Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 74(5): 909-920, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27714409

RESUMO

The oomycete Phytophthora infestans is the cause of late blight in potato and tomato. It is a devastating pathogen and there is an urgent need to design alternative strategies to control the disease. To find novel potential drug targets, we used Lifeact-eGFP expressing P. infestans for high resolution live cell imaging of the actin cytoskeleton in various developmental stages. Previously, we identified actin plaques as structures that are unique for oomycetes. Here we describe two additional novel actin configurations; one associated with plug deposition in germ tubes and the other with appressoria, infection structures formed prior to host cell penetration. Plugs are composed of cell wall material that is deposited in hyphae emerging from cysts to seal off the cytoplasm-depleted base after cytoplasm retraction towards the growing tip. Preceding plug formation there was a typical local actin accumulation and during plug deposition actin remained associated with the leading edge. In appressoria, formed either on an artificial surface or upon contact with plant cells, we observed a novel aster-like actin configuration that was localized at the contact point with the surface. Our findings strongly suggest a role for the actin cytoskeleton in plug formation and plant cell penetration.


Assuntos
Actinas/metabolismo , Parede Celular/metabolismo , Phytophthora infestans/citologia , Phytophthora infestans/metabolismo , Células Vegetais/metabolismo , Celulose/metabolismo , Meios de Cultura , Hifas/citologia , Hifas/metabolismo , Solanum lycopersicum/citologia , Solanum lycopersicum/microbiologia , Transporte Proteico
2.
PLoS Pathog ; 9(3): e1003182, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23516354

RESUMO

Most eukaryotic pathogens have complex life cycles in which gene expression networks orchestrate the formation of cells specialized for dissemination or host colonization. In the oomycete Phytophthora infestans, the potato late blight pathogen, major shifts in mRNA profiles during developmental transitions were identified using microarrays. We used those data with search algorithms to discover about 100 motifs that are over-represented in promoters of genes up-regulated in hyphae, sporangia, sporangia undergoing zoosporogenesis, swimming zoospores, or germinated cysts forming appressoria (infection structures). Most of the putative stage-specific transcription factor binding sites (TFBSs) thus identified had features typical of TFBSs such as position or orientation bias, palindromy, and conservation in related species. Each of six motifs tested in P. infestans transformants using the GUS reporter gene conferred the expected stage-specific expression pattern, and several were shown to bind nuclear proteins in gel-shift assays. Motifs linked to the appressoria-forming stage, including a functionally validated TFBS, were over-represented in promoters of genes encoding effectors and other pathogenesis-related proteins. To understand how promoter and genome architecture influence expression, we also mapped transcription patterns to the P. infestans genome assembly. Adjacent genes were not typically induced in the same stage, including genes transcribed in opposite directions from small intergenic regions, but co-regulated gene pairs occurred more than expected by random chance. These data help illuminate the processes regulating development and pathogenesis, and will enable future attempts to purify the cognate transcription factors.


Assuntos
Genoma/genética , Phytophthora infestans/genética , Doenças das Plantas/parasitologia , Regiões Promotoras Genéticas/genética , Solanum tuberosum/parasitologia , Sequência de Bases , Evolução Biológica , Biologia Computacional , Sequência Conservada , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Estudo de Associação Genômica Ampla , Dados de Sequência Molecular , Motivos de Nucleotídeos , Análise de Sequência com Séries de Oligonucleotídeos , Phytophthora infestans/citologia , Phytophthora infestans/crescimento & desenvolvimento , Phytophthora infestans/fisiologia , RNA Mensageiro/genética , Alinhamento de Sequência , Esporos , Regulação para Cima
3.
Mol Plant Pathol ; 11(2): 227-43, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20447272

RESUMO

Oomycete plant pathogens cause a wide variety of economically and environmentally important plant diseases. Mandipropamid (MPD) is a carboxylic acid amide (CAA) effective against downy mildews, such as Plasmopara viticola on grapes and potato late blight caused by Phytophthora infestans. Historically, the identification of the mode of action of oomycete-specific control agents has been problematic. Here, we describe how a combination of biochemical and genetic techniques has been utilized to identify the molecular target of MPD in P. infestans. Phytophthora infestans germinating cysts treated with MPD produced swelling symptoms typical of cell wall synthesis inhibitors, and these effects were reversible after washing with H(2)O. Uptake studies with (14)C-labelled MPD showed that this oomycete control agent acts on the cell wall and does not enter the cell. Furthermore, (14)C glucose incorporation into cellulose was perturbed in the presence of MPD which, taken together, suggests that the inhibition of cellulose synthesis is the primary effect of MPD. Laboratory mutants, insensitive to MPD, were raised by ethyl methane sulphonate (EMS) mutagenesis, and gene sequence analysis of cellulose synthase genes in these mutants revealed two point mutations in the PiCesA3 gene, known to be involved in cellulose synthesis. Both mutations in the PiCesA3 gene result in a change to the same amino acid (glycine-1105) in the protein. The transformation and expression of a mutated PiCesA3 allele was carried out in a sensitive wild-type isolate to demonstrate that the mutations in PiCesA3 were responsible for the MPD insensitivity phenotype.


Assuntos
Proteínas de Algas/metabolismo , Amidas/farmacologia , Ácidos Carboxílicos/farmacologia , Parede Celular/metabolismo , Glucosiltransferases/metabolismo , Phytophthora infestans/enzimologia , Plantas/microbiologia , Proteínas de Algas/química , Proteínas de Algas/genética , Sequência de Aminoácidos , Parede Celular/efeitos dos fármacos , Celulose/biossíntese , Cruzamentos Genéticos , Metanossulfonato de Etila , Dosagem de Genes/genética , Glucose/metabolismo , Glucosiltransferases/química , Glucosiltransferases/genética , Dados de Sequência Molecular , Mutagênese/efeitos dos fármacos , Mutação/genética , Phytophthora infestans/citologia , Phytophthora infestans/efeitos dos fármacos , Phytophthora infestans/genética , Plantas/efeitos dos fármacos , Transformação Genética/efeitos dos fármacos
4.
Cell Microbiol ; 10(11): 2271-84, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18637942

RESUMO

Phytophthora infestans causes late-blight, a devastating and re-emerging disease of potato crops. During the early stages of infection, P. infestans differentiates infection-specific structures such as appressoria for host epidermal cell penetration, followed by infection vesicles, and haustoria to establish a biotrophic phase of interaction. Here we report the cloning, from a suppression subtractive hybridization library, of a P. infestans gene called Pihmp1 encoding a putative glycosylated protein with four closely spaced trans-membrane helices. Pihmp1 expression is upregulated in germinating cysts and in germinating cysts with appressoria, and significantly upregulated throughout infection of potato. Transient gene silencing of Pihmp1 led to loss of pathogenicity and indicated involvement of this gene in the penetration and early infection processes of P. infestans. P. infestans transformants expressing a Pihmp1::monomeric red fluorescent protein (mRFP) fusion demonstrated that Pihmp1 was translated in germinating sporangia, germinating cysts and appressoria, accumulated in the appressorium, and was located at the haustorial membrane during infection. Furthermore, we discovered that haustorial structures are formed over a 3 h period, maturing for up to 12 h, and that their formation is initiated only at sites on the surface of intercellular hyphae where Pihmp1::mRFP is localized. We propose that Pihmp1 is an integral membrane protein that provides physical stability to the plasma membrane of P. infestans infection structures. We have provided the first evidence that the surface of oomycete haustoria possess proteins specific to these biotrophic structures, and that formation of biotrophic structures (infection vesicles and haustoria) is essential to successful host colonization by P. infestans.


Assuntos
Proteínas de Algas/metabolismo , Proteínas de Membrana/metabolismo , Phytophthora infestans/citologia , Phytophthora infestans/fisiologia , Doenças das Plantas/microbiologia , Solanum tuberosum/microbiologia , Proteínas de Algas/genética , Sequência de Aminoácidos , Inativação Gênica , Proteínas de Membrana/genética , Dados de Sequência Molecular , Phytophthora infestans/genética , Phytophthora infestans/patogenicidade , Folhas de Planta/microbiologia , Interferência de RNA , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Solanum tuberosum/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA