Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 673
Filtrar
1.
Virus Res ; 346: 199403, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38776984

RESUMO

The gut of healthy neonates is devoid of viruses at birth, but rapidly becomes colonised by normal viral commensals that aid in important physiological functions like metabolism but can, in some instances, result in gastrointestinal illnesses. However, little is known about how this colonisation begins, its variability and factors shaping the gut virome composition. Thus, understanding the development, assembly, and progression of enteric viral communities over time is key. To explore early-life virome development, metagenomic sequencing was employed in faecal samples collected longitudinally from a cohort of 17 infants during their first six months of life. The gut virome analysis revealed a diverse and dynamic viral community, formed by a richness of different viruses infecting humans, non-human mammals, bacteria, and plants. Eukaryotic viruses were detected as early as one week of life, increasing in abundance and diversity over time. Most of the viruses detected are commonly associated with gastroenteritis and include members of the Caliciviridae, Picornaviridae, Astroviridae, Adenoviridae, and Sedoreoviridae families. The most common co-occurrences involved asymptomatic norovirus-parechovirus, norovirus-sapovirus, sapovirus-parechovirus, observed in at least 40 % of the samples. Majority of the plant-derived viruses detected in the infants' gut were from the Virgaviridae family. This study demonstrates the first longitudinal characterisation of the gastrointestinal virome in infants, from birth up to 6 months of age, in sub-Saharan Africa. Overall, the findings from this study delineate the composition and variability of the healthy infants' gut virome over time, which is a significant step towards understanding the dynamics and biogeography of viral communities in the infant gut.


Assuntos
Fezes , Viroma , Humanos , África do Sul , Lactente , Estudos Longitudinais , Fezes/virologia , Recém-Nascido , Microbioma Gastrointestinal , Masculino , Feminino , Vírus/classificação , Vírus/isolamento & purificação , Vírus/genética , Metagenômica , Trato Gastrointestinal/virologia , Gastroenterite/virologia , Sapovirus/genética , Sapovirus/isolamento & purificação , Sapovirus/classificação , Norovirus/genética , Norovirus/isolamento & purificação , Norovirus/classificação , Picornaviridae/genética , Picornaviridae/classificação , Picornaviridae/isolamento & purificação , Caliciviridae/genética , Caliciviridae/isolamento & purificação , Caliciviridae/classificação , Metagenoma
2.
Microb Pathog ; 191: 106673, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705218

RESUMO

The Seneca Valley virus (SVV) is a recently discovered porcine pathogen that causes vesicular diseases and poses a significant threat to the pig industry worldwide. Erythropoietin-producing hepatoma receptor A2 (EphA2) is involved in the activation of the AKT/mTOR signaling pathway, which is involved in autophagy. However, the regulatory relationship between SVV and EphA2 remains unclear. In this study, we demonstrated that EphA2 is proteolysed in SVV-infected BHK-21 and PK-15 cells. Overexpression of EphA2 significantly inhibited SVV replication, as evidenced by decreased viral protein expression, viral titers, and viral load, suggesting an antiviral function of EphA2. Subsequently, viral proteins involved in the proteolysis of EphA2 were screened, and the SVV 3C protease (3Cpro) was found to be responsible for this cleavage, depending on its protease activity. However, the protease activity sites of 3Cpro did not affect the interactions between 3Cpro and EphA2. We further determined that EphA2 overexpression inhibited autophagy by activating the mTOR pathway and suppressing SVV replication. Taken together, these results indicate that SVV 3Cpro targets EphA2 for cleavage to impair its EphA2-mediated antiviral activity and emphasize the potential of the molecular interactions involved in developing antiviral strategies against SVV infection.


Assuntos
Proteases Virais 3C , Autofagia , Picornaviridae , Receptor EphA2 , Transdução de Sinais , Serina-Treonina Quinases TOR , Proteínas Virais , Replicação Viral , Animais , Receptor EphA2/metabolismo , Receptor EphA2/genética , Serina-Treonina Quinases TOR/metabolismo , Linhagem Celular , Suínos , Picornaviridae/fisiologia , Picornaviridae/genética , Proteases Virais 3C/metabolismo , Proteínas Virais/metabolismo , Proteínas Virais/genética , Cisteína Endopeptidases/metabolismo , Cisteína Endopeptidases/genética , Proteólise , Cricetinae , Interações Hospedeiro-Patógeno , Carga Viral
3.
Vet Microbiol ; 292: 110050, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38484578

RESUMO

The role of host factors in the replication of emerging senecavirus A (SVA) which induced porcine idiopathic vesicular disease (PIVD) distributed worldwide remains obscure. Here, interferon-induced transmembrane (IFITM) protein 1 and 2 inhibit SVA replication by positive feedback with RIG-I signaling pathway was reported. The expression levels of IFITM1 and IFITM2 increased significantly in SVA infected 3D4/21 cells. Infection experiments of cells with over and interference expression of IFITM1 and IFITM2 showed that these two proteins inhibit SVA replication by regulating the expression of interferon beta (IFN-ß), IFN-stimulated gene 15 (ISG-15), interleukin 6 (IL-6), IL-8, tumor necrosis factor alpha (TNF-α), IFN regulatory factor-3 (IRF3), and IRF7. Further results showed that antiviral responses of IFITM1 and IFITM2 were achieved by activating retinoic acid-inducible gene I (RIG-I) signaling pathway which in turn enhanced the expression of IFITM1 and IFITM2. It is noteworthy that conserved domains of these two proteins also paly the similar role. These findings provide new data on the role of host factors in infection and replication of SVA and help to develop new agents against the virus.


Assuntos
Antígenos de Diferenciação , Interferon beta , Proteínas de Membrana , Picornaviridae , Transdução de Sinais , Animais , Retroalimentação , Interferon beta/genética , Suínos , Replicação Viral/genética , Antígenos de Diferenciação/metabolismo , Proteínas de Membrana/metabolismo
4.
Vet Microbiol ; 290: 110011, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38310713

RESUMO

Senecavirus A (SVA)-associated porcine idiopathic vesicular disease (PIVD) and Pseudorabies (PR) are highly contagious swine disease that pose a significant threat to the global pig industry. In the absence of an effective commercial vaccine, outbreaks caused by SVA have occurred in many parts of the world. In this study, the PRV variant strain PRV-XJ was used as the parental strain to construct a recombinant PRV strain with the TK/gE/gI proteins deletion and the VP3 protein co-expression, named rPRV-XJ-ΔTK/gE/gI-VP3. The results revealed that PRV is a suitable viral live vector for VP3 protein expressing. As a vaccine, rPRV-XJ-ΔTK/gE/gI-VP3 is safe for mice, vaccination with it did not cause any clinical symptoms of PRV. Intranasal immunization with rPRV-XJ-ΔTK/gE/gI-VP3 induced strong cellular immune response and high levels of specific antibody against VP3 and gB and neutralizing antibodies against both PRV and SVA in mice. It provided 100% protection to mice against the challenge of virulent strain PRV-XJ, and alleviated the pathological lesion of heart and liver tissue in SVA infected mice. rPRV-XJ-ΔTK/gE/gI-VP3 appears to be a promising vaccine candidate against PRV and SVA for the control of the PRV variant and SVA.


Assuntos
Herpesvirus Suídeo 1 , Picornaviridae , Pseudorraiva , Doenças dos Roedores , Doenças dos Suínos , Vacinas Virais , Suínos , Animais , Camundongos , Proteínas do Envelope Viral , Anticorpos Antivirais , Vacinas contra Pseudorraiva
5.
Virology ; 589: 109913, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37924728

RESUMO

Gastrointestinal viruses (GIV) are an important cause of childhood morbidity and mortality, particularly in developing countries. Their epidemiological impact in Venezuela during the COVID-19 pandemic remains unclear. GIV can also be detected in domestic sewage. Ninety-one wastewater samples from urban areas of Caracas collected over 12 months and concentrated by polyethylene-glycol-precipitation, were analyzed by multiplex reverse-transcription-PCR for rotavirus/calicivirus/astrovirus and enterovirus/klassevirus/cosavirus, and monoplex-PCR for adenovirus and Aichi virus. The overall frequency of virus detection was 46.2%, fluctuating over months, and peaking in the rainy season. Adenoviruses circulated throughout the year, especially type F41, and predominated (52.7%) over caliciviruses (29.1%) that peaked in the rainy months, rotaviruses (9.1%), cosaviruses (5.5%), astroviruses and enteroviruses (1.8%). Aichi-virus and klassevirus were absent. Rotavirus G9/G12, and P[4]/P[8]/P[14] predominated. The occurrence of GIV in wastewater reflects transmission within the population of Caracas and the persistence of a potential public health risk that needs to be adequately monitored.


Assuntos
Infecções por Enterovirus , Enterovirus , Gastroenterite , Picornaviridae , Rotavirus , Humanos , Águas Residuárias , Venezuela/epidemiologia , Pandemias , Gastroenterite/diagnóstico , Antígenos Virais , Adenoviridae , Infecções por Enterovirus/epidemiologia , Fezes
6.
Viruses ; 15(12)2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38140654

RESUMO

The Picornaviridae family comprises a large group of non-enveloped viruses with enormous impact on human and animal health. The picornaviral genome contains one open reading frame encoding a single polyprotein that can be processed by viral proteases. The picornaviral 3C proteases share similar three-dimensional structures and play a significant role in the viral life cycle and virus-host interactions. Picornaviral 3C proteins also have conserved RNA-binding activities that contribute to the assembly of the viral RNA replication complex. The 3C protease is important for regulating the host cell response through the cleavage of critical host cell proteins, acting to selectively 'hijack' host factors involved in gene expression, promoting picornavirus replication, and inactivating key factors in innate immunity signaling pathways. The protease and RNA-binding activities of 3C are involved in viral polyprotein processing and the initiation of viral RNA synthesis. Most importantly, 3C modifies critical molecules in host organelles and maintains virus infection by subtly subverting host cell death through the blocking of transcription, translation, and nucleocytoplasmic trafficking to modulate cell physiology for viral replication. Here, we discuss the molecular mechanisms through which 3C mediates physiological processes involved in promoting virus infection, replication, and release.


Assuntos
Picornaviridae , Viroses , Animais , Humanos , Proteólise , Cisteína Endopeptidases/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Picornaviridae/genética , RNA Viral/metabolismo , Poliproteínas/metabolismo , Peptídeo Hidrolases/metabolismo , Replicação Viral
7.
Vet Microbiol ; 286: 109895, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37890432

RESUMO

First identified in 2002, diphtheritic stomatitis (DS) is a devastating disease affecting yellow-eyed penguins (Megadyptes antipodes, or hoiho in te reo Maori). The disease is associated with oral lesions in chicks and has caused significant morbidity and mortality. DS is widespread among yellow-eyed penguin chicks on mainland New Zealand yet appears to be absent from the subantarctic population. Corynebacterium spp. have previously been suspected as causative agents yet, due to inconsistent cultures and inconclusive pathogenicity, their role in DS is unclear. Herein, we used a metatranscriptomic approach to identify potential causative agents of DS by revealing the presence and abundance of all viruses, bacteria, fungi and protozoa - together, the infectome. Oral and cloacal swab samples were collected from presymptomatic, symptomatic and recovered chicks along with a control group of healthy adults. Two novel viruses from the Picornaviridae were identified, one of which - yellow-eyed penguin megrivirus - was highly abundant in chicks irrespective of health status but not detected in healthy adults. Tissue from biopsied oral lesions also tested positive for the novel megrivirus upon PCR. We found no overall clustering among bacteria, protozoa and fungi communities at the genus level across samples, although Paraclostridium bifermentans was significantly more abundant in oral microbiota of symptomatic chicks compared to other groups. The detection of a novel and highly abundant megrivirus has sparked a new line of inquiry to investigate its potential association with DS.


Assuntos
Picornaviridae , Spheniscidae , Estomatite , Animais , Corynebacterium , Spheniscidae/microbiologia , Spheniscidae/virologia , Estomatite/veterinária
8.
Biomed Environ Sci ; 36(7): 595-603, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37533383

RESUMO

Objective: To improve the understanding of the virome and bacterial microbiome in the wildlife rescue station of Poyang Lake, China. Methods: Ten smear samples were collected in March 2019. Metagenomic sequencing was performed to delineate bacterial and viral diversity. Taxonomic analysis was performed using the Kraken2 and Bracken methods. A maximum-likelihood tree was constructed based on the RNA-dependent RNA polymerase (RdRp) region of picornavirus. Results: We identified 363 bacterial and 6 viral families. A significant difference in microbial and viral abundance was found between samples S01-S09 and S10. In S01-S09, members of Flavobacteriia and Gammaproteobacteria were the most prevalent, while in S10, the most prevalent bacteria class was Actinomycetia. Among S01-S09, members of Myoviridae and Herelleviridae were the most prevalent, while the dominant virus family of S10 was Picornaviridae. The full genome of the pigeon mesivirus-like virus (NC-BM-233) was recovered from S10 and contained an open reading frame of 8,124 nt. It showed the best hit to the pigeon mesivirus 2 polyprotein, with 84.10% amino acid identity. Phylogenetic analysis showed that RdRp clustered into Megrivirus B. Conclusion: This study provides an initial assessment of the bacteria and viruses in the cage-smeared samples, broadens our knowledge of viral and bacterial diversity, and is a way to discover potential pathogens in wild birds.


Assuntos
Picornaviridae , Vírus , Animais , Animais Selvagens/genética , Lagos , Filogenia , Picornaviridae/genética , Vírus/genética , China , Metagenômica , Genoma Viral
9.
J Virol ; 97(8): e0060423, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37555661

RESUMO

Viruses have evolved diverse strategies to evade the host innate immune response and promote infection. The retinoic acid-inducible gene I (RIG-I)-like receptors RIG-I and MDA5 are antiviral factors that sense viral RNA and trigger downstream signal via mitochondrial antiviral-signaling protein (MAVS) to activate type I interferon expression. 14-3-3ε is a key component of the RIG-I translocon complex that interacts with MAVS at the mitochondrial membrane; however, the exact role of 14-3-3ε in this pathway is not well understood. In this study, we demonstrate that 14-3-3ε is a direct substrate of both the poliovirus and coxsackievirus B3 (CVB3) 3C proteases (3Cpro) and that it is cleaved at Q236↓G237, resulting in the generation of N- and C-terminal fragments of 27.0 and 2.1 kDa, respectively. While the exogenous expression of wild-type 14-3-3ε enhances IFNB mRNA production during poly(I:C) stimulation, expression of the truncated N-terminal fragment does not. The N-terminal 14-3-3ε fragment does not interact with RIG-I in co-immunoprecipitation assays, nor can it facilitate RIG-I translocation to the mitochondria. Probing the intrinsically disordered C-terminal region identifies key residues responsible for the interaction between 14-3-3ε and RIG-I. Finally, overexpression of the N-terminal fragment promotes CVB3 infection in mammalian cells. The strategic enterovirus 3Cpro-mediated cleavage of 14-3-3ε antagonizes RIG-I signaling by disrupting critical interactions within the RIG-I translocon complex, thus contributing to evasion of the host antiviral response. IMPORTANCE Host antiviral factors work to sense virus infection through various mechanisms, including a complex signaling pathway known as the retinoic acid-inducible gene I (RIG-I)-like receptor pathway. This pathway drives the production of antiviral molecules known as interferons, which are necessary to establish an antiviral state in the cellular environment. Key to this antiviral signaling pathway is the small chaperone protein 14-3-3ε, which facilitates the delivery of a viral sensor protein, RIG-I, to the mitochondria. In this study, we show that the enteroviral 3C protease cleaves 14-3-3ε during infection, rendering it incapable of facilitating this antiviral response. We also find that the resulting N-terminal cleavage fragment dampens RIG-I signaling and promotes virus infection. Our findings reveal a novel viral strategy that restricts the antiviral host response and provides insights into the mechanisms underlying 14-3-3ε function in RIG-I antiviral signaling.


Assuntos
Infecções por Picornaviridae , Picornaviridae , Animais , Cisteína Endopeptidases/metabolismo , Proteína DEAD-box 58/metabolismo , Imunidade Inata , Mamíferos , Peptídeo Hidrolases/metabolismo , Picornaviridae/metabolismo , Transdução de Sinais , Tretinoína , Proteínas Virais/metabolismo , Infecções por Picornaviridae/imunologia , Infecções por Picornaviridae/virologia , Proteases Virais 3C
10.
PLoS Biol ; 21(6): e3002144, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37289745

RESUMO

Hosts have evolved diverse strategies to respond to microbial infections, including the detection of pathogen-encoded proteases by inflammasome-forming sensors such as NLRP1 and CARD8. Here, we find that the 3CL protease (3CLpro) encoded by diverse coronaviruses, including Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), cleaves a rapidly evolving region of human CARD8 and activates a robust inflammasome response. CARD8 is required for cell death and the release of pro-inflammatory cytokines during SARS-CoV-2 infection. We further find that natural variation alters CARD8 sensing of 3CLpro, including 3CLpro-mediated antagonism rather than activation of megabat CARD8. Likewise, we find that a single nucleotide polymorphism (SNP) in humans reduces CARD8's ability to sense coronavirus 3CLpros and, instead, enables sensing of 3C proteases (3Cpro) from select picornaviruses. Our findings demonstrate that CARD8 is a broad sensor of viral protease activities and suggests that CARD8 diversity contributes to inter- and intraspecies variation in inflammasome-mediated viral sensing and immunopathology.


Assuntos
COVID-19 , Picornaviridae , Humanos , Inflamassomos/metabolismo , Picornaviridae/genética , Picornaviridae/metabolismo , SARS-CoV-2/metabolismo , Inibidores de Proteases , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Adaptadoras de Sinalização CARD/metabolismo
11.
PLoS Pathog ; 19(5): e1011411, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37253057

RESUMO

Seneca virus A (SVA) is an emerging novel picornavirus that has recently been identified as the causative agent of many cases of porcine vesicular diseases in multiple countries. In addition to cleavage of viral polyprotein, the viral 3C protease (3Cpro) plays an important role in the regulation of several physiological processes involved in cellular antiviral responses by cleaving critical cellular proteins. Through a combination of crystallography, untargeted lipidomics, and immunoblotting, we identified the association of SVA 3Cpro with an endogenous phospholipid molecule, which binds to a unique region neighboring the proteolytic site of SVA 3Cpro. Our lipid-binding assays showed that SVA 3Cpro displayed preferred binding to cardiolipin (CL), followed by phosphoinositol-4-phosphate (PI4P) and sulfatide. Importantly, we found that the proteolytic activity of SVA 3Cpro was activated in the presence of the phospholipid, and the enzymatic activity is inhibited when the phospholipid-binding capacity decreased. Interestingly, in the wild-type SVA 3Cpro-substrate peptide structure, the cleavage residue cannot form a covalent binding to the catalytic cysteine residue to form the acyl-enzyme intermediate observed in several picornaviral 3Cpro structures. We observed a decrease in infectivity titers of SVA mutants harboring mutations that impaired the lipid-binding ability of 3Cpro, indicating a positive regulation of SVA infection capacity mediated by phospholipids. Our findings reveal a mutual regulation between the proteolytic activity and phospholipid-binding capacity in SVA 3Cpro, suggesting that endogenous phospholipid may function as an allosteric activator that regulate the enzyme's proteolytic activity during infection.


Assuntos
Cisteína Endopeptidases , Picornaviridae , Animais , Suínos , Cisteína Endopeptidases/metabolismo , Proteases Virais 3C/metabolismo , Peptídeo Hidrolases/metabolismo , Regulação Alostérica , Fosfolipídeos , Proteínas Virais/metabolismo
12.
Can J Vet Res ; 87(2): 120-126, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37020572

RESUMO

Seneca Valley virus (SVV) is an oncolytic virus, which belongs to the Picornaviridae family, that causes blisters on the nose and hooves, affecting the production performance of pigs. However, the function of proinflammatory cytokines and chemokines in SVV infection is still unclear. In our study, SVV infection could induce a high expression of proinflammatory cytokines interleukin (IL)-1α, IL-1ß, and tumor necrosis factor α (TNF-α) and chemokines, including chemokine (C-C motif) ligand 2 (CCL2), chemokine (C-C motif) ligand 5 (CCL5), and chemokine (C-X-C motif) ligand 10 (CXCL10). Interfered genes of IL-1α, IL-1ß, and TNF-α inhibited virus replication, but interfered genes of CCL2, CCL5, and CXCL10 promoted virus replication. These results indicate that proinflammatory cytokines and chemokines are involved in SVV infection; this will be beneficial to explore the pathogenesis and cytokine therapy of SVV.


Le virus de la Vallée de Seneca (SVV) est un virus oncolytique, qui appartient à la famille des Picornaviridae, qui provoque des cloques sur le nez et les sabots, affectant les performances de production des porcs. Cependant, la fonction des cytokines pro-inflammatoires et des chimiokines dans l'infection par le SVV n'est toujours pas claire. Dans notre étude, l'infection par le SVV pourrait induire une forte expression des cytokines pro-inflammatoires interleukine (IL)-1α, IL-1ß, et du facteur de nécrose tumorale α (TNF-α) et des chimiokines, y compris la chimiokine (motif C-C) ligand 2 (CCL2), chimiokine (motif C-C) ligand 5 (CCL5) et chimiokine (motif C-X-C) ligand 10 (CXCL10). Les gènes interférés d'IL-1α, IL-1ß et TNF-α inhibent la réplication virale, mais les gènes interférents de CCL2, CCL5 et CXCL10 favorisent la réplication virale. Ces résultats indiquent que les cytokines pro-inflammatoires et les chimiokines sont impliquées dans l'infection par le SVV; cela sera bénéfique pour explorer la pathogenèse et la thérapie par cytokines du SVV.(Traduit par Docteur Serge Messier).


Assuntos
Citocinas , Picornaviridae , Animais , Suínos , Citocinas/genética , Fator de Necrose Tumoral alfa/metabolismo , Quimiocinas/genética , Quimiocinas/metabolismo
13.
J Virol ; 97(5): e0045923, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37097154

RESUMO

Numerous studies have illustrated that the Seneca Valley virus (SVV) shows sufficient oncolytic efficacy targeting small cell lung cancer (SCLC). However, the therapeutics of nonsmall cell lung carcinoma (NSCLC, accounts for 85% of lung cancer cases) using oncolytic virus have been resisting due to the filtration of neutralizing antibody and limited reproduction capacity. Here, we employed structural biology and reverse genetics to optimize novel oncolytic SVV mutants (viral receptor-associated mutant SVV-S177A and viral antigenic peptide-related variant SVV-S177A/P60S) with increased infectivity and lower immunogenicity. The results of the NSCLC-bearing athymic mouse model demonstrated that wild-type (wt) SVV-HB extended the median overall survival (mOS) from 11 days in the PBS group to 19 days. Notably, the newly discovered mutations significantly (P < 0.001) prolonged the mOS from 11 days in the control cohort to 23 days in the SVV-S177A cohort and the SVV-S177A/P60S cohort. Taken together, we present a structure-guided genetic modification strategy for oncolytic SVV optimization and provide a candidate for developing oncolytic viral therapy against nonsensitive NSCLC. IMPORTANCE Nonsmall cell lung cancer (NSCLC) accounts for approximately 85% of lung cancer cases (more than 1.85 million cases with 1.48 million deaths in 2020). In the present study, two novel oncolytic SVV mutants modified based on structural biology and reverse genetics (viral receptor-associated mutant SVV-S177A and viral antigenic peptide-related mutant SVV-S177A/P60S) with increased infectivity or lower immunogenicity significantly (P < 0.001) prolonged the mOS from 11 days in the control cohort to 23 days in the SVV-S177A cohort and the SVV-S177A/P60S cohort in the NSCLC-bearing athymic mouse model, which may provide the direction for modifying SVV to improve the effect of oncolysis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Picornaviridae , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/terapia , Pulmão , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Camundongos Nus , Picornaviridae/genética
14.
Virology ; 582: 48-56, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37023612

RESUMO

Senecavirus A (SVA) is an important pathogenic cause of vesicular disease in pigs worldwide. In this study, we screened the B-cell epitopes of SVA using a bioinformatics approach combined with an overlapping synthetic polypeptide method. Four dominant B-cell epitopes (at amino acid (aa) positions: 7-26, 48-74, 92-109, and 129-144) from the VP1 protein and five dominant B-cell epitopes (aa: 38-57, 145-160, 154-172, 193-208, 249-284) from the VP2 protein were identified. Multi-epitope genes comprising the identified B-cell epitope domains were synthesized, prokaryotic expressed, and purified, and their immune protection efficacy was evaluated in piglets. Our results showed that the multi-epitope recombinant protein rP2 induced higher neutralizing antibodies and provided 80% protection against homologous SVA challenge. Thus, the B-cell epitope peptides identified in this study are potential candidates for SVA vaccine development, and rP2 may offer safety and efficacy in controlling infectious SVA.


Assuntos
Epitopos de Linfócito B , Picornaviridae , Animais , Suínos , Epitopos de Linfócito B/genética , Picornaviridae/genética , Anticorpos Neutralizantes , Vacinas Sintéticas , Peptídeos
15.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37047110

RESUMO

Senecavirus A (SVA) is an oncolytic RNA virus, and it is the ideal oncolytic virus that can be genetically engineered for editing. However, there has not been much exploration into creating SVA viruses that carry antitumor genes to increase their oncolytic potential. The construction of SVA viruses carrying antitumor genes that enhance oncolytic potential has not been fully explored. In this study, a recombinant SVA-CH-01-2015 virus (p15A-SVA-clone) expressing the human p16INK4A protein, also known as cell cycle-dependent protein kinase inhibitor 2A (CDKN2A), was successfully rescued and characterized. The recombinant virus, called SVA-p16, exhibited similar viral replication kinetics to the parent virus, was genetically stable, and demonstrated enhanced antitumor effects in Ishikawa cells. Additionally, another recombinant SVA virus carrying a reporter gene (iLOV), SVA-iLOV, was constructed and identified using the same construction method as an auxiliary validation. Collectively, this study successfully created a new recombinant virus, SVA-p16, that showed increased antitumor effects and could serve as a model for further exploring the antitumor potential of SVA as an oncolytic virus.


Assuntos
Doenças Transmissíveis , Vírus Oncolíticos , Picornaviridae , Humanos , Inibidor p16 de Quinase Dependente de Ciclina/genética , Vírus Oncolíticos/genética , RNA
16.
J Gen Virol ; 104(3)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36947577

RESUMO

Seneca Valley virus (SVV, also known as Senecavirus A), an oncolytic virus, is a nonenveloped, positive-strand RNA virus and the sole member of the genus Senecavirus within the family Picornaviridae. The mechanisms of SVV entry into cells are currently almost unknown. In the present study, we found that SVV entry into HEK293T cells is acidic pH-dependent by using ammonium chloride (NH4Cl) and chloroquine, both of which could inhibit SVV infection. We confirmed that dynamin II is required for SVV entry by using dynasore, silencing the dynamin II protein, or expressing the dominant-negative (DN) K44A mutant of dynamin II. Then, we discovered that chlorpromazine (CPZ) treatment or knockdown of the clathrin heavy chain (CLTC) protein significantly inhibited SVV infection. In addition, overexpression of CLTC promoted SVV infection. Caveolin-1 and membrane cholesterol were also required for SVV endocytosis. Notably, utilizing genistein, EIPA or nocodazole, we observed that macropinocytosis and microtubules are not involved in SVV entry. Furthermore, overexpression of the Rab7 and Rab9 proteins but not the Rab5 or Rab11 proteins promoted SVV infection. The findings were further validated by the knockdown of four Rabs and Lamp1 proteins, indicating that after internalization, SVV is transported from late endosomes to the trans-Golgi network (TGN) or lysosomes, respectively, eventually releasing its RNA into the cytosol from the lysosomes. Our findings concretely revealed SVV endocytosis mechanisms in HEK293T cells and provided an insightful theoretical foundation for further research into SVV oncolytic mechanisms.


Assuntos
Dinamina II , Picornaviridae , Humanos , Células HEK293 , Endocitose , Endossomos , Lisossomos , Internalização do Vírus
17.
Minerva Pediatr (Torino) ; 75(3): 376-380, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-30021411

RESUMO

BACKGROUND: Gastroenteritis is a common disease in children, characterized by diarrhea, vomiting, abdominal pain, and fever. Human Cosavirus (HCoSV) and Saffold virus (SAFV) both have a worldwide distribution. Both viruses have been detected in the stools of patients with acute gastroenteritis in several countries. METHODS: In order to provide more insights into the epidemiology of enteric viruses that are not included usually in routine diagnostic tests, cases of childhood sporadic gastroenteritis of unknown etiology requiring hospital admission in Turin, Italy, during December 2014 to November 2015, were screened for HCoSV and SAFV. RESULTS: A total of 1 out of 164 (0.6%) episodes of acute gastroenteritis were associated with SAFV genomic detection. Among the 1 SAFV-positive cases, 1 were also positive for Adenovirus. The patient positive for SAFV do not present diarrheal episodes but vomiting. HCoSV was not detected in any of the samples. CONCLUSIONS: In conclusion, this study presents the current epidemiological data regarding the two viruses, HCoSV and SAFV, circulating in pediatric patients admitted to hospital with acute gastroenteritis in Turin, Italy.


Assuntos
Gastroenterite , Picornaviridae , Vírus , Humanos , Criança , Pré-Escolar , Prevalência , Picornaviridae/genética , Gastroenterite/epidemiologia , Diarreia/epidemiologia , Itália/epidemiologia , Vômito/epidemiologia , Vômito/etiologia
18.
Nat Commun ; 13(1): 5907, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207308

RESUMO

The therapeutic effectiveness of oncolytic viruses (OVs) delivered intravenously is limited by the development of neutralizing antibody responses against the virus. To circumvent this limitation and to enable repeated systemic administration of OVs, here we develop Synthetic RNA viruses consisting of a viral RNA genome (vRNA) formulated within lipid nanoparticles. For two Synthetic RNA virus drug candidates, Seneca Valley virus (SVV) and Coxsackievirus A21, we demonstrate vRNA delivery and replication, virus assembly, spread and lysis of tumor cells leading to potent anti-tumor efficacy, even in the presence of OV neutralizing antibodies in the bloodstream. Synthetic-SVV replication in tumors promotes immune cell infiltration, remodeling of the tumor microenvironment, and enhances the activity of anti-PD-1 checkpoint inhibitor. In mouse and non-human primates, Synthetic-SVV is well tolerated reaching exposure well above the requirement for anti-tumor activity. Altogether, the Synthetic RNA virus platform provides an approach that enables repeat intravenous administration of viral immunotherapy.


Assuntos
Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Picornaviridae , Animais , Anticorpos Neutralizantes , Imunoterapia , Lipossomos , Camundongos , Nanopartículas , Neoplasias/terapia , Vírus Oncolíticos/genética , RNA Viral/genética , Microambiente Tumoral
19.
Virology ; 575: 74-82, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36084546

RESUMO

Seneca Valley virus (SVV) is a newly discovered picornavirus in the Senecavirus genus. SVV-001 strain has shown promise as an oncolytic virus against tumors with neuroendocrine features. There is a need to use a structure-based approach to develop virus-like particles capable to mimicking the architecture of naturally occurring empty capsids that can be used as vaccines or as carriers for targeted cancer treatment. However, these empty capsids are inherently less stable, and tedious to purify. This warrants investigation into factors which confer the SVV capsid stability and into combining this knowledge to recombinantly express stable SVV VLPs. In this study, we isolated a thermostable mutant of SVV by thermal selection assays and we characterized a single mutation located in a capsid protein. The cryo-EM map of this mutant showed conformational shifts that facilitated the formation of additional hydrogen bonds and aromatic interactions, which could serve as capsid stabilizing factors.


Assuntos
Vírus Oncolíticos , Picornaviridae , Capsídeo/metabolismo , Proteínas do Capsídeo/metabolismo , Picornaviridae/genética
20.
Viruses ; 14(9)2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-36146673

RESUMO

Background: Enterovirus infections affect people around the world, causing a range of illnesses, from mild fevers to severe, potentially fatal conditions. There are no approved treatments for enterovirus infections. Methods: We have tested our library of broad-spectrum antiviral agents (BSAs) against echovirus 1 (EV1) in human adenocarcinoma alveolar basal epithelial A549 cells. We also tested combinations of the most active compounds against EV1 in A549 and human immortalized retinal pigment epithelium RPE cells. Results: We confirmed anti-enteroviral activities of pleconaril, rupintrivir, cycloheximide, vemurafenib, remdesivir, emetine, and anisomycin and identified novel synergistic rupintrivir-vemurafenib, vemurafenib-pleconaril and rupintrivir-pleconaril combinations against EV1 infection. Conclusions: Because rupintrivir, vemurafenib, and pleconaril require lower concentrations to inhibit enterovirus replication in vitro when combined, their cocktails may have fewer side effects in vivo and, therefore, should be further explored in preclinical and clinical trials against EV1 and other enterovirus infections.


Assuntos
Infecções por Enterovirus , Picornaviridae , Anisomicina/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Cicloeximida/uso terapêutico , Combinação de Medicamentos , Emetina , Humanos , Vemurafenib/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA