Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
1.
Neuroscience ; 551: 166-176, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38782114

RESUMO

Epilepsy is a progressive neurodegenerative disease highlighted by recurrent seizures, neuroinflammation, and the loss of neurons. Microglial dysfunction is commonly found in epileptic foci and contributes to neuroinflammation in the initiation and progression of epilepsy. Glycoprotein non-metastatic melanoma protein B (GPNMB), a transmembrane glycoprotein, has been involved in the microglial activation and neuroinflammation response. The present study investigated the functional significance of GPNMB in epilepsy. A proven model of epilepsy was established by intraperitoneal injection of pilocarpine to male Sprague Dawley rats. Lentivirus vectors carrying GPNMB or GPNMB short hairpin RNA (shGPNMB) were injected into the hippocampus to induce overexpression or knockdown of GPNMB. GPNMB expression was significantly upregulated and overexpression of GPNMB in the hippocampus reduced seizure activity and neuronal loss after status epilepticus (SE). We here focused on the effects of GPNMB deficiency on neuronal injury and microglia polarization 28 days after SE. GPNMB knockdown accelerated neuronal damage in the hippocampus, evidenced by increased neuron loss and neuronal cell apoptosis. Following GPNMB knockdown, M1 polarization (iNOS) and secretion of pro-inflammatory cytokines IL-6, IL-1ß, and TNF-α were increased, and M2 polarization (Arg1) and secretion of anti-inflammatory cytokines IL-4, IL-10, and TGF-ß were decreased. BV2 cells were used to further confirm the regulatory role of GPNMB in modulating phenotypic transformations and inflammatory cytokine expressions in microglia. In conclusion, these results indicated that GPNMB suppressed epilepsy through repression of hippocampal neuroinflammation, suggesting that GPNMB might be considered the potential neurotherapeutic target for epilepsy management and play a protective role against epilepsy by modulating the polarization of microglia.


Assuntos
Epilepsia , Glicoproteínas de Membrana , Microglia , Doenças Neuroinflamatórias , Neurônios , Pilocarpina , Ratos Sprague-Dawley , Animais , Microglia/metabolismo , Masculino , Pilocarpina/toxicidade , Glicoproteínas de Membrana/metabolismo , Ratos , Epilepsia/metabolismo , Epilepsia/induzido quimicamente , Epilepsia/patologia , Neurônios/metabolismo , Neurônios/patologia , Doenças Neuroinflamatórias/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Citocinas/metabolismo
2.
Curr Neurovasc Res ; 21(1): 54-63, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38468526

RESUMO

BACKGROUND: Drug-resistant epilepsy (DRE) is a refractory neurological disorder. There is ample evidence that suggest that γ-aminobutyric acid-a (GABAA) receptors could be one of the mechanisms responsible for the development of drug resistance in epilepsy. It is also known that the cAMP response element binding protein (CREB) plays a possible key role in the transcriptional regulation of GABAA. OBJECTIVE: This study explores the role of CREB in the development of DRE and the effect of CREB on GABA-related receptors in DRE. METHODS: The CREB expression was increased or decreased in the hippocampus of normal rats by lentiviral transfection, who then underwent the lithium-pilocarpine-induced epilepsy model. Phenobarbital (PB) sodium and carbamazepine (CBZ) were used to select a drug-resistant epileptic model. The expression levels of GABAA receptor α1, ß2, and γ2 subunits and CREB protein were measured in the rat hippocampus by western blot and fluorescent quantitative PCR. RESULTS: The frequency and duration of seizures increased in the overexpression group compared to that in the control group. In addition, the severity, frequency, and duration of seizures decreased in the group with decreased expression. The hippocampus analysis of the expression levels of the CREB protein and CREB mRNA yielded similar findings. Altering the CREB protein expression in the rat hippocampus could negatively regulate the expression and transcript levels of GABAA receptors α1, ß2, and γ2, suggesting that CREB may serve as a potential target for the development of treatment protocols and drugs for epilepsy. CONCLUSION: Our study shows that enhanced CREB expression promotes the development of DRE and negatively regulates GABAA receptor levels and that the inhibition of CREB expression may reduce the incidence of DRE.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Epilepsia Resistente a Medicamentos , Hipocampo , Ratos Sprague-Dawley , Receptores de GABA-A , Animais , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Masculino , Epilepsia Resistente a Medicamentos/metabolismo , Ratos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Receptores de GABA-A/metabolismo , Receptores de GABA-A/biossíntese , Pilocarpina/toxicidade , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Modelos Animais de Doenças , Fenobarbital/farmacologia
3.
Chem Biol Drug Des ; 103(3): e14481, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38458969

RESUMO

Studies have shown that saikosaponin D (SSD) has favorable neurotherapeutic effects. Therefore, the objective of this study was to explore the efficacy and possible molecular mechanisms of SSD on pilocarpine (PP)-induced astrocyte injury. Primary astrocytes were isolated from juvenile rats and identified using immunofluorescence. The cells were treated with PP and/or SSD for 6 h and 12 h, respectively, followed by measurement of their viability through 3-(4,5-dimethylthiazol)-2,5-diphenyl-tetrazolium bromide (MTT) assay. Next, quantitative real-time polymerase chain reaction (qRT-PCR) was used to measure the expression levels of Glial fibrillary acidic protein (GFAP), C3, S100 calcium binding protein A10 (S100a10), pentraxin 3 (Ptx3), toll-like receptor 4 (TLR4), and RAG in astrocytes after different treatments. Enzyme-linked immunosorbent assay and biochemical tests were utilized to evaluate the level of inflammatory factors [interleukin (IL)-1ß, IL-6, and tumor necrosis factor alpha (TNF-α)] secreted by cells and the content of oxidative stress-related factors (malondialdehyde [MDA] and glutathione [GSH]) or enzyme activity (catalase [CAT] and glutathione peroxidase [GPX]) in cells. The JC-1 mitochondrial membrane potential (MMP) fluorescence probe was used to measure the MMP in astrocytes. Additionally, western blot was applied to test the expression of proteins related to the nod-like receptor protein 3 (NLRP3)/caspase-1 signaling pathway. PP treatment (1 mM) induced cell injury by significantly reducing the viability of astrocytes and expression of cellular markers. SSD treatment (4 µM) had no toxicity to astrocytes. Besides, SSD (4 µM) treatment could significantly up-regulate the cell viability and marker expression of PP-induced astrocytes. Furthermore, SSD could be employed to inhibit inflammation (reduce IL-1ß, IL-6, and TNF-α levels) and oxidative stress (decrease MDA level, elevate GSH level, the activity of CAT and GPX), and ameliorate mitochondrial dysfunction (upregulate JC-1 ratio) in PP-induced astrocytes. Moreover, further mechanism exploration revealed that SSD treatment significantly reduced the activity of the NLRP3/caspase-1 signaling pathway activated by PP induction. SSD increased cell viability, inhibited inflammation and oxidative stress response, and ameliorated mitochondrial dysfunction in PP-induced astrocyte injury model, thus playing a neuroprotective role. The mechanism of SSD may be related to the inhibition of the NLRP3/caspase-1 inflammasome.


Assuntos
Benzimidazóis , Carbocianinas , Doenças Mitocondriais , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ácido Oleanólico/análogos & derivados , Saponinas , Ratos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Astrócitos/metabolismo , Astrócitos/patologia , Pilocarpina/toxicidade , Fator de Necrose Tumoral alfa/genética , Caspases/metabolismo , Interleucina-6 , Transdução de Sinais , Inflamação/metabolismo
4.
Neurochem Int ; 174: 105677, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38290616

RESUMO

It is widely acknowledged that epilepsy is a neurological disorder characterized by recurrent and atypical neuronal discharges, resulting in transient dysfunction within the brain. The protective role of hydrogen sulfide (H2S) in epilepsy has been elucidated by recent studies, but the underlying mechanisms remain poorly understood. To investigate this, the concentration of H2S was measured by spectrophotometry and a fluorescent probe in LiCl/Pilocarpine (LiCl/Pilo)-induced seizures in rats. The localization of proteins was examined using immunofluorescence. Electroencephalogram and behavioral tests were employed to evaluate the occurrence of seizures. Neuropathological changes in the hippocampus were examined by hematoxylin-eosin staining, Nissl staining, and transmission electron microscopy. Through proteomics and bioinformatics analysis, we identified the differential proteins in the hippocampus of rats following H2S intervention. Protein changes were detected through western blotting. The results showed that H2S treatment significantly alleviated seizures and minimized post-seizures neurological damage in rats. Proteomics analysis revealed adenylate cyclase 3 (AC3) as a protein potentially targeted by H2S. Moreover, the AC3 activator forskolin reversed the downregulation effect of H2S on the AC3/cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA)/transient receptor potential vanilloid 2 (TRPV2) signaling pathway. In conclusion, H2S targets and downregulates the expression of AC3, thereby modulating the AC3/cAMP/PKA signaling pathway to regulate the expression of TRPV2 in LiCl/Pilo-induced seizures, ultimately leading to seizure inhibition and neuroprotection.


Assuntos
Adenilil Ciclases , Epilepsia , Pilocarpina , Ratos , Animais , Pilocarpina/toxicidade , Neuroproteção , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Convulsões/induzido quimicamente , Convulsões/prevenção & controle , Convulsões/metabolismo , AMP Cíclico/metabolismo , Epilepsia/induzido quimicamente
5.
Neurochem Res ; 49(2): 388-401, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37847329

RESUMO

Endoplasmic reticulum (ER) dysfunction caused by excessive ER stress is a crucial mechanism underlying seizures-induced neuronal injury. Studies have shown that mitochondrial reactive oxygen species (ROS) are closely related to ER stress, and our previous study showed that activating transcription factor 5 (ATF5)-regulated mitochondrial unfolded protein response (mtUPR) modulated mitochondrial ROS generation in a hippocampal neuronal culture model of seizures. However, the effects of ATF5-regulated mtUPR on ER stress and the underlying mechanisms remain uncertain in epilepsy. In this study, ATF5 upregulation by lentivirus infection attenuated seizures-induced neuronal damage and apoptosis in a rat model of pilocarpine-induced epilepsy, whereas ATF5 downregulation by lentivirus infection had the opposite effects. ATF5 upregulation potentiated mtUPR by increasing the expression of mitochondrial chaperone heat shock protein 60 (HSP60) and caseinolytic protease proteolytic subunit (ClpP) and reducing mitochondrial ROS generation in pilocarpine-induced seizures in rats. Additionally, upregulation of ATF5 reduced the expression of glucose-regulated protein 78 (GRP78), protein kinase RNA-like endoplasmic reticulum kinase (PERK), activating transcription factor 4 (ATF4), and C/EBP homologous protein (CHOP), suggesting suppression of ER stress; Moreover, ATF5 upregulation attenuated apoptosis-related proteins such as B-cell lymphoma-2 (BCL2) downregulation, BCL2-associated X (BAX) and cleaved-caspase-3 upregulation. However, ATF5 downregulation exerted the opposite effects. Furthermore, pretreatment with the mitochondria-targeted antioxidant mito-TEMPO attenuated the harmful effects of ATF5 downregulation on ER stress and neuronal apoptosis by reducing mitochondrial ROS generation. Overall, our study suggested that ATF5-regulated mtUPR exerted neuroprotective effects against pilocarpine-induced seizures in rats and the underlying mechanisms might involve mitochondrial ROS-mediated ER stress.


Assuntos
Epilepsia , Infecções por Lentivirus , Ratos , Animais , Espécies Reativas de Oxigênio/metabolismo , Pilocarpina/toxicidade , Estresse do Retículo Endoplasmático , Resposta a Proteínas não Dobradas , Apoptose , Mitocôndrias/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Epilepsia/induzido quimicamente , Epilepsia/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Convulsões/induzido quimicamente , Convulsões/metabolismo , Neurônios/metabolismo , Infecções por Lentivirus/metabolismo
6.
Brain Res ; 1810: 148382, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37127175

RESUMO

Neuroinflammation plays a crucial role in the development of epilepsy, and suppressing neuroinflammation can delay epileptogenesis. Recent reports have demonstrated that (+)-borneol has neuroprotective effects in several brain disorders by reducing neuroinflammation. However, its effects on epilepsy have not been reported. In this research, we first studied the effect of different doses of (+)-borneol (3, 6, and 12 mg/kg) on neuroinflammation in a pilocarpine model of epileptogenesis by detecting IL-1ß, TNF-α, and COX-2 expression. We demonstrated that different doses of (+)-borneol decreased IL-1ß, TNF-α, and COX-2 levels, with 12 mg/kg having the most substantial effect. Furthermore, we examined the effects of 12 mg/kg (+)-borneol on neuronal damage, glial cell activation, and apoptosis in the hippocampus at different time points (1, 3, and 7 days) after SE. We found that (+)-borneol significantly ameliorated neuronal injury, decreased glial cell activation, and attenuated apoptosis. We also found that (+)-borneol inhibited the NF-κB pathway activation induced by SE. In conclusion, our results indicated that (+)-borneol reduces neuroinflammation by inhibiting the NF-κB pathway activation, exerts neuroprotective effects, and may have an inhibitory effect in epileptogenesis.


Assuntos
Epilepsia , Fármacos Neuroprotetores , Ratos , Animais , NF-kappa B/metabolismo , Pilocarpina/toxicidade , Fármacos Neuroprotetores/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Doenças Neuroinflamatórias , Ciclo-Oxigenase 2 , Epilepsia/induzido quimicamente , Epilepsia/tratamento farmacológico
7.
Int J Mol Sci ; 24(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37047461

RESUMO

Thalidomide (TAL) has shown potential therapeutic effects in neurological diseases like epilepsy. Both clinical and preclinical studies show that TAL may act as an antiepileptic drug and as a possible treatment against disease development. However, the evidence for these effects is limited. Therefore, the antiepileptogenic and anti-inflammatory effects of TAL were evaluated herein. Sprague Dawley male rats were randomly allocated to one of five groups (n = 18 per group): control (C); status epilepticus (SE); SE-TAL (25 mg/kg); SE-TAL (50 mg/kg); and SE-topiramate (TOP; 60mg/kg). The lithium-pilocarpine model was used, and one day after SE induction the rats received pharmacological treatment for one week. The brain was obtained, and the hippocampus was micro-dissected 8, 18, and 28 days after SE. TNF-α, IL-6, and IL-1ß concentrations were quantified. TOP and TAL (50 mg/kg) increased the latency to the first of many spontaneous recurrent seizures (SRS) and decreased SRS frequency, as well as decreasing TNF-α and IL-1ß concentrations in the hippocampus. In conclusion, the results showed that both TAL (50 mg/kg) and TOP have anti-ictogenic and antiepileptogenic effects, possibly by decreasing neuroinflammation.


Assuntos
Encefalite , Epilepsia do Lobo Temporal , Estado Epiléptico , Ratos , Masculino , Animais , Pilocarpina/toxicidade , Lítio/farmacologia , Lítio/uso terapêutico , Talidomida/farmacologia , Talidomida/uso terapêutico , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/metabolismo , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/tratamento farmacológico , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/tratamento farmacológico , Hipocampo/metabolismo , Modelos Animais de Doenças
8.
Int J Mol Sci ; 24(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37047481

RESUMO

A significant body of evidence shows that neuroinflammation is one of the key processes in the development of brain pathology in trauma, neurodegenerative disorders, and epilepsy. Various brain insults, including severe and prolonged seizure activity during status epilepticus (SE), trigger proinflammatory cytokine release. We investigated the expression of the proinflammatory cytokines interleukin-1ß (Il1b) and interleukin-6 (Il6), and anti-inflammatory fractalkine (Cx3cl1) in the hippocampus, entorhinal cortex, and neocortex of rats 24 h, 7 days, and 5 months after lithium-pilocarpine SE. We studied the relationship between cytokine expression and neuronal death in the hippocampus and evaluated the effect of modulation of endocannabinoid receptors on neuroinflammation and neurodegeneration after SE. The results of the present study showed that inhibition of endocannabinoid CB1 receptors with AM251 early after SE had a transient neuroprotective effect that was absent in the chronic period and did not affect the development of spontaneous seizures after SE. At the same time, AM251 reduced the expression of Il6 in the chronic period after SE. Higher Cx3cl1 levels were found in rats with more prominent hippocampal neurodegeneration.


Assuntos
Neocórtex , Estado Epiléptico , Ratos , Animais , Pilocarpina/toxicidade , Lítio/farmacologia , Lítio/metabolismo , Citocinas/metabolismo , Endocanabinoides/metabolismo , Interleucina-6/metabolismo , Doenças Neuroinflamatórias , Estado Epiléptico/patologia , Hipocampo/metabolismo , Neocórtex/metabolismo , Modelos Animais de Doenças
9.
Exp Biol Med (Maywood) ; 248(8): 722-731, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36802956

RESUMO

Neuroinflammation is one of the most common pathological outcomes in various neurological diseases. A growing body of evidence suggests that neuroinflammation plays a pivotal role in the pathogenesis of epileptic seizures. Eugenol is the major phytoconstituent of essential oils extracted from several plants and possesses protective and anticonvulsant properties. However, it remains unclear whether eugenol exerts an anti-inflammatory effect to protect against severe neuronal damage induced by epileptic seizures. In this study, we investigated the anti-inflammatory action of eugenol in an experimental epilepsy model of pilocarpine-induced status epilepticus (SE). To examine the protective effect of eugenol via anti-inflammatory mechanisms, eugenol (200 mg/kg) was administrated daily for three days after pilocarpine-induced SE onset. The anti-inflammatory action of eugenol was evaluated by examining the expression of reactive gliosis, pro-inflammatory cytokines, nuclear factor-κB (NF-κB), and the nucleotide-binding domain leucine-rich repeat with a pyrin-domain containing 3 (NLRP3) inflammasome. Our results showed that eugenol reduced SE-induced apoptotic neuronal cell death, mitigated the activation of astrocytes and microglia, and attenuated the expression of interleukin-1ß and tumor necrosis factor α in the hippocampus after SE onset. Furthermore, eugenol inhibited NF-κB activation and the formation of the NLRP3 inflammasome in the hippocampus after SE. These results suggest that eugenol is a potential phytoconstituent that suppresses the neuroinflammatory processes induced by epileptic seizures. Therefore, these findings provide evidence that eugenol has therapeutic potential for epileptic seizures.


Assuntos
Pilocarpina , Estado Epiléptico , Humanos , Pilocarpina/toxicidade , Eugenol/farmacologia , Eugenol/uso terapêutico , Eugenol/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , NF-kappa B/metabolismo , Doenças Neuroinflamatórias , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/tratamento farmacológico , Estado Epiléptico/patologia , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Convulsões/metabolismo , Hipocampo/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
10.
Neuroreport ; 34(2): 67-74, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36608161

RESUMO

BACKGROUND: During status epilepticus, severe seizures can occur, generating recurrent cycles of excitotoxicity and oxidative stress that cause neuronal damage and cell death. The administration of agents with antioxidant properties represents a therapeutic alternative aimed at reducing the severity of status epilepticus and mitigating the neurobiological consequences that precede them. OBJECTIVE: The objective of this work was to evaluate the antiseizure effect of the antioxidants allopurinol (ALL) and ellagic acid during status epilepticus induced by pilocarpine (PILO). METHODS: Male Wistar rats (200-250 g) were injected with ALL (50 mg/kg) or ellagic acid (50 mg/kg), 30 min before PILO administration (pretreatment) or 60 min after the beginning of status epilepticus, to evaluate the antiseizure effect of these drugs on epileptiform activity and convulsive behavior. RESULTS: ALL or ellagic acid administration before or after PILO significantly decreased the epileptiform activity and the severity of convulsive behavior. Better efficacy was observed when the drugs were administered as a pretreatment, increasing the latency time of the appearance of status epilepticus from 27.2 ± 2.6 to 45.8 ± 3.31 min, and significantly reducing the amplitude of epileptiform discharges by 53.5% with ALL and 68.9% with ellagic acid. CONCLUSION: The antioxidants ALL and ellagic acid showed an antiseizure effect, representing an alternative to reduce epileptiform activity and severity of convulsive behavior during status epilepticus, an effect that may be used as adjuvants to mitigate or reduce oxidative damage processes.


Assuntos
Alopurinol , Estado Epiléptico , Ratos , Animais , Masculino , Alopurinol/efeitos adversos , Ácido Elágico/efeitos adversos , Ratos Wistar , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Convulsões/tratamento farmacológico , Convulsões/induzido quimicamente , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/tratamento farmacológico , Pilocarpina/toxicidade
11.
J Neurosci Res ; 101(6): 916-929, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36696411

RESUMO

Deep brain stimulation (DBS) of the anterior nucleus of the thalamus (ANT) appears to be effective against seizures in animals and humans however, its therapeutic mechanisms remain elusive. This study aimed to combine 9.4T multimodal magnetic resonance imaging (MRI) with histology to investigate the longitudinal effects of long-term ANT-DBS in pilocarpine-induced epileptic rats. Status epilepsy (SE) was induced by LiCl-pilocarpine injection in 11 adult male Sprague-Dawley rats. Four weeks after SE, chronic epileptic rats underwent either ANT-DBS (n = 6) or sham-DBS (n = 5) surgery. Electroencephalography (EEG) and spontaneous recurrent seizures (SRS) were recorded for 1 week. The T2-weighted image and images from resting-state functional MRI (rs-fMRI) were acquired at three states: before SE, at 4 weeks post-SE, and at 5 weeks post-DBS. Volumes of the hippocampal subregions and hippocampal-related functional connectivity (FC) were compared longitudinally. Finally, antibodies against neuronal nuclei (NeuN) and glial fibrillary acidic proteins were used to evaluate neuronal loss and astrogliosis in the hippocampus. Long-term ANT-DBS significantly reduced seizure generalization in pilocarpine-induced epileptic rats. By analyzing the gray matter volume using T2-weighted images, long-term ANT-DBS displayed morphometric restoration of the hippocampal subregions. Neuronal protection of the hippocampal subregions and inhibition of astrogliosis in the hippocampal subregions were observed in the ANT-DBS group. ANT-DBS caused reversible regulation of FC in the insula-hippocampus and subthalamic nucleus-hippocampus. Long-term ANT-DBS provides comprehensive protection of hippocampal histology, hippocampal morphometrics, and hippocampal-related functional networks.


Assuntos
Estimulação Encefálica Profunda , Epilepsia , Humanos , Adulto , Ratos , Masculino , Animais , Pilocarpina/toxicidade , Pilocarpina/metabolismo , Gliose/induzido quimicamente , Gliose/diagnóstico por imagem , Gliose/metabolismo , Ratos Sprague-Dawley , Estimulação Encefálica Profunda/métodos , Epilepsia/induzido quimicamente , Epilepsia/diagnóstico por imagem , Epilepsia/terapia , Convulsões/metabolismo , Imageamento por Ressonância Magnética , Hipocampo/metabolismo
12.
Int J Dev Neurosci ; 83(1): 53-66, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36342791

RESUMO

OBJECTIVES: This study aimed to elucidate the effects of Gentiopicroside (Gent) on epileptogenesis and underlying mechanisms. METHODS: The status epilepticus (SE) model was established by intraperitoneal (i.p.) injection of lithium chloride (127 mg/kg) and pilocarpine (50 mg/kg) in immature rats. HAPI microglial cellular inflammation model was induced by lipopolysaccharide (LPS, 1 µg/ml) and adenosine triphosphate (ATP, 5 mM). The differential concentrations of Gent were used to pretreat animal (200, 400, and 800 mg/kg) and model cells (50, 100, and 200 µM). Epileptic discharges were assessed by electroencephalography (EEG) and Racine scale. Changes in spatial memory function were measured using the Morris water maze task test. Nissl and FJB staining were employed to assess the damage to hippocampus tissues. ELISA was used to detect the production of IL-1ß, IL-18, and TNF-α. The expressions of P2X7R and NLRP3 were detected by q-PCR, immunofluorescence staining, and Western blot, and cell viability was determined by cell counting kit-8 (CCK-8). RESULTS: Lithium chloride and pilocarpine (LICL-PILO) induced abnormal EEG activities, behavioral alterations, brain damage, and inflammatory responses in immature rats. However, Gent pretreatment significantly reduced the neuronal damage and spatial memory dysfunction induced by LICL-PILO. Additionally, Gent suppressed the production of inflammatory cytokines and inhibited the expression of P2X7R, NLRP3, ASC, and Caspase-1 in LPS/ATP-induced HAPI microglial cells. DISCUSSION: Gent intervention could improve epileptogenesis in immature rats partially due to suppressing P2X7R and NLRP3 inflammasome.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ratos , Animais , Ratos Sprague-Dawley , Lipopolissacarídeos/toxicidade , Pilocarpina/toxicidade , Cloreto de Lítio/farmacologia , Cloreto de Lítio/uso terapêutico , Trifosfato de Adenosina/metabolismo
13.
Neuroreport ; 34(1): 61-66, 2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36484279

RESUMO

OBJECTIVES: The anticonvulsant and antioxidant effects of lamotrigine on status epilepticus (SE) are incompletely understood. We assessed these effects of lamotrigine on pilocarpine (Pilo)-induced SE in mice. METHODS: Male C57BL/J6 mice were assigned to three groups: the control group, Pilo (400 mg/kg, s.c.)-induced SE (Pilo group) and lamotrigine (20 mg/kg, i.p.) treated (Pilo/lamotrigine group). The latency to SE of Racine's stage 3 or higher, the mortality rate within 2 h of Pilo administration, and the duration of SE until sacrifice were examined. Nitric oxide (NO), malondialdehyde and glutathione of oxidative stress biomarkers were detected in the hippocampus of the sacrificed animals in the above groups. NO was also detected in the cultured rat hippocampal neurons treated with 4 µM Pilo, Pilo+100 µM lamotrigine (Pilo/lamotrigine) and Pilo/lamotrigine+ N-methyl-D-aspartic acid (NMDA) receptor antagonist (10 µM MK-801, 3 µM ifenprodil) to examine the antioxidant effects of lamotrigine via non-NMDA-related pathways. RESULTS: lamotrigine prolonged the latency to SE, the SE duration until sacrifice, and decreased the mortality rate in mice with Pilo-induced SE. Lamotrigine also decreased hippocampal concentrations of NO and malondialdehyde and increased the concentrations of glutathione in the SE model. Furthermore, there were significant differences in NO concentrations between groups of cultured rat hippocampal neurons treated with Pilo and Pilo/lamotrigine, and with Pilo/lamotrigine and Pilo/lamotrigine+MK-801. CONCLUSION: Our findings suggest that lamotrigine exerts anticonvulsant and antioxidant effects on SE, but its antioxidant activity may not be fully exerted via NMDA-related pathways.


Assuntos
Pilocarpina , Estado Epiléptico , Animais , Masculino , Camundongos , Ratos , Pilocarpina/toxicidade , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Lamotrigina/efeitos adversos , Maleato de Dizocilpina , Camundongos Endogâmicos C57BL , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/tratamento farmacológico , Estado Epiléptico/metabolismo , Hipocampo/metabolismo , Glutationa/metabolismo
14.
Braz. j. biol ; 83: e237412, 2023. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1355854

RESUMO

Abstract Only few studies have focus on animals that received Pilocarpine (Pilo) and did not develop behavioral status epilepticus (SE) and, whether they may become epileptic in the model's chronic phase. Previews works observed mossy fiber sprouting in the hippocampus of Non-SE (NSE) rats, while others observed spontaneous and recurrent seizures (SRS) 6 - 8 months after animals received Pilo. It is known that neuronal excitability is influenced by female hormones, as well as, the occurrence of SE in castrated and non-castrated female rats. However, it is not known whether females that received Pilo and did not show SE, may have SRS. The aim of this work was to investigate whether castrated and non-castrated female rats that did not show behavioral SE after Pilo, will develop SRS in the following one-year. For that, animals received 360 mg/kg of Pilo and were video monitored for 12 months. SE females from castrated and non-castrated groups became epileptic since the first month after drug injection. Epileptic behaviors were identified watching video monitoring recordings in the fast speed. Castrated and Non-castrated NSE animals showed behaviors resembling seizures described by Racine Scale stages 1 - 3. Motor alterations showed by NSE groups could be observed only when recordings were analyzed in slow speed. In addition, behavioral manifestations as, rhythmic head movements, sudden head movements, whole body movements and immobility were also observed in both, SE and NSE groups. We concluded that NSE female rats may have become epileptic. Adding to it, slow speed analysis of motor alterations was essential for the observation of NSE findings, which suggests that possibly many motor alterations have been underestimated in epilepsy experimental research.


Resumo Poucos são os estudos com foco em animais que receberam Pilocarpina (Pilo) e não desenvolveram status epilepticus (SE) comportamental e, se os mesmos se tornarão epilépticos na fase crônica do modelo. Autores observaram o brotamento das fibras musgosas no hipocampo de ratos Não-SE (NSE), enquanto outros observaram crises espontâneas e recorrentes (CER) 6 - 8 meses após receberam a droga. A excitabilidade neuronal é influenciada pelos hormônios femininos e, da mesma forma, a ocorrência de SE em ratas castradas e não-castradas. Entretanto, não é sabido se as fêmeas que não apresentam SE terão CER. O objetivo deste trabalho foi investigar se fêmeas castradas e não castradas que não tiveram SE comportamental após a injeção de Pilo desenvolverão CER dentro de um ano. Para isto, os animais receberam 360 mg/kg de Pilo e foram videomonitorados por 12 meses. As fêmeas SE castradas e não-castradas se tornaram epilépticas desde o primeiro mês pós Pilo. O comportamento epiléptico foi identificado assistindo as gravações na velocidade rápida. As fêmeas NSE castradas e não-castradas apresentaram comportamentos similares aos estágios 1 - 3 da Escala de Racine. As alterações motoras nestes grupos (NSE) foram observadas apenas quando as videomonitoração foi analisada na velocidade lenta. Além destas, manifestações comportamentais como movimentos rítmicos da cabeça, movimentos súbitos da cabeça, movimentos de todo o corpo e imobilidade também foram observadas em ambos grupos, SE e NSE. Concluímos que as fêmeas NE podem ter se tornado epilépticas. Adicionado a isto, a análise das alterações motoras na velocidade lenta foi essencial para a observação dos achados das fêmeas NSE, o que sugere que possivelmente muitas alterações motoras têm sido subestimados na pesquisa em epilepsia experimental.


Assuntos
Animais , Feminino , Ratos , Pilocarpina/toxicidade , Convulsões/induzido quimicamente , Estado Epiléptico/induzido quimicamente , Ratos Wistar , Agonistas Muscarínicos/toxicidade , Modelos Teóricos
15.
Epileptic Disord ; 24(4): 647-656, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35872622

RESUMO

Objective: Copper-zinc superoxide dismutase (Cu-Zn SOD) is downregulated in epilepsy, however, the role of Cu-Zn SOD in epilepsy remains unclear. Methods: Based on the pilocarpine hydrochloride-induced rat model of epilepsy, cortical-striatum brain slices of rats were examined based on field excitatory post-synaptic potentials. Pathological changes were observed by transmission electron microscope. Also using SH-SY5Y cells, flow cytometry and TUNEL staining were applied to investigate cell apoptosis, and ELISA was applied to detect SOD activity. In addition, qRT-PCR and western blot were performed to detect SCN2A/Nrf2/HO-1 gene and protein expression levels, respectively. Results: Cu-Zn SOD over-expression suppressed epilepsy in vivo. In addition, Cu-Zn SOD knockdown notably decreased SOD activity and induced apoptosis in SH-SY5Y cells. Moreover, Cu-Zn SOD silencing decreased the levels of SCN2A, Nrf2 and HO-1. Lastly, Cu-Zn SOD was shown to modulate the NaV1.2/Nrf2/HO-1 axis in rats. Significance: In this model, Cu-Zn SOD attenuated epilepsy and was shown to alter the expression level of proteins of the NaV1.2 /Nrf2/HO-1 signalling pathway, indicating that Cu-Zn SOD might be a target for the treatment of epilepsy.


Assuntos
Epilepsia , Neuroblastoma , Animais , Epilepsia/induzido quimicamente , Humanos , Canal de Sódio Disparado por Voltagem NAV1.2 , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Pilocarpina/toxicidade , Ratos , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Zinco/metabolismo
16.
Int J Mol Sci ; 23(5)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35269653

RESUMO

LiCl/pilocarpine status epilepticus (SE) induced in immature rats leads, after a latent period, to hippocampal hyperexcitability. The excitability may be influenced by adenosine, which exhibits anticonvulsant activity. The concentration of adenosine is regulated by adenosine kinase (ADK) present in two isoforms-ADK-L and ADK-S. The main goal of the study is to elucidate the changes in ADK isoform expression after LiCl/pilocarpine SE and whether potential changes, as well as inhibition of ADK by 5-iodotubercidin (5-ITU), may contribute to changes in hippocampal excitability during brain development. LiCl/pilocarpine SE was elicited in 12-day-old rats. Hippocampal excitability in immature rats was studied by the model of hippocampal afterdischarges (ADs), in which we demonstrated the potential inhibitory effect of 5-ITU. ADs demonstrated significantly decreased hippocampal excitability 3 days after SE induction, whereas significant hyperexcitability after 20 days compared to controls was shown. 5-ITU administration showed its inhibitory effect on the ADs in 32-day-old SE rats compared to SE rats without 5-ITU. Moreover, both ADK isoforms were examined in the immature rat hippocampus. The ADK-L isoform demonstrated significantly decreased expression in 12-day-old SE rats compared to the appropriate naïve rats, whereas increased ADK-S isoform expression was revealed. A decreasing ADK-L/-S ratio showed the declining dominance of ADK-L isoform during early brain development. LiCl/pilocarpine SE increased the excitability of the hippocampus 20 days after SE induction. The ADK inhibitor 5-ITU exhibited anticonvulsant activity at the same age. Age-related differences in hippocampal excitability after SE might correspond to the development of ADK isoform levels in the hippocampus.


Assuntos
Pilocarpina , Estado Epiléptico , Adenosina/metabolismo , Adenosina Quinase/metabolismo , Animais , Anticonvulsivantes/farmacologia , Modelos Animais de Doenças , Hipocampo/metabolismo , Pilocarpina/toxicidade , Isoformas de Proteínas/metabolismo , Ratos , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/tratamento farmacológico , Estado Epiléptico/metabolismo
17.
Brain Res Bull ; 182: 80-89, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35182690

RESUMO

Inflammatory responses in the brain play an etiological role in the development of epilepsy, suggesting that finding novel molecules for controlling neuroinflammation may have clinical value in developing the disease-modifying strategies for epileptogenesis. Adjudin, a multi-functional small molecule compound, has pleiotropic effects, including anti-inflammatory properties. In the present study, we aimed to investigate the effects of adjudin on pilocarpine-induced status epilepticus (SE) and its role in the regulation of reactive gliosis and neuroinflammation. SE was induced in male C57BL/6 mice that were then treated with adjudin (50 mg/kg) for 3 days after SE onset. Immunofluorescence staining, terminal deoxynucleotidyl transferase dUTP nick end labeling staining, and western blot analysis were used to evaluate the effects of adjudin treatment in the hippocampus after SE. Our results showed that adjudin treatment significantly mitigated apoptotic cell death in the hippocampus after SE onset. Moreover, adjudin treatment suppressed SE-induced glial activation and activation of mammalian target of rapamycin signaling in the hippocampus. Concomitantly, adjudin treatment significantly reduced SE-induced inflammatory processes, as confirmed by changes in the expression of inflammatory mediators such as tumor necrosis factor-α, interleukin-1ß, and arginase-1. In conclusion, these findings suggest that adjudin may serve as a potential neuroprotective agent for preventing pathological mechanisms implicated in epileptogenesis.


Assuntos
Pilocarpina , Estado Epiléptico , Animais , Hidrazinas , Indazóis , Masculino , Mamíferos , Camundongos , Camundongos Endogâmicos C57BL , Doenças Neuroinflamatórias , Pilocarpina/toxicidade , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/tratamento farmacológico , Serina-Treonina Quinases TOR
18.
Clin Exp Pharmacol Physiol ; 49(3): 406-418, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34796981

RESUMO

Cardiac dysfunction is one of the leading causes of death in epilepsy. The anti-arrhythmic drug, amiodarone, is under investigation for its therapeutic effects in epilepsy. We aimed to evaluate the possible effects of amiodarone on cardiac injury during status epilepticus, as it can cause prolongation of the QT interval. Five rat groups were enrolled in the study; three control groups (1) Control, (2) Control-lithium and (3) Control-Amio, treated with 150 mg/kg/intraperitoneal amiodarone, (4) Epilepsy model, induced by sequential lithium/pilocarpine administration, and (5) the epilepsy-Amio group. The model group expressed a typical clinical picture of epileptiform activity confirmed by the augmented electroencephalogram alpha and beta spikes. The anticonvulsive effect of amiodarone was prominent, it diminished (p < 0.001) the severity of seizures and hence, deaths and reduced serum noradrenaline levels. In the model group, the electrocardiogram findings revealed tachycardia, prolongation of the corrected QT (QTc) interval, depressed ST segments and increased myocardial oxidative stress. The in-vitro myocardial performance (contraction force and - (df/dt)max ) was also reduced. Amiodarone decreased (p < 0.001) the heart rate, improved ST segment depression, and myocardial contractility with no significant change in the duration of the QTc interval. Amiodarone preserved the cardiac histological structure and reduced the myocardial injury markers represented by serum Troponin-I, oxidative stress and IL-1. Amiodarone pretreatment prevented the anticipated cardiac injury induced during epilepsy. Amiodarone possessed an anticonvulsive potential, protected the cardiac muscle and preserved its histological architecture. Therefore, amiodarone could be recommended as a protective therapy against cardiac dysfunction during epileptic seizures with favourable effect on seizure activity.


Assuntos
Amiodarona/uso terapêutico , Antiarrítmicos/uso terapêutico , Epilepsia/complicações , Cardiopatias/tratamento farmacológico , Cardiopatias/etiologia , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/toxicidade , Animais , Biomarcadores/sangue , Epilepsia/induzido quimicamente , Glutationa/sangue , Interleucina-1/metabolismo , Cloreto de Lítio/administração & dosagem , Cloreto de Lítio/toxicidade , Masculino , Malondialdeído/sangue , Agonistas Muscarínicos/administração & dosagem , Agonistas Muscarínicos/toxicidade , Contração Miocárdica/efeitos dos fármacos , Pilocarpina/administração & dosagem , Pilocarpina/toxicidade , Ratos , Ratos Wistar , Superóxido Dismutase/sangue , Troponina I/sangue
19.
Epilepsia ; 62(8): 1946-1959, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34164810

RESUMO

OBJECTIVE: Emerging evidence raises the possibility that progesterone receptor (PR) signaling may contribute to the reproductive hormone fluctuation-linked seizure precipitation, called catamenial epilepsy. Therefore, we studied PR isoform expression in limbic regions involved in temporal lobe epilepsy and the effect of PR activation on neuronal activity and seizures. METHODS: We evaluated PR expression in the limbic regions, entorhinal cortex (EC), hippocampus, and amygdala in female rats using quantitative real-time polymerase chain reaction (qRT-PCR). A selective agonist, Nestorone (16-methylene-17 alpha-acetoxy-19-nor-pregn-4-ene-3,20-dione) activated PRs, and the effect on excitability and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated synaptic transmission of EC neurons was studied using electrophysiology. Finally, we assessed PR regulation of epileptic seizures and status epilepticus (SE) induced by lithium-pilocarpine in female rats with the global deletion of PRs (PR knockout; PRKO) using video electroencephalography (-EEG). RESULTS: Limbic regions EC, hippocampus, and amygdala robustly expressed PR messenger RNA (mRNA). Nestorone (16-methylene-17 alpha-acetoxy-19-nor-pregn-4-ene-3,20-dione) treatment reduced the action potential threshold of layer II/III EC neurons and increased the frequency of AMPA receptor-mediated synaptic currents of ovariectomized and estrogen-primed female rats. Female rats lacking PRs (PRKO) experienced a shorter duration, less intense, and less fatal SE than wild-type (WT) animals. Furthermore, Nestorone treatment caused seizure exacerbation in the WT epileptic animals, but not in the PRKO epileptic animals. SIGNIFICANCE: Activation of PRs expressed in the EC and hippocampus increased neuronal excitability and worsened seizures. These receptors may play a role in catamenial epilepsy.


Assuntos
Epilepsia , Estado Epiléptico , Animais , Modelos Animais de Doenças , Feminino , Hipocampo/metabolismo , Neurônios/metabolismo , Pilocarpina/toxicidade , Progesterona , Ratos , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Convulsões/induzido quimicamente , Convulsões/genética , Estado Epiléptico/induzido quimicamente
20.
Epileptic Disord ; 23(3): 476-484, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34080984

RESUMO

OBJECTIVE: Patients with temporal lobe epilepsy (TLE) are at high risk of experiencing cognitive impairment. Such dysfunction is also observed in an animal model of TLE, the rat model of pilocarpine-induced epilepsy. METHODS: We investigated the effects of fish oil supplementation on spatial memory in rats with pilocarpine-induced epilepsy using the Morris Water Maze (MWM) test. RESULTS: Although rats with pilocarpine-induced epilepsy treated with fish oil learned the platform location significantly faster by Day 7 of the acquisition phase, spatial memory performance of these rats was unaffected by fish oil supplementation during probe trials. SIGNIFICANCE: Our study provides insights into the importance of considering nutraceutical strategies for enhancing cognitive abilities in patients with TLE.


Assuntos
Epilepsia , Animais , Suplementos Nutricionais , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/tratamento farmacológico , Óleos de Peixe/farmacologia , Teste do Labirinto Aquático de Morris , Pilocarpina/toxicidade , Ratos , Memória Espacial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA