicidal SMs from in vitro culture supernatants of the Arizona-native Photorhabdus luminescens sonorensis strain Caborca by bioactivity-guided fractionation. Nuclear magnetic resonance spectroscopy and comparison to authentic synthetic standards identified these bioactive metabolites as trans-cinnamic acid (t-CA), (4E)-5-phenylpent-4-enoic acid (PPA), and indole. PPA and t-CA displayed potent, concentration-dependent nematicidal activities against the root-knot nematode (Meloidogyne incognita) and the citrus nematode (Tylenchulus semipenetrans), two economically and globally important plant parasitic nematodes (PPNs) that are ubiquitous in the United States. Southwest. Indole showed potent, concentration-dependent nematistatic activity by inducing the temporary rigid paralysis of the same targeted nematodes. While paralysis was persistent in the presence of indole, the nematodes recovered upon removal of the compound. All three SMs were found to be selective against the tested PPNs, exerting little effects on non-target species such as the bacteria-feeding nematode Caenorhabditis elegans or the entomopathogenic nematodes Steinernema carpocapsae, Heterorhabditis bacteriophora, and Hymenocallis sonorensis. Moreover, none of these SMs showed cytotoxicity against normal or neoplastic human cells. The combination of t-CA + PPA + indole had a synergistic nematicidal effect on both targeted PPNs. Two-component mixtures prepared from these SMs revealed complex, compound-, and nematode species-dependent interactions. These results justify further investigations into the chemical ecology of Photorhabdus SMs, and recommend t-CA, PPA and indole, alone or in combinations, as lead compounds for the development of selective and environmentally benign nematicides against the tested PPNs. IMPORTANCE Two phenylpropanoid and one alkaloid secondary metabolites were isolated and identified from culture filtrates of Photorhabdus l. sonorensis strain Caborca. The three identified metabolites showed selective nematicidal and/or nematistatic activities against two important plant parasitic nematodes, the root-knot nematode (Meloidogyne incognita) and the citrus nematode (Tylenchulus semipenetrans). The mixture of all three metabolites had a synergistic nematicidal effect on both targeted nematodes, while other combinations showed compound- and nematode-dependent interactions.


Assuntos
Anti-Helmínticos/farmacologia , Photorhabdus/química , Doenças das Plantas/parasitologia , Metabolismo Secundário , Tylenchoidea/efeitos dos fármacos , Animais , Anti-Helmínticos/química , Anti-Helmínticos/metabolismo , Cinamatos/química , Cinamatos/metabolismo , Cinamatos/farmacologia , Indóis/química , Indóis/metabolismo , Indóis/farmacologia , Estrutura Molecular , Photorhabdus/metabolismo , Tylenchoidea/crescimento & desenvolvimento
4.
Nat Commun ; 10(1): 5263, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31748551

RESUMO

Tc toxins are bacterial protein complexes that inject cytotoxic enzymes into target cells using a syringe-like mechanism. Tc toxins are composed of a membrane translocator and a cocoon that encapsulates a toxic enzyme. The toxic enzyme varies between Tc toxins from different species and is not conserved. Here, we investigate whether the toxic enzyme can be replaced by other small proteins of different origin and properties, namely Cdc42, herpes simplex virus ICP47, Arabidopsis thaliana iLOV, Escherichia coli DHFR, Ras-binding domain of CRAF kinase, and TEV protease. Using a combination of electron microscopy, X-ray crystallography and in vitro translocation assays, we demonstrate that it is possible to turn Tc toxins into customizable molecular syringes for delivering proteins of interest across membranes. We also infer the guidelines that protein cargos must obey in terms of size, charge, and fold in order to apply Tc toxins as a universal protein translocation system.


Assuntos
Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Sistemas de Translocação de Proteínas/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Proteínas de Bactérias/química , Toxinas Bacterianas/química , Cristalografia por Raios X , Endopeptidases/química , Endopeptidases/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas Imediatamente Precoces/química , Proteínas Imediatamente Precoces/metabolismo , Microscopia Eletrônica , Modelos Moleculares , Photorhabdus/química , Photorhabdus/metabolismo , Sistemas de Translocação de Proteínas/química , Proteínas Proto-Oncogênicas c-raf/química , Proteínas Proto-Oncogênicas c-raf/metabolismo , Tetra-Hidrofolato Desidrogenase/química , Tetra-Hidrofolato Desidrogenase/metabolismo , Proteína cdc42 de Ligação ao GTP/química , Proteína cdc42 de Ligação ao GTP/metabolismo
5.
J Biol Chem ; 294(3): 1035-1044, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30478175

RESUMO

The nematode mutualistic bacterium Photorhabdus asymbiotica produces a large virulence-associated multifunctional protein toxin named PaTox. A glycosyltransferase domain and a deamidase domain of this large toxin function as effectors that specifically target host Rho GTPases and heterotrimeric G proteins, respectively. Modification of these intracellular regulators results in toxicity toward insects and mammalian cells. In this study, we identified a cysteine protease-like domain spanning PaTox residues 1844-2114 (PaToxP), upstream of these two effector domains and characterized by three conserved amino acid residues (Cys-1865, His-1955, and Asp-1975). We determined the crystal structure of the PaToxP C1865A variant by native single-wavelength anomalous diffraction of sulfur atoms (sulfur-SAD). At 2.0 Å resolution, this structure revealed a catalytic site typical for papain-like cysteine proteases, comprising a catalytic triad, oxyanion hole, and typical secondary structural elements. The PaToxP structure had highest similarity to that of the AvrPphB protease from Pseudomonas syringae classified as a C58-protease. Furthermore, we observed that PaToxP shares structural homology also with non-C58-cysteine proteases, deubiquitinases, and deamidases. Upon delivery into insect larvae, PaToxP alone without full-length PaTox had no toxic effects. Yet, PaToxP expression in mammalian cells was toxic and enhanced the apoptotic phenotype induced by PaTox in HeLa cells. We propose that PaToxP is a C58-like cysteine protease module that is essential for full PaTox activity.


Assuntos
Toxinas Bacterianas/química , Cisteína Proteases/química , Photorhabdus/química , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Cristalografia por Raios X , Cisteína Proteases/genética , Cisteína Proteases/metabolismo , Photorhabdus/genética , Photorhabdus/metabolismo , Domínios Proteicos
6.
Parasitology ; 145(8): 1065-1074, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29157317

RESUMO

Leishmaniasis is a widely spread and zoonotic disease with serious problems as low effectiveness of drugs, emergence of parasite resistance and severe adverse reactions. In recent years, considerable attention has been given to secondary metabolites produced by Photorhabdus luminescens, an entomopathogenic bacterium. Here, we assessed the leishmanicidal activity of P. luminescens culture fluids. Initially, promastigotes of Leishmania amazonensis were incubated with cell free conditioned medium of P. luminescens and parasite survival was monitored. Different pre-treatments of the conditioned medium revealed that the leishmanicidal activity is due to a secreted peptide smaller than 3 kDa. The Photorhabdus-derived leishmanicidal toxin (PLT) was enriched from conditioned medium and its effect on mitochondrial membrane potential of promastigotes, was determined. Moreover, the biological activity of PLT against amastigotes was evaluated. PLT inhibited the parasite growth and showed significant leishmanicidal activity against promastigote and amastigotes of L. amazonensis. PLT also caused mitochondrial dysfunction in parasites, but low toxicity to mammalian cell and human erythrocytes. Moreover, the anti-amastigote activity was independent of nitric oxide production. In summary, our results highlight that P. luminescens secretes Leishmania-toxic peptide(s) that are promising novel drugs for therapy against leishmaniasis.


Assuntos
Meios de Cultivo Condicionados/farmacologia , Descoberta de Drogas , Leishmania mexicana/efeitos dos fármacos , Peptídeos/química , Photorhabdus/química , Animais , Meios de Cultivo Condicionados/química , Eritrócitos/efeitos dos fármacos , Humanos , Fatores Imunológicos/química , Fatores Imunológicos/farmacologia , Leishmania mexicana/crescimento & desenvolvimento , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Óxido Nítrico/metabolismo , Peptídeos/farmacologia , Photorhabdus/patogenicidade , Metabolismo Secundário
7.
Sci Rep ; 7: 41252, 2017 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-28128281

RESUMO

The actin cytoskeleton is an attractive target for bacterial toxins. The ADP-ribosyltransferase TccC3 from the insect bacterial pathogen Photorhabdus luminescence modifies actin to force its aggregation. We intended to transport the catalytic part of this toxin preferentially into cancer cells using a toxin transporter (Protective antigen, PA) which was redirected to Epidermal Growth Factor Receptors (EGFR) or to human EGF receptors 2 (HER2), which are overexpressed in several cancer cells. Protective antigen of anthrax toxin forms a pore through which the two catalytic parts (lethal factor and edema factor) or other proteins can be transported into mammalian cells. Here, we used PA as a double mutant (N682A, D683A; mPA) which cannot bind to the two natural anthrax receptors. Each mutated monomer is fused either to EGF or to an affibody directed against the human EGF receptor 2 (HER2). We established a cellular model system composed of two cell lines representing HER2 overexpressing esophageal adenocarcinomas (EACs) and EGFR overexpressing esophageal squamous cell carcinomas (ESCCs). We studied the specificity and efficiency of the re-directed anthrax pore for transport of TccC3 toxin and established Photorhabdus luminescence TccC3 as a toxin suitable for the development of a targeted toxin selectively killing cancer cells.


Assuntos
ADP Ribose Transferases/química , ADP-Ribosilação/genética , Toxinas Bacterianas/química , Carcinoma de Células Escamosas/tratamento farmacológico , Neoplasias Esofágicas/tratamento farmacológico , ADP Ribose Transferases/genética , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/microbiologia , Antígenos de Bactérias/química , Antígenos de Bactérias/farmacologia , Toxinas Bacterianas/farmacologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Receptores ErbB/química , Receptores ErbB/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Photorhabdus/química , Receptor ErbB-2/química , Receptor ErbB-2/genética
8.
Antimicrob Agents Chemother ; 60(11): 6748-6757, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27572410

RESUMO

The tuberculosis (TB) drug discovery pipeline is fueled by compounds identified in whole-cell screens against the causative agent, Mycobacterium tuberculosis Phenotypic screening enables the selection of molecules that inhibit essential cellular functions in live, intact bacilli grown under a chosen in vitro condition. However, deducing the mechanism of action (MOA), which is important to avoid promiscuous targets, often requires significant biological resources in a lengthy process that risks decoupling medicinal chemistry and biology efforts. Therefore, there is a need to develop methods enabling rapid MOA assessment of putative "actives" for triage decisions. Here, we describe a modified version of a bioluminescence reporter assay that allows nondestructive detection of compounds targeting either of two macromolecular processes in M. tuberculosis: cell wall biosynthesis or maintenance of DNA integrity. Coupling the luxCDABE operon from Photorhabdus luminescens to mycobacterial promoters driving expression of the iniBAC operon (PiniB-LUX) or the DNA damage-inducible genes, recA (PrecA-LUX) or radA (PradA-LUX), provided quantitative detection in real time of compounds triggering expression of any of these promoters over an extended 10- to 12-day incubation. Testing against known anti-TB agents confirmed the specificity of each reporter in registering the MOA of the applied antibiotic in M. tuberculosis, independent of bactericidal or bacteriostatic activity. Moreover, profiles obtained for experimental compounds indicated the potential to infer complex MOAs in which multiple cellular processes are disrupted. These results demonstrate the utility of the reporters for early triage of compounds based on the provisional MOA and suggest their application to investigate polypharmacology in known and experimental anti-TB agents.


Assuntos
Antituberculosos/farmacologia , Parede Celular/efeitos dos fármacos , DNA Bacteriano/genética , Descoberta de Drogas , Genes Reporter , Ensaios de Triagem em Larga Escala , Antituberculosos/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Luciferases/genética , Luciferases/metabolismo , Medições Luminescentes , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/metabolismo , Óperon , Photorhabdus/química , Photorhabdus/genética , Photorhabdus/metabolismo , Regiões Promotoras Genéticas , Recombinases Rec A/genética , Recombinases Rec A/metabolismo
9.
Chembiochem ; 16(2): 205-8, 2015 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-25425189

RESUMO

Discovery of new natural products by heterologous expression reaches its limits, especially when specific building blocks are missing in the heterologous host or the production medium. Here, we describe the insect-specific production of the new GameXPeptides E-H (5-8) from Photorhabdus luminescens TTO1, which can be produced heterologously from expression of the GameXPeptide synthetase GxpS only upon supplementation of the production media with the missing building blocks, and thus must be regarded as the true natural products under natural conditions.


Assuntos
Proteínas de Bactérias/metabolismo , Mariposas/microbiologia , Peptídeos/química , Photorhabdus/genética , Photorhabdus/metabolismo , Animais , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/química , Perfilação da Expressão Gênica , Larva/microbiologia , Família Multigênica , Mutação , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Peptídeos/metabolismo , Photorhabdus/química , Engenharia de Proteínas/métodos , Metabolismo Secundário
10.
J Nat Prod ; 75(11): 2007-11, 2012 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-23095088

RESUMO

Photorhabdus asymbiotica engages in a two-part life cycle that requires adaptation to both symbiotic and pathogenic phases. The genome of P. asymbiotica contains several gene clusters, which are predicted to be involved in the biosynthesis of unique secondary metabolites that are hypothesized to enhance the bacterium's pathogenic capabilities. However, recent reports on Photorhabdus secondary metabolite production have indicated that many of its genes are silent under laboratory culture conditions. Using a circumscribed panel of media and alternative fermentation conditions, we have successfully achieved the production of a series of new and known glidobactin/luminmycin derivatives from P. asymbiotica including glidobactin A (1), luminmycin A (2), and luminmycin D (3). These compounds were also obtained upon infection of live crickets with the bacterium. Luminmycin D showed cytotoxicity against human pancreatic cells (IC50 of 0.11 µM), as well as proteasome inhibition (IC50 of 0.38 µM).


Assuntos
Gryllidae/microbiologia , Oligopeptídeos/farmacologia , Photorhabdus/química , Animais , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Oligopeptídeos/química , Oligopeptídeos/isolamento & purificação , Neoplasias Pancreáticas/tratamento farmacológico , Peptídeos Cíclicos/química , Peptídeos Cíclicos/isolamento & purificação , Photorhabdus/genética , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos
11.
Anal Chem ; 84(16): 6948-55, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22873683

RESUMO

Although sharing a certain degree of structural uniformity, natural product classes exhibit variable functionalities such as different amino acid or acyl residues. During collision induced dissociation, some natural products exhibit a conserved fragmentation pattern close to the precursor ion. The observed fragments result from a shared set of neutral losses, creating a unique fragmentation pattern, which can be used as a fingerprint for members of these natural product classes. The culture supernatants of 69 strains of the entomopathogenic bacteria Photorhabdus and Xenorhabdus were analyzed by MALDI-MS(2), and a database comprising MS(2) data from each strain was established. This database was scanned for concordant fragmentation patterns of different compounds using a customized software, focusing on relative mass differences of the fragment ions to their precursor ion. A novel group of related natural products comprising 25 different arginine-rich peptides from 16 different strains was identified due to its characteristic neutral loss fragmentation pattern, and the structures of eight compounds were elucidated. Two biosynthesis gene clusters encoding nonribosomal peptide synthetases were identified, emphasizing the possibility to identify a group of structurally and biosynthetically related natural products based on their neutral loss fragmentation pattern.


Assuntos
Arginina/química , Produtos Biológicos/análise , Peptídeos/análise , Photorhabdus/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Xenorhabdus/química , Sequência de Aminoácidos , Produtos Biológicos/química , Peptídeos/química
12.
J Nat Prod ; 75(9): 1652-5, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-22909174

RESUMO

The 18 kb "silent" luminmycin biosynthetic pathway from Photorhabdus luminescens was cloned into a vector by using the newly established linear-linear homologous recombination and successfully expressed in Escherichia coli. Luminmycins A-C (1-3) were isolated from the heterologous host, and their structures were elucidated using 2D NMR spectroscopy and HRESIMS. Luminmycin A is a deoxy derivative of the previously reported glidobactin A, while luminmycins B and C most likely represent its acyclic biosynthetic intermediates. Compound 1 showed cytotoxicity against the human colon carcinoma HCT-116 cell line with an IC(50) value of 91.8 nM, while acyclic 2 was inactive at concentrations as high as 100 µg/mL.


Assuntos
Antineoplásicos/isolamento & purificação , Produtos Biológicos/isolamento & purificação , Oligopeptídeos/isolamento & purificação , Photorhabdus/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Detecção Precoce de Câncer , Escherichia coli/genética , Escherichia coli/metabolismo , Células HCT116 , Humanos , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Oligopeptídeos/química
13.
PLoS One ; 4(5): e5582, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19440549

RESUMO

A pre-requisite for bacterial pathogenesis is the successful interaction of a pathogen with a host. One mechanism used by a broad range of Gram negative bacterial pathogens is to deliver effector proteins directly into host cells through a dedicated type III secretion system where they modulate host cell function. The cycle inhibiting factor (Cif) family of effector proteins, identified in a growing number of pathogens that harbour functional type III secretion systems and have a wide host range, arrest the eukaryotic cell cycle. Here, the crystal structures of Cifs from the insect pathogen/nematode symbiont Photorhabdus luminescens (a gamma-proteobacterium) and human pathogen Burkholderia pseudomallei (a beta-proteobacterium) are presented. Both of these proteins adopt an overall fold similar to the papain sub-family of cysteine proteases, as originally identified in the structure of a truncated form of Cif from Enteropathogenic E. coli (EPEC), despite sharing only limited sequence identity. The structure of an N-terminal region, referred to here as the 'tail-domain' (absent in the EPEC Cif structure), suggests a surface likely to be involved in host-cell substrate recognition. The conformation of the Cys-His-Gln catalytic triad is retained, and the essential cysteine is exposed to solvent and addressable by small molecule reagents. These structures and biochemical work contribute to the rapidly expanding literature on Cifs, and direct further studies to better understand the molecular details of the activity of these proteins.


Assuntos
Proteínas de Bactérias/química , Burkholderia pseudomallei/química , Photorhabdus/química , Sequência de Aminoácidos , Burkholderia pseudomallei/metabolismo , Domínio Catalítico , Cromatografia em Gel , Cristalografia por Raios X , Dados de Sequência Molecular , Photorhabdus/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
14.
Environ Microbiol ; 8(5): 858-70, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16623743

RESUMO

Photorhabdus luminescens, a Gram-negative bacterium, secretes a protein toxin (PL toxin) that is toxic to insects. In this study, the effects of the PL toxin on large receptor-free unilamellar phospholipid vesicles (LUVs) of Manduca sexta and on brush border membrane vesicles (BBMVs) of M. sexta and Tenebrio molitor were examined. Cry1Ac served as a positive control in our experiments due to its known channel-forming activity on M. sexta. Voltage clamping assays with dissected midguts of M. sexta and T. molitor clearly showed that both Cry1Ac and PL toxin caused channel formation in the midguts, although channel formation was not detected for T. molitor midguts under Cry1Ac and it was less sensitive to PL toxin than to Cry1Ac for M. sexta midguts. Calcein release experiments showed that both toxins made LUVs (unilamellar lipid vesicles) permeable, and at some concentrations of the toxins such permeabilizing effects were pH-dependent. The lowest concentrations of PL toxin were more than 600-fold and 24-fold lower to induce BBMV permeability of T. molitor and M. sexta than those to induce calcein release from LUVs of M. sexta. These further support that PL toxin is responsible for channel formation in the larvae midguts. The lower concentration to induce permeability in BBMV than in LUV is, probably, attributable to that BBMV has PL toxin receptors that facilitate the toxin to induce permeabilization. Furthermore, our results indicate that the effects of PL toxin on BBMV permeability of M. sexta were not significantly influenced by Gal Nac, but those of Cry1Ac were. This implies that PL toxin and Cry1Ac might use different molecular binding sites in BBMV to cause channel formation.


Assuntos
Toxinas Bacterianas/toxicidade , Manduca/efeitos dos fármacos , Fosfolipídeos/metabolismo , Photorhabdus/química , Tenebrio/efeitos dos fármacos , Animais , Toxinas Bacterianas/isolamento & purificação , Toxinas Bacterianas/farmacocinética , Eletroforese em Gel de Poliacrilamida , Dose Letal Mediana , Manduca/crescimento & desenvolvimento , Manduca/metabolismo , Microvilosidades/efeitos dos fármacos , Microvilosidades/metabolismo , Técnicas de Patch-Clamp , Permeabilidade , Tenebrio/crescimento & desenvolvimento , Tenebrio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA