Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Plant Pathol ; 22(5): 551-563, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33657266

RESUMO

Pathogens deploy a wide range of pathogenicity factors, including a plethora of proteases, to modify host tissue or manipulate host defences. Metalloproteases (MPs) have been implicated in virulence in several animal and plant pathogens. Here we investigated the repertoire of MPs in 46 stramenopile species including 37 oomycetes, 5 diatoms, and 4 brown algae. Screening their complete proteomes using hidden Markov models (HMMs) trained for MP detection resulted in over 4,000 MPs, with most species having between 65 and 100 putative MPs. Classification in clans and families according to the MEROPS database showed a highly diverse MP repertoire in each species. Analyses of domain composition, orthologous groups, distribution, and abundance within the stramenopile lineage revealed a few oomycete-specific MPs and MPs potentially related to lifestyle. In-depth analyses of MPs in the plant pathogen Phytophthora infestans revealed 91 MPs, divided over 21 protein families, including 25 MPs with a predicted signal peptide or signal anchor. Expression profiling showed different patterns of MP gene expression during pre-infection and infection stages. When expressed in leaves of Nicotiana benthamiana, 12 MPs changed the sizes of lesions caused by inoculation with P. infestans; with 9 MPs the lesions were larger, suggesting a positive effect on the virulence of P. infestans, while 3 MPs had a negative effect, resulting in smaller lesions. To the best of our knowledge, this is the first systematic inventory of MPs in oomycetes and the first study pinpointing MPs as potential pathogenicity factors in Phytophthora.


Assuntos
Metaloproteases/metabolismo , Nicotiana/parasitologia , Phytophthora infestans/enzimologia , Doenças das Plantas/parasitologia , Proteoma , Fatores de Virulência/genética , Análise por Conglomerados , Expressão Gênica , Metaloproteases/genética , Filogenia , Phytophthora infestans/genética , Phytophthora infestans/patogenicidade , Domínios Proteicos , Virulência
2.
mBio ; 11(5)2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33051363

RESUMO

The oomycete Phytophthora infestans, the causal agent of potato and tomato blight, expresses two extracellular invertases. Unlike typical fungal invertases, the P. infestans genes are not sucrose induced or glucose repressed but instead appear to be under developmental control. Transcript levels of both genes were very low in mycelia harvested from artificial medium but high in preinfection stages (sporangia, zoospores, and germinated cysts), high during biotrophic growth in leaves and tubers, and low during necrotrophy. Genome-wide analyses of metabolic enzymes and effectors indicated that this expression profile was fairly unusual, matched only by a few other enzymes, such as carbonic anhydrases and a few RXLR effectors. Genes for other metabolic enzymes were typically downregulated in the preinfection stages. Overall metabolic gene expression during the necrotrophic stage of infection clustered with artificial medium, while the biotrophic phase formed a separate cluster. Confocal microscopy of transformants expressing green fluorescent protein (GFP) fusions indicated that invertase protein resided primarily in haustoria during infection. This localization was not attributable to haustorium-specific promoter activity. Instead, the N-terminal regions of proteins containing signal peptides were sufficient to deliver proteins to haustoria. Invertase expression during leaf infection was linked to a decline in apoplastic sucrose, consistent with a role of the enzymes in plant pathogenesis. This was also suggested by the discovery that invertase genes occur across multiple orders of oomycetes but not in most animal pathogens or a mycoparasite.IMPORTANCE Oomycetes cause hundreds of diseases in economically and environmentally significant plants. How these microbes acquire host nutrients is not well understood. Many oomycetes insert specialized hyphae called haustoria into plant cells, but unlike their fungal counterparts, a role in nutrition has remained unproven. The discovery that Phytophthora invertases localize to haustoria provides the first strong evidence that these structures participate in feeding. Since regions of proteins containing signal peptides targeted proteins to the haustorium-plant interface, haustoria appear to be the primary machinery for secreting proteins during biotrophic pathogenesis. Although oomycete invertases were acquired laterally from fungi, their expression patterns have adapted to the Phytophthora lifestyle by abandoning substrate-level regulation in favor of developmental control, allowing the enzymes to be produced in anticipation of plant colonization. This study highlights how a widely distributed hydrolytic enzyme has evolved new behaviors in oomycetes.


Assuntos
Hifas/enzimologia , Phytophthora infestans/enzimologia , Phytophthora infestans/genética , Solanum lycopersicum/microbiologia , beta-Frutofuranosidase/genética , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Solanum tuberosum/microbiologia
3.
Mol Plant Pathol ; 20(2): 180-193, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30171659

RESUMO

The successful invasion of host tissue by (hemi-)biotrophic plant pathogens is dependent on modifications of the host plasma membrane to facilitate the two-way transfer of proteins and other compounds. Haustorium formation and the establishment of extrahaustorial membranes are probably dependent on a variety of enzymes that modify membranes in a coordinated fashion. Phospholipases, enzymes that hydrolyse phospholipids, have been implicated as virulence factors in several pathogens. The oomycete Phytophthora infestans is a hemibiotrophic pathogen that causes potato late blight. It possesses different classes of phospholipase D (PLD) proteins, including small PLD-like proteins with and without signal peptide (sPLD-likes and PLD-likes, respectively). Here, we studied the role of sPLD-like-1, sPLD-like-12 and PLD-like-1 in the infection process. They are expressed in expanding lesions on potato leaves and during in vitro growth, with the highest transcript levels in germinating cysts. When expressed in planta in the presence of the silencing suppressor P19, all three elicited a local cell death response that was visible at the microscopic level as autofluorescence and strongly boosted in the presence of calcium. Moreover, inoculation of leaves expressing the small PLD-like genes resulted in increased lesion growth and greater numbers of sporangia, but this was abolished when mutated PLD-like genes were expressed with non-functional PLD catalytic motifs. These results show that the three small PLD-likes are catalytically active and suggest that their enzymatic activity is required for the promotion of virulence, possibly by executing membrane modifications to support the growth of P. infestans in the host.


Assuntos
Fosfolipase D/metabolismo , Phytophthora infestans/enzimologia , Phytophthora infestans/patogenicidade , Doenças das Plantas/microbiologia , Cálcio , Oomicetos/enzimologia , Oomicetos/patogenicidade , Fosfolipídeos/metabolismo , Sinais Direcionadores de Proteínas , Virulência
4.
Mol Microbiol ; 110(2): 296-308, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30137656

RESUMO

Flagellated spores play important roles in the infection of plants and animals by many eukaryotic microbes. The oomycete Phytophthora infestans, which causes potato blight, expresses two phosphagen kinases (PKs). These enzymes store energy in taurocyamine, and are hypothesized to resolve spatial and temporal imbalances between rates of ATP creation and use in zoospores. A dimeric PK is found at low levels in vegetative mycelia, but high levels in ungerminated sporangia and zoospores. In contrast, a monomeric PK protein is at similar levels in all tissues, although is transcribed primarily in mycelia. Subcellular localization studies indicate that the monomeric PK is mitochondrial. In contrast, the dimeric PK is cytoplasmic in mycelia and sporangia but is retargeted to flagellar axonemes during zoosporogenesis. This supports a model in which PKs shuttle energy from mitochondria to and through flagella. Metabolite analysis indicates that deployment of the flagellar PK is coordinated with a large increase in taurocyamine, synthesized by sporulation-induced enzymes that were lost during the evolution of zoospore-lacking oomycetes. Thus, PK function is enabled by coordination of the transcriptional, metabolic and protein targeting machinery during the life cycle. Since plants lack PKs, the enzymes may be useful targets for inhibitors of oomycete plant pathogens.


Assuntos
Flagelos/enzimologia , Regulação da Expressão Gênica/fisiologia , Fosfotransferases/metabolismo , Phytophthora infestans/enzimologia , Esporos/enzimologia , Trifosfato de Adenosina/metabolismo , Animais , Citoplasma/enzimologia , Solanum lycopersicum/genética , Solanum lycopersicum/parasitologia , Mitocôndrias/metabolismo , Fosfotransferases/genética , Phytophthora infestans/genética , Esporângios/enzimologia , Taurina/análogos & derivados , Taurina/metabolismo
5.
Mol Microbiol ; 88(2): 352-70, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23448716

RESUMO

For dispersal and host infection plant pathogens largely depend on asexual spores. Pathogenesis and sporulation are complex processes that are governed by cellular signalling networks including G-protein and phospholipid signalling. Oomycetes possess a family of novel proteins called GPCR-PIPKs (GKs) that are composed of a seven-transmembrane spanning (7-TM) domain fused to a phosphatidylinositol phosphate kinase (PIPK) domain. Based on this domain structure GKs are anticipated to link G-protein and phospholipid signal pathways; however, their functions are currently unknown. Expression analyses of the 12 GK genes in Phytophthora infestans and their orthologues in Phytophthora sojae, revealed differential expression during asexual development. PiGK1 and PiGK4 were fused to monomeric red fluorescent protein (mRFP) and ectopically expressed in P. infestans. In growing hyphae different subcellular distribution patterns were observed indicating that these two GKs act independently during development. We focused on the functional analyses of PiGK4. Its localization suggested involvement in cell differentiation and elongation and its 7-TM domain showed a canonical GPCR membrane topology. Silencing of GK4 and overexpression of full-length and truncated constructs in P. infestans revealed that PiGK4 is not only involved in spore germination and hyphal elongation but also in sporangia cleavage and infection.


Assuntos
Fosfatos de Fosfatidilinositol/metabolismo , Fosfotransferases/metabolismo , Phytophthora infestans/enzimologia , Phytophthora infestans/patogenicidade , Doenças das Plantas/microbiologia , Receptores Acoplados a Proteínas G/química , Esporângios/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Hifas/crescimento & desenvolvimento , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Fosfotransferases/genética , Phytophthora infestans/crescimento & desenvolvimento , Phytophthora infestans/metabolismo , Folhas de Planta/microbiologia , Receptores Acoplados a Proteínas G/metabolismo , Solanum tuberosum/microbiologia , Esporos/crescimento & desenvolvimento , Nicotiana/microbiologia , Proteína Vermelha Fluorescente
6.
Appl Environ Microbiol ; 79(5): 1573-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23275500

RESUMO

The effective flux between phospholipids and neutral lipids is critical for a high level of biosynthesis and accumulation of very-long-chain polyunsaturated fatty acids (VLCPUFAs), such as arachidonic acid (ARA; 20:4n-6), eicosapentaenoic acid (EPA; 20:5n-3), and docosahexaenoic acid (DHA; 22:6n-3). Here we describe a cDNA (PiCPT1) from Phytophthora infestans, a VLCPUFA-producing oomycete, that may have a role in acyl trafficking between diacylglycerol (DAG) and phosphatidylcholine (PC) during the biosynthesis of VLCPUFAs. The cDNA encodes a polypeptide of 393 amino acids with a conserved CDP-alcohol phosphotransferase motif and approximately 27% amino acid identity to the Saccharomyces cerevisiae cholinephosphotransferase (ScCPT1). In vitro assays indicate that PiCPT1 has high cholinephosphotransferase (CPT) activity but no ethanolaminephosphotransferase (EPT) activity. Substrate specificity assays show that it prefers VLCPUFA-containing DAGs, such as ARA DAG and DHA DAG, as substrates. Real-time PCR analysis reveals that expression of PiCPT1 was upregulated in P. infestans organisms fed with exogenous VLCPUFAs. These results lead us to conclude that PiCPT1 is a VLCPUFA-specific CPT which may play an important role in shuffling VLCPUFAs from DAG to PC in the biosynthesis of VLCPUFAs in P. infestans.


Assuntos
Diacilglicerol Colinofosfotransferase/metabolismo , Ácidos Graxos Insaturados/metabolismo , Phytophthora infestans/enzimologia , Sequência de Aminoácidos , DNA Complementar/genética , Perfilação da Expressão Gênica , Dados de Sequência Molecular , Reação em Cadeia da Polimerase em Tempo Real , Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
7.
PLoS Pathog ; 8(8): e1002875, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22927814

RESUMO

Phytopathogenic oomycetes, such as Phytophthora infestans, secrete an arsenal of effector proteins that modulate plant innate immunity to enable infection. We describe CRN8, a host-translocated effector of P. infestans that has kinase activity in planta. CRN8 is a modular protein of the CRN effector family. The C-terminus of CRN8 localizes to the host nucleus and triggers cell death when the protein is expressed in planta. Cell death induction by CRN8 is dependent on its localization to the plant nucleus, which requires a functional nuclear localization signal (NLS). The C-terminal sequence of CRN8 has similarity to a serine/threonine RD kinase domain. We demonstrated that CRN8 is a functional RD kinase and that its auto-phosphorylation is dependent on an intact catalytic site. Co-immunoprecipitation experiments revealed that CRN8 forms a dimer or multimer. Heterologous expression of CRN8 in planta resulted in enhanced virulence by P. infestans. In contrast, in planta expression of the dominant-negative CRN8(R469A;D470A) resulted in reduced P. infestans infection, further implicating CRN8 in virulence. Overall, our results indicate that similar to animal parasites, plant pathogens also translocate biochemically active kinase effectors inside host cells.


Assuntos
Núcleo Celular/enzimologia , Phytophthora infestans/patogenicidade , Doenças das Plantas/microbiologia , Multimerização Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Solanum tuberosum/microbiologia , Núcleo Celular/genética , Phytophthora infestans/enzimologia , Phytophthora infestans/genética , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Imunidade Vegetal , Proteínas Serina-Treonina Quinases/genética , Solanum tuberosum/imunologia , Nicotiana/metabolismo , Nicotiana/microbiologia
8.
BMC Genomics ; 11: 637, 2010 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-21080964

RESUMO

BACKGROUND: Phytophthora infestans is the most devastating pathogen of potato and a model organism for the oomycetes. It exhibits high evolutionary potential and rapidly adapts to host plants. The P. infestans genome experienced a repeat-driven expansion relative to the genomes of Phytophthora sojae and Phytophthora ramorum and shows a discontinuous distribution of gene density. Effector genes, such as members of the RXLR and Crinkler (CRN) families, localize to expanded, repeat-rich and gene-sparse regions of the genome. This distinct genomic environment is thought to contribute to genome plasticity and host adaptation. RESULTS: We used in silico approaches to predict and describe the repertoire of P. infestans secreted proteins (the secretome). We defined the "plastic secretome" as a subset of the genome that (i) encodes predicted secreted proteins, (ii) is excluded from genome segments orthologous to the P. sojae and P. ramorum genomes and (iii) is encoded by genes residing in gene sparse regions of P. infestans genome. Although including only ~3% of P. infestans genes, the plastic secretome contains ~62% of known effector genes and shows >2 fold enrichment in genes induced in planta. We highlight 19 plastic secretome genes induced in planta but distinct from previously described effectors. This list includes a trypsin-like serine protease, secreted oxidoreductases, small cysteine-rich proteins and repeat containing proteins that we propose to be novel candidate virulence factors. CONCLUSIONS: This work revealed a remarkably diverse plastic secretome. It illustrates the value of combining genome architecture with comparative genomics to identify novel candidate virulence factors from pathogen genomes.


Assuntos
Regulação da Expressão Gênica , Genoma/genética , Phytophthora infestans/genética , Phytophthora infestans/patogenicidade , Proteínas/genética , Proteínas/metabolismo , Fatores de Virulência/genética , Sequência de Aminoácidos , Anidrases Carbônicas/química , Anidrases Carbônicas/genética , Anidrases Carbônicas/metabolismo , Sequência Conservada/genética , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Genes , Anotação de Sequência Molecular , Dados de Sequência Molecular , Phytophthora/efeitos dos fármacos , Phytophthora/genética , Phytophthora infestans/efeitos dos fármacos , Phytophthora infestans/enzimologia , Estrutura Terciária de Proteína , Proteínas/química , Sequências Repetitivas de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Serina Endopeptidases/química , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Virulência/efeitos dos fármacos , Virulência/genética , Fatores de Virulência/química , Fatores de Virulência/metabolismo
9.
Mol Plant Pathol ; 11(2): 227-43, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20447272

RESUMO

Oomycete plant pathogens cause a wide variety of economically and environmentally important plant diseases. Mandipropamid (MPD) is a carboxylic acid amide (CAA) effective against downy mildews, such as Plasmopara viticola on grapes and potato late blight caused by Phytophthora infestans. Historically, the identification of the mode of action of oomycete-specific control agents has been problematic. Here, we describe how a combination of biochemical and genetic techniques has been utilized to identify the molecular target of MPD in P. infestans. Phytophthora infestans germinating cysts treated with MPD produced swelling symptoms typical of cell wall synthesis inhibitors, and these effects were reversible after washing with H(2)O. Uptake studies with (14)C-labelled MPD showed that this oomycete control agent acts on the cell wall and does not enter the cell. Furthermore, (14)C glucose incorporation into cellulose was perturbed in the presence of MPD which, taken together, suggests that the inhibition of cellulose synthesis is the primary effect of MPD. Laboratory mutants, insensitive to MPD, were raised by ethyl methane sulphonate (EMS) mutagenesis, and gene sequence analysis of cellulose synthase genes in these mutants revealed two point mutations in the PiCesA3 gene, known to be involved in cellulose synthesis. Both mutations in the PiCesA3 gene result in a change to the same amino acid (glycine-1105) in the protein. The transformation and expression of a mutated PiCesA3 allele was carried out in a sensitive wild-type isolate to demonstrate that the mutations in PiCesA3 were responsible for the MPD insensitivity phenotype.


Assuntos
Proteínas de Algas/metabolismo , Amidas/farmacologia , Ácidos Carboxílicos/farmacologia , Parede Celular/metabolismo , Glucosiltransferases/metabolismo , Phytophthora infestans/enzimologia , Plantas/microbiologia , Proteínas de Algas/química , Proteínas de Algas/genética , Sequência de Aminoácidos , Parede Celular/efeitos dos fármacos , Celulose/biossíntese , Cruzamentos Genéticos , Metanossulfonato de Etila , Dosagem de Genes/genética , Glucose/metabolismo , Glucosiltransferases/química , Glucosiltransferases/genética , Dados de Sequência Molecular , Mutagênese/efeitos dos fármacos , Mutação/genética , Phytophthora infestans/citologia , Phytophthora infestans/efeitos dos fármacos , Phytophthora infestans/genética , Plantas/efeitos dos fármacos , Transformação Genética/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA