Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Food Res Int ; 192: 114818, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39147513

RESUMO

Boiled lotus rhizome discs (BLRDs), as common processed products of lotus rhizome, have gained increasing attention from consumers and food manufacturers. However, the blue pigment formed during boiling affects its appearance and reduces the appetite of BLRDs. In this study, the effects of polyphenols and iron contents on blue pigment formation in BLRDs in different regions and months were investigated. Results revealed that blue variation was more serious in March and April of the second year in Wuhan, and polyphenols and iron contents in these two months were significantly higher than those in other months. Then, UPLC and UV-Vis analysis showed that polyphenols causing the formation of blue pigment in BLRDs were L-dopa, gallocatechin, catechin, epigallocatechin, chlorogenic acid and epicatechin, among which L-dopa (52.450 mg/100 g in fresh lotus rhizome (FLR)) and gallocatechin (36.210 mg/100 g in FLR) possessed the greatest effect. Moreover, the ESI-Q-TOF-MS analysis of L-dopa-iron chelate and gallocatechin-iron chelate suggested that the blue pigment of BLRDs was mainly in the form of bis-complexes under boiling conditions. The study on formation mechanism of blue pigment in BLRDs can provide a reference for lotus rhizome processing.


Assuntos
Ferro , Polifenóis , Rizoma , Rizoma/química , Polifenóis/química , Polifenóis/análise , Ferro/química , Quelantes de Ferro/química , Pigmentos Biológicos/química , Catequina/química , Catequina/análogos & derivados , Catequina/análise , Levodopa/química , Lotus/química , Cromatografia Líquida de Alta Pressão , Culinária , Temperatura Alta , Ácido Clorogênico/química , Espectrometria de Massas por Ionização por Electrospray
2.
J Agric Food Chem ; 72(28): 15801-15810, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38962874

RESUMO

Fungal azaphilones have attracted widespread attention due to their significant potential as sources of food pigments and pharmaceuticals. Genome mining and gene cluster activation represent powerful tools and strategies for discovering novel natural products and bioactive molecules. Here, a putative azaphilone biosynthetic gene cluster lut from the endophytic fungus Talaromyces sp. was identified through genome mining. By overexpressing the pathway-specific transcription factor LutB, five new sclerotiorin-type azaphilones (1, 6, 8, and 10-11) together with seven known analogues (2-5, 7, 9, 12) were successfully produced. Compounds 8 and 9 exhibited antibacterial activity against Bacillus subtilis with MIC values of 64 and 16 µg/mL, respectively. Compound 11 showed cytotoxic activity against HCT116 and GES-1 with IC50 values of 10.9 and 4.9 µM, respectively, while 1, 4, 5, and 7-10 showed no obvious cytotoxic activity. Gene inactivation experiments confirmed the role of the lut cluster in the production of compounds 1-12. Subsequent feeding experiments unveiled the novel functional diversity of the dual megasynthase system. Furthermore, a LutC-LutD binary oxidoreductase system was discovered, and in combination with DFT calculations, the basic biosynthetic pathway of the sclerotiorin-type azaphilones was characterized. This study provided a good example for the discovery of new azaphilones and further uncovered the biosynthesis of these compounds.


Assuntos
Benzopiranos , Proteínas Fúngicas , Família Multigênica , Pigmentos Biológicos , Talaromyces , Talaromyces/genética , Talaromyces/metabolismo , Talaromyces/química , Pigmentos Biológicos/química , Pigmentos Biológicos/metabolismo , Humanos , Benzopiranos/farmacologia , Benzopiranos/química , Benzopiranos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Endófitos/genética , Endófitos/metabolismo , Endófitos/química , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/metabolismo , Linhagem Celular Tumoral
3.
World J Microbiol Biotechnol ; 40(9): 272, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39030303

RESUMO

Microalgae are a source of a wide variety of commodities, including particularly valuable pigments. The typical pigments present in microalgae are the chlorophylls, carotenoids, and phycobiliproteins. However, other types of pigments, of the family of water-soluble polyphenols, usually encountered in terrestrial plants, have been recently reported in microalgae. Among such microalgal polyphenols, many flavonoids have a yellowish hue, and are used as natural textile dyes. Besides being used as natural colorants, for example in the food or cosmetic industry, microalgal pigments also possess many bioactive properties, making them functional as nutraceutical or pharmaceutical agents. Each type of pigment, with its own chemical structure, fulfills particular biological functions. Considering both eukaryotes and prokaryotes, some species within the four most promising microalgae groups (Cyanobacteria, Rhodophyta, Chlorophyta and Heterokontophyta) are distinguished by their high contents of specific added-value pigments. To further enhance microalgae pigment contents during autotrophic cultivation, a review is made of the main related strategies adopted during the last decade, including light adjustments (quantity and quality, and the duration of the photoperiod cycle), and regard to mineral medium characteristics (salinity, nutrients concentrations, presence of inductive chemicals). In contrast to what is usually observed for growth-related pigments, accumulation of non-photosynthetic pigments (polyphenols and secondary carotenoids) requires particularly stressful conditions. Finally, pigment enrichment is also made possible with two new cutting-edge technologies, via the application of metallic nanoparticles or magnetic fields.


Assuntos
Microalgas , Pigmentos Biológicos , Microalgas/metabolismo , Microalgas/química , Pigmentos Biológicos/química , Carotenoides/química , Carotenoides/metabolismo , Carotenoides/análise , Ficobiliproteínas/química , Ficobiliproteínas/metabolismo , Cianobactérias/metabolismo , Cianobactérias/química , Rodófitas/química , Rodófitas/metabolismo , Clorófitas/química , Clorófitas/metabolismo , Clorofila/análise , Polifenóis/análise , Polifenóis/química , Polifenóis/metabolismo , Meios de Cultura/química
4.
PeerJ ; 12: e17698, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39071122

RESUMO

Despite their overlooked status, weeds are increasingly recognized for their therapeutic value, aligning with historical reliance on plants for medicine and nutrition. This study investigates the medicinal potential of native weed species in Bangladesh, specifically pigments, antioxidants, and free radical scavenging abilities. Twenty different medicinal weed species were collected from the vicinity of Khulna Agricultural University and processed in the Crop Botany Department Laboratory. Pigment levels were determined using spectrophotometer analysis, and phenolics, flavonoids, and DPPH were quantified accordingly. Chlorophyll levels in leaves ranged from 216.70 ± 9.41 to 371.14 ± 28.67 µg g-1 FW, and in stems from 51.98 ± 3.21 to 315.89 ± 17.19 µg g-1 FW. Flavonoid content also varied widely, from 1,624.62 ± 102.03 to 410.00 ± 115.58 mg CE 100 g-1 FW in leaves, and from 653.08 ± 32.42 to 80.00 ± 18.86 mg CE 100 g-1 FW in stems. In case of phenolics content Euphorbia hirta L. displaying the highest total phenolic content in leaves (1,722.33 ± 417.89 mg GAE 100 g-1 FW) and Ruellia tuberosa L. in stems (977.70 ± 145.58 mg GAE 100 g-1 FW). The lowest DPPH 2.505 ± 1.028 mg mL-1was found in Heliotropium indicum L. leaves. Hierarchical clustering links species with pigment, phenolic/flavonoid content, and antioxidant activity. PCA, involving 20 species and seven traits, explained 70.07% variability, with significant PC1 (14.82%) and PC2 (55.25%). Leaves were shown to be superior, and high-performing plants such as E. hirta and H. indicum stood out for their chemical composition and antioxidant activity. Thus, this research emphasizes the value of efficient selection while concentrating on the therapeutic potential of native weed species.


Assuntos
Antioxidantes , Sequestradores de Radicais Livres , Plantas Daninhas , Plantas Medicinais , Bangladesh , Antioxidantes/química , Antioxidantes/análise , Antioxidantes/farmacologia , Plantas Daninhas/química , Sequestradores de Radicais Livres/química , Plantas Medicinais/química , Folhas de Planta/química , Flavonoides/análise , Flavonoides/química , Fenóis/análise , Fenóis/química , Extratos Vegetais/química , Pigmentos Biológicos/química , Pigmentos Biológicos/análise , Clorofila/análise
5.
Food Res Int ; 188: 114442, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823830

RESUMO

The long-term stability of red wine color depends on the formation of polymeric pigments from anthocyanins. Although there is still a lot of uncertainty about the specific structure of this diverse group of pigments, there is consensus that they are reaction products of anthocyanins and other polyphenols. Interactions between anthocyanins and pectic polysaccharides have been suggested to stabilize anthocyanins. This study explores the impact of such interactions by adding pectin during red winemaking. The results demonstrate that these interactions induce the formation of additional polymeric pigments which enhance the pigment stability during fermentation and aging. While initial pigment formation is higher in wines with added pectin, a notable proportion of the complexes degrades in the later stages of fermentation. Presumably, tannins form insoluble complexes with pectin, reducing tannin concentration by more than 300 mg/L. Anthocyanin concentrations decrease by over 400 mg/L, and polymeric pigments double. Anthocyanins that form polymeric pigments with pectic polysaccharides expand the range of pigments in red wines with possible consequences for the sensory properties of the wine. These findings highlight the complex interactions between pectin, anthocyanins, and tannins, and their influence on pigment formation and wine composition during fermentation and aging.


Assuntos
Antocianinas , Fermentação , Pectinas , Taninos , Vinho , Antocianinas/química , Antocianinas/análise , Pectinas/química , Vinho/análise , Taninos/química , Cor , Manipulação de Alimentos/métodos , Pigmentos Biológicos/química , Polímeros/química
6.
Org Biomol Chem ; 22(22): 4521-4527, 2024 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-38752482

RESUMO

Ten azaphilones including one pair of new epimers and three new ones, penineulones A-E (1-5) with the same structural core of angular deflectin, were obtained from a deep-sea derived Penicillium sp. SCSIO41030 fermented on a liquid medium. Their structures including absolute configurations were elucidated using chiral-phase HPLC analysis, extensive NMR spectroscopic and HRESIMS data, ECD and NMR calculations, and by comparing NMR data with literature data. Biological assays showed that the azaphilones possessed no antitumor and anti-viral (HSV-1/2) activities at concentrations of 5.0 µM and 20 µM, respectively. In addition, azaphilones 8 and 9 showed neuroprotective effects against Aß25-35-induced neurotoxicity in primary cultured cortical neurons at a concentration of 10 µM. Azaphilones 8 and 9 dramatically promoted axonal regrowth against Aß25-35-induced axonal atrophy. Our study indicated that azaphilones could be promising lead compounds for neuroprotection.


Assuntos
Benzopiranos , Fármacos Neuroprotetores , Penicillium , Penicillium/química , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/isolamento & purificação , Benzopiranos/farmacologia , Benzopiranos/química , Benzopiranos/isolamento & purificação , Animais , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/farmacologia , Pigmentos Biológicos/farmacologia , Pigmentos Biológicos/química , Pigmentos Biológicos/isolamento & purificação , Humanos , Neurônios/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Fragmentos de Peptídeos/química , Estrutura Molecular
7.
Bioorg Chem ; 148: 107434, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38744168

RESUMO

Azaphilones represent a particular group of fascinating pigments from fungal source, with easier industrialization and lower cost than the traditional plant-derived pigments, and they also display a wide range of pharmacological activities. Herein, 28 azaphilone analogs, including 12 new ones, were obtained from the fermentation culture of a marine fungus Penicillium sclerotium UJNMF 0503. Their structures were elucidated by MS, NMR and ECD analyses, together with NMR and ECD calculations and biogenetic considerations. Among them, compounds 1 and 2 feature an unusual natural benzo[d][1,3]dioxepine ring embedded with an orthoformate unit, while 3 and 4 represent the first azaphilone examples incorporating a novel rearranged 5/6 bicyclic core and a tetrahydropyran ring on the side chain, respectively. Our bioassays revealed that half of the isolates exhibited neuroprotective potential against H2O2-induced injury on RSC96 cells, while compound 13 displayed the best rescuing capacity toward the cell viability by blocking cellular apoptosis, which was likely achieved by upregulating the PI3K/Akt signaling pathway.


Assuntos
Apoptose , Benzopiranos , Relação Dose-Resposta a Droga , Peróxido de Hidrogênio , Fármacos Neuroprotetores , Penicillium , Fosfatidilinositol 3-Quinases , Pigmentos Biológicos , Proteínas Proto-Oncogênicas c-akt , Apoptose/efeitos dos fármacos , Penicillium/química , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/isolamento & purificação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Fosfatidilinositol 3-Quinases/metabolismo , Pigmentos Biológicos/farmacologia , Pigmentos Biológicos/química , Pigmentos Biológicos/isolamento & purificação , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/antagonistas & inibidores , Estrutura Molecular , Benzopiranos/farmacologia , Benzopiranos/química , Benzopiranos/isolamento & purificação , Relação Estrutura-Atividade , Animais , Sobrevivência Celular/efeitos dos fármacos , Ratos , Transdução de Sinais/efeitos dos fármacos
8.
Astrobiology ; 24(8): 767-782, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38768415

RESUMO

Pigments serve a multitude of functions in biology including light harvesting for photosynthesis, radiation protection, membrane support, and defense. The ubiquity of pigments-especially within extremophiles found in high-radiation, high-salinity, and dry environments-and their detectability via mission-ready techniques have elevated these molecules as promising targets in the search for evidence of life elsewhere. Moreover, the detection of pigments has been proposed as a "smoking gun" for extraterrestrial life as it has been suggested that these molecules cannot be generated abiotically. However, while pigments may hold promise as a biosignature, current understanding of their possible prebiotic origins remains understudied and uncertain. Better understanding of the abiotic synthesis of pigments is critical for evaluating the biogenicity of any pigment detected during missions, including by the Mars Perseverance rover or from returned samples. Compounding this uncertainty is the broad definition of pigment as it includes any compound capable of absorbing visible light and by itself does not specify a particular chemical motif. While not experimentally verified, there are promising prebiotic routes for generating pigments including hemes, chlorophylls, and carotenoids. Herein, we review the biochemistry of pigments, the inherent assumptions made when searching for these molecules in the field, their abiotic synthesis in industry and prebiotic reactions, prebiotically relevant molecules that can mimic their spectral signatures, and implications/recommendations for future work.


Assuntos
Exobiologia , Meio Ambiente Extraterreno , Pigmentos Biológicos , Pigmentos Biológicos/química , Pigmentos Biológicos/análise , Meio Ambiente Extraterreno/química , Exobiologia/métodos , Origem da Vida , Carotenoides/química , Carotenoides/análise , Planetas
9.
Biosci Biotechnol Biochem ; 88(7): 705-718, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38632052

RESUMO

Flavonoids are polyphenolic plant constituents. Anthocyanins are flavonoid pigments found in higher plants that show a wide variety of colors ranging from red through purple to blue. The blue color of the flowers is mostly attributed to anthocyanins. However, only a few types of anthocyanidin, chromophore of anthocyanin, exist in nature, and the extracted pigments are unstable with the color fading away. Therefore, the wide range and stable nature of colors in flowers have remained a mystery for more than a century. The mechanism underlying anthocyanin-induced flower coloration was studied using an interdisciplinary method involving chemistry and biology. Furthermore, the chemical studies on flavonoid pigments in various edible plants, synthetic and biosynthetic studies on anthocyanins were conducted. The results of these studies have been outlined in this review.


Assuntos
Antocianinas , Flavonoides , Flores , Flavonoides/química , Flavonoides/metabolismo , Antocianinas/química , Flores/química , Pigmentos Biológicos/química , Pigmentação , Plantas/química , Plantas/metabolismo , Cor
10.
Int. j. odontostomatol. (Print) ; 12(4): 416-422, dic. 2018. tab, graf
Artigo em Espanhol | LILACS | ID: biblio-975767

RESUMO

RESUMEN: El resultado del tratamiento de blanqueamiento dental puede verse afectado en pacientes que consumen bebidas pigmentantes durante el tratamiento. El objetivo de este trabajo consistió en valuar el efecto in vitro de la exposición al extracto de maíz morado (chicha morada) sobre el color del esmalte humano, durante y después del tratamiento del blanqueamiento dental con peróxido de hidrógeno al 35 %. Se utilizaron 48 dientes humanos, divididos en grupos según la bebida a la que se expuso: Extracto de maíz morado peruano (MM), té verde (T) y agua destilada (A); la mitad de los especímenes expuestos a cada bebida fueron sometidos a blanqueamiento dental con peróxido de hidrógeno al 35 % durante los primeros días de exposición a la pigmentación, resultando en los siguientes grupos: Grupo A: Sin blanqueamiento + maíz morado, Grupo B: Sin blanqueamiento + té verde, Grupo C: Sin blanqueamiento + agua destilada, Grupo D: Con blanqueamiento + maíz morado, Grupo E: Con blanqueamiento + té verde, Grupo F: Con blanqueamiento + agua destilada. Los cambios de color se midieron con un espectrofotómetro digital (VITA Easyshade Advance 4.0, VITA, Alemania) antes del blanqueamiento, durante el blanqueamiento, finalizado el blanqueamiento y al final de los 36 días de exposición a los pigmentos. Según el ∆E, el extracto de maíz morado difiere significativamente con el agua destilada (p < 0,05). Con respecto al grado de luminosidad, el extracto de maíz morado con blanqueamiento presentó los menores valores de luminosidad (p < 0,05). En cuanto al croma, no hubo diferencias entre los grupos (p > 0,05). La exposición al extracto de maíz morado pigmenta los dientes, durante el blanqueamiento el extracto de maíz morado no afecta el tratamiento, pero si la exposición continúa luego del blanqueamiento dental, el color de los dientes se verá afectado.


ABSTRACT: The result of tooth whitening treatment may be affected in patients who consume staining drinks during treatment. The aim of this work was to evaluate the in vitro effect of the exposure to purple corn extract (chicha morada) on human enamel color, during and after the treatment of teeth whitening with 35 % hydrogen peroxide. Forty-eight human teeth were used, divided into groups according to the drink to which it was exposed: Peruvian purple corn extract (MM), green tea (T) and distilled water (A); half of the specimens exposed to each drink were subjected to tooth whitening with 35 % hydrogen peroxide during the first days of exposure to pigmentation, resulting in the following groups: Group A: Without bleaching + purple corn, Group B: Without whitening + green tea, Group C: No whitening + distilled water, Group D: With whitening + purple corn, Group E: With whitening + green tea, Group F: With whitening + distilled water. The color changes were measured with a digital spectrophotometer (VITA Easyshade Advance 4.0, VITA, Germany) before bleaching, during whitening, after whitening and at the end of 36 days of exposure to pigments. According to the ∆E, the purple corn extract differs significantly with the distilled water (p <0.05). Regarding the degree of luminosity, the purple corn extract with whitening presented the lowest luminosity values (p <0.05). As for the chroma, there were no differences between the groups (p> 0.05). Exposure to purple corn extract pigments the teeth, during whitening the purple corn extract does not affect the treatment, but if the exposure continues after tooth whitening, the color of the teeth will be affected.


Assuntos
Humanos , Pigmentos Biológicos/química , Clareamento Dental/métodos , Zea mays/química , Clareadores Dentários/química , Bebidas , Técnicas In Vitro , Extratos Vegetais/química , Cor , Peróxido de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA