Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
1.
eNeuro ; 11(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38834302

RESUMO

Linked rhythmic behaviors, such as respiration/locomotion or swallowing/chewing, often require coordination for proper function. Despite its prevalence, the cellular mechanisms controlling coordination of the underlying neural networks remain undetermined in most systems. We use the stomatogastric nervous system of the crab Cancer borealis to investigate mechanisms of internetwork coordination, due to its small, well-characterized feeding-related networks (gastric mill [chewing, ∼0.1 Hz]; pyloric [filtering food, ∼1 Hz]). Here, we investigate coordination between these networks during the Gly1-SIFamide neuropeptide modulatory state. Gly1-SIFamide activates a unique triphasic gastric mill rhythm in which the typically pyloric-only LPG neuron generates dual pyloric-plus gastric mill-timed oscillations. Additionally, the pyloric rhythm exhibits shorter cycles during gastric mill rhythm-timed LPG bursts, and longer cycles during IC, or IC plus LG gastric mill neuron bursts. Photoinactivation revealed that LPG is necessary to shorten pyloric cycle period, likely through its rectified electrical coupling to pyloric pacemaker neurons. Hyperpolarizing current injections demonstrated that although LG bursting enables IC bursts, only gastric mill rhythm bursts in IC are necessary to prolong the pyloric cycle period. Surprisingly, LPG photoinactivation also eliminated prolonged pyloric cycles, without changing IC firing frequency or gastric mill burst duration, suggesting that pyloric cycles are prolonged via IC synaptic inhibition of LPG, which indirectly slows the pyloric pacemakers via electrical coupling. Thus, the same dual-network neuron directly conveys excitation from its endogenous bursting and indirectly funnels synaptic inhibition to enable one network to alternately decrease and increase the cycle period of a related network.


Assuntos
Braquiúros , Gânglios dos Invertebrados , Neurônios , Neuropeptídeos , Animais , Braquiúros/fisiologia , Neuropeptídeos/farmacologia , Neuropeptídeos/metabolismo , Neurônios/fisiologia , Neurônios/efeitos dos fármacos , Gânglios dos Invertebrados/fisiologia , Gânglios dos Invertebrados/efeitos dos fármacos , Potenciais de Ação/fisiologia , Potenciais de Ação/efeitos dos fármacos , Rede Nervosa/fisiologia , Rede Nervosa/efeitos dos fármacos , Masculino , Comportamento Alimentar/fisiologia , Comportamento Alimentar/efeitos dos fármacos , Piloro/fisiologia , Piloro/efeitos dos fármacos , Periodicidade
2.
J Neurophysiol ; 131(3): 509-515, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38264774

RESUMO

Nervous systems have evolved to function consistently in the face of the normal environmental fluctuations experienced by animals. The stomatogastric nervous system (STNS) of the crab, Cancer borealis, produces a motor output that has been studied for its remarkable robustness in response to single global perturbations. Changes in environments, however, are often complex and multifactorial. Therefore, we studied the robustness of the pyloric network in the stomatogastric ganglion (STG) in response to simultaneous perturbations of temperature and pH. We compared the effects of elevated temperatures on the pyloric rhythm at control, acid, or base pHs. In each pH recordings were made at 11°C, and then the temperature was increased until the rhythms became disorganized ("crashed"). Pyloric burst frequencies and phase relationships showed minor differences between pH groups until reaching close to the crash temperatures. However, the temperatures at which the rhythms were disrupted were lower in the two extreme pH conditions. This indicates that one environmental stress can make an animal less resilient to a second stressor.NEW & NOTEWORTHY Resilience to environmental fluctuations is important for all animals. It is common that animals encounter multiple stressful events at the same time, the cumulative impacts of which are largely unknown. This study examines the effects of temperature and pH on the nervous system of crabs that live in the fluctuating environments of the Northern Atlantic Ocean. The ranges of tolerance to one perturbation, temperature, are reduced under the influence of a second, pH.


Assuntos
Braquiúros , Piloro , Animais , Temperatura , Piloro/fisiologia , Gânglios dos Invertebrados/fisiologia , Braquiúros/fisiologia
3.
J Neurophysiol ; 131(2): 417-434, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38197163

RESUMO

Network flexibility is important for adaptable behaviors. This includes neuronal switching, where neurons alter their network participation, including changing from single- to dual-network activity. Understanding the implications of neuronal switching requires determining how a switching neuron interacts with each of its networks. Here, we tested 1) whether "home" and second networks, operating via divergent rhythm generation mechanisms, regulate a switching neuron and 2) if a switching neuron, recruited via modulation of intrinsic properties, contributes to rhythm or pattern generation in a new network. Small, well-characterized feeding-related networks (pyloric, ∼1 Hz; gastric mill, ∼0.1 Hz) and identified modulatory inputs make the isolated crab (Cancer borealis) stomatogastric nervous system (STNS) a useful model to study neuronal switching. In particular, the neuropeptide Gly1-SIFamide switches the lateral posterior gastric (LPG) neuron (2 copies) from pyloric-only to dual-frequency pyloric/gastric mill (fast/slow) activity via modulation of LPG-intrinsic properties. Using current injections to manipulate neuronal activity, we found that gastric mill, but not pyloric, network neurons regulated the intrinsically generated LPG slow bursting. Conversely, selective elimination of LPG from both networks using photoinactivation revealed that LPG regulated gastric mill neuron-firing frequencies but was not necessary for gastric mill rhythm generation or coordination. However, LPG alone was sufficient to produce a distinct pattern of network coordination. Thus, modulated intrinsic properties underlying dual-network participation may constrain which networks can regulate switching neuron activity. Furthermore, recruitment via intrinsic properties may occur in modulatory states where it is important for the switching neuron to actively contribute to network output.NEW & NOTEWORTHY We used small, well-characterized networks to investigate interactions between rhythmic networks and neurons that switch their network participation. For a neuron switching into dual-network activity, only the second network regulated its activity in that network. In addition, the switching neuron was sufficient but not necessary to coordinate second network neurons and regulated their activity levels. Thus, regulation of switching neurons may be selective, and a switching neuron is not necessarily simply a follower in additional networks.


Assuntos
Braquiúros , Neurônios , Animais , Neurônios/fisiologia , Piloro/fisiologia , Braquiúros/fisiologia , Gânglios dos Invertebrados/fisiologia , Periodicidade , Rede Nervosa/fisiologia
4.
J Neurophysiol ; 128(5): 1181-1198, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36197020

RESUMO

Neural network flexibility includes changes in neuronal participation between networks, such as the switching of neurons between single- and dual-network activity. We previously identified a neuron that is recruited to burst in time with an additional network via modulation of its intrinsic membrane properties, instead of being recruited synaptically into the second network. However, the modulated intrinsic properties were not determined. Here, we use small networks in the Jonah crab (Cancer borealis) stomatogastric nervous system (STNS) to examine modulation of intrinsic properties underlying neuropeptide (Gly1-SIFamide)-elicited neuronal switching. The lateral posterior gastric neuron (LPG) switches from exclusive participation in the fast pyloric (∼1 Hz) network, due to electrical coupling, to dual-network activity that includes periodic escapes from the fast rhythm via intrinsically generated oscillations at the slower gastric mill network frequency (∼0.1 Hz). We isolated LPG from both networks by pharmacology and hyperpolarizing current injection. Gly1-SIFamide increased LPG intrinsic excitability and rebound from inhibition and decreased spike frequency adaptation, which can all contribute to intrinsic bursting. Using ion substitution and channel blockers, we found that a hyperpolarization-activated current, a persistent sodium current, and calcium or calcium-related current(s) appear to be primary contributors to Gly1-SIFamide-elicited LPG intrinsic bursting. However, this intrinsic bursting was more sensitive to blocking currents when LPG received rhythmic electrical coupling input from the fast network than in the isolated condition. Overall, a switch from single- to dual-network activity can involve modulation of multiple intrinsic properties, while synaptic input from a second network can shape the contributions of these properties.NEW & NOTEWORTHY Neuropeptide-elicited intrinsic bursting was recently determined to switch a neuron from single- to dual-network participation. Here we identified multiple intrinsic properties modulated in the dual-network state and candidate ion channels underlying the intrinsic bursting. Bursting at the second network frequency was more sensitive to blocking currents in the dual-network state than when neurons were synaptically isolated from their home network. Thus, synaptic input can shape the contributions of modulated intrinsic properties underlying dual-network activity.


Assuntos
Braquiúros , Neuropeptídeos , Animais , Cálcio , Neurônios/fisiologia , Piloro/fisiologia
5.
eNeuro ; 9(4)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35817566

RESUMO

The levels of voltage-gated and synaptic currents in the same neuron type can vary substantially across individuals. Yet, the phase relationships between neurons in oscillatory circuits are often maintained, even in the face of varying oscillation frequencies. We examined whether synaptic and intrinsic currents are matched to maintain constant activity phases across preparations, using the lateral pyloric (LP) neuron of the stomatogastric ganglion (STG) of the crab, Cancer borealis LP produces stable oscillatory bursts on release from inhibition, with an onset phase that is independent of oscillation frequency. We quantified the parameters that define the shape of the synaptic current inputs across preparations and found no linear correlations with voltage-gated currents. However, several synaptic parameters were correlated with oscillation period and burst onset phase, suggesting they may play a role in phase maintenance. We used dynamic clamp to apply artificial synaptic inputs and found that those synaptic parameters correlated with phase and period were ineffective in influencing burst onset. Instead, parameters that showed the least variability across preparations had the greatest influence. Thus, parameters that influence circuit phasing are constrained across individuals, while those that have little effect simply co-vary with phase and frequency.


Assuntos
Braquiúros , Gânglios dos Invertebrados , Animais , Gânglios , Gânglios dos Invertebrados/fisiologia , Neurônios/fisiologia , Piloro/fisiologia
6.
Elife ; 112022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35302489

RESUMO

Neural circuits can generate many spike patterns, but only some are functional. The study of how circuits generate and maintain functional dynamics is hindered by a poverty of description of circuit dynamics across functional and dysfunctional states. For example, although the regular oscillation of a central pattern generator is well characterized by its frequency and the phase relationships between its neurons, these metrics are ineffective descriptors of the irregular and aperiodic dynamics that circuits can generate under perturbation or in disease states. By recording the circuit dynamics of the well-studied pyloric circuit in Cancer borealis, we used statistical features of spike times from neurons in the circuit to visualize the spike patterns generated by this circuit under a variety of conditions. This approach captures both the variability of functional rhythms and the diversity of atypical dynamics in a single map. Clusters in the map identify qualitatively different spike patterns hinting at different dynamic states in the circuit. State probability and the statistics of the transitions between states varied with environmental perturbations, removal of descending neuromodulatory inputs, and the addition of exogenous neuromodulators. This analysis reveals strong mechanistically interpretable links between complex changes in the collective behavior of a neural circuit and specific experimental manipulations, and can constrain hypotheses of how circuits generate functional dynamics despite variability in circuit architecture and environmental perturbations.


Assuntos
Braquiúros , Gânglios dos Invertebrados , Animais , Braquiúros/fisiologia , Gânglios dos Invertebrados/fisiologia , Neurônios/fisiologia , Neurotransmissores/fisiologia , Piloro/fisiologia
7.
Elife ; 102021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33538245

RESUMO

Coupled oscillatory circuits are ubiquitous in nervous systems. Given that most biological processes are temperature-sensitive, it is remarkable that the neuronal circuits of poikilothermic animals can maintain coupling across a wide range of temperatures. Within the stomatogastric ganglion (STG) of the crab, Cancer borealis, the fast pyloric rhythm (~1 Hz) and the slow gastric mill rhythm (~0.1 Hz) are precisely coordinated at ~11°C such that there is an integer number of pyloric cycles per gastric mill cycle (integer coupling). Upon increasing temperature from 7°C to 23°C, both oscillators showed similar temperature-dependent increases in cycle frequency, and integer coupling between the circuits was conserved. Thus, although both rhythms show temperature-dependent changes in rhythm frequency, the processes that couple these circuits maintain their coordination over a wide range of temperatures. Such robustness to temperature changes could be part of a toolbox of processes that enables neural circuits to maintain function despite global perturbations.


Assuntos
Braquiúros/fisiologia , Periodicidade , Animais , Temperatura Baixa , Moela não Aviária/fisiologia , Temperatura Alta , Masculino , Piloro/fisiologia
8.
Surg Clin North Am ; 100(6): 1193-1200, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33128888

RESUMO

Peroral pyloromyotomy, an innovative intramural endoscopic surgery procedure, is a successful management option for appropriately selected patients who suffer from medically refractory gastroparesis. Gastroparesis is a debilitating disorder of the gastrointestinal tract, which significantly decreases quality of life and overall survival. This article describes the history and background, the indications for, the diagnosis of, and the preparation, technique, and short-term outcomes of peroral pyloromyotomy.


Assuntos
Gastroparesia/cirurgia , Piloromiotomia , Terapia Combinada , Gastroparesia/diagnóstico , Gastroparesia/terapia , Humanos , Equipe de Assistência ao Paciente , Assistência Perioperatória , Piloromiotomia/métodos , Piloromiotomia/normas , Piloro/anatomia & histologia , Piloro/fisiologia , Piloro/fisiopatologia
9.
Cir Cir ; 88(4): 402-409, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32567585

RESUMO

AIMS: Our main goal is to study the effects on the carbohydrate metabolism. Thus, we designed various experimental surgical models on healthy non-obese Wistar rats to reproduce several conditions. In this sense, we report a new experimental model. It is well known that bariatric surgery has important effects on the control of Type 2 Diabetes Mellitus. The underlying reasons are yet unknown, although the different theories focused in the release of different hormones after the pass of the nutrients through the tract. These released hormones have opposite effects that come together in a balanced glycemic metabolism. MATERIALS AND METHODS: After bariatric surgical techniques, the modified anatomy resulted in an imbalance of the secreted hormones. Wistar rats were randomized in two groups Sham and surgical group. Our model consisted on the transposition of the terminal ileum right after the pylorus. Weight gain, food intake, and basal glycemia were measured weekly. RESULTS: We did not obtain significant differences between both groups for these functional variables. CONCLUSIONS: This technique involved an early pass of the bolus through the ileum. The change on the luminal pH, along with the lack of enzymes to absorb the content, or the changes in the release of several hormones must be variables to the study. The mortality rate was assumable considering it was an experimental model on animals.


OBJETIVO: Crear un nuevo modelo quirúrgico experimental en ratas Wistar sanas no obesas para estudiar los efectos del metabolismo glucídico. Es bien sabido que las técnicas de cirugía bariátrica tienen un efecto importante sobre la resolución de la diabetes mellitus tipo 2. Se han invocado diferentes hipótesis, algunas centradas en el papel que tienen distintas hormonas secretadas por el propio tubo digestivo tras el paso de los nutrientes a su través, pero las razones últimas subyacentes permanecen desconocidas. El efecto contrapuesto de dichas hormonas consigue un efecto de control glucémico. El desequilibrio hormonal tras las alteraciones anatómicas de las cirugías bariátricas podría estar en la base de dicha mejora del metabolismo glucídico final. MATERIAL Y MÉTODOS: Las ratas fueron operadas en dos grupos (control quirúrgico y experimental) y se procedió a disponerles el íleon anastomosado al antro pilórico, previo al esfínter pilórico. Medimos distintos parámetros funcionales (ganancia de peso, ingesta y glucemias semanales). RESULTADOS: No obtuvimos diferencias significativas en la evolución de estos parámetros. CONCLUSIONES: Este modelo será útil para nuestro propósito de estudiar el íleon, en su componente secretor de enterohormonas, cuando el paso de los nutrientes se produzca tempranamente. La mortalidad fue asumible, dada la innovación técnica realizada.


Assuntos
Glicemia/metabolismo , Duodeno/cirurgia , Trânsito Gastrointestinal/fisiologia , Íleo/cirurgia , Modelos Animais , Anastomose Cirúrgica/métodos , Anastomose Cirúrgica/mortalidade , Animais , Cirurgia Bariátrica/métodos , Cirurgia Bariátrica/mortalidade , Glicemia/análise , Metabolismo dos Carboidratos , Diabetes Mellitus Tipo 2/metabolismo , Duodeno/fisiologia , Ingestão de Alimentos , Íleo/fisiologia , Incretinas/metabolismo , Masculino , Piloro/fisiologia , Distribuição Aleatória , Ratos , Ratos Wistar , Aumento de Peso
10.
J Neurophysiol ; 123(5): 2075-2089, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32319837

RESUMO

Elevated potassium concentration ([K+]) is often used to alter excitability in neurons and networks by shifting the potassium equilibrium potential (EK) and, consequently, the resting membrane potential. We studied the effects of increased extracellular [K+] on the well-described pyloric circuit of the crab Cancer borealis. A 2.5-fold increase in extracellular [K+] (2.5×[K+]) depolarized pyloric dilator (PD) neurons and resulted in short-term loss of their normal bursting activity. This period of silence was followed within 5-10 min by the recovery of spiking and/or bursting activity during continued superfusion of 2.5×[K+] saline. In contrast, when PD neurons were pharmacologically isolated from pyloric presynaptic inputs, they exhibited no transient loss of spiking activity in 2.5×[K+], suggesting the presence of an acute inhibitory effect mediated by circuit interactions. Action potential threshold in PD neurons hyperpolarized during an hour-long exposure to 2.5×[K+] concurrent with the recovery of spiking and/or bursting activity. Thus the initial loss of activity appears to be mediated by synaptic interactions within the network, but the secondary adaptation depends on changes in the intrinsic excitability of the pacemaker neurons. The complex sequence of events in the responses of pyloric neurons to elevated [K+] demonstrates that electrophysiological recordings are necessary to determine both the transient and longer term effects of even modest alterations of K+ concentrations on neuronal activity.NEW & NOTEWORTHY Solutions with elevated extracellular potassium are commonly used as a depolarizing stimulus. We studied the effects of high potassium concentration ([K+]) on the pyloric circuit of the crab stomatogastric ganglion. A 2.5-fold increase in extracellular [K+] caused a transient loss of activity that was not due to depolarization block, followed by a rapid increase in excitability and recovery of spiking within minutes. This suggests that changing extracellular potassium can have complex and nonstationary effects on neuronal circuits.


Assuntos
Braquiúros/fisiologia , Geradores de Padrão Central/fisiologia , Fenômenos Eletrofisiológicos/fisiologia , Gânglios dos Invertebrados/fisiologia , Potássio/metabolismo , Piloro/fisiologia , Animais , Geradores de Padrão Central/metabolismo , Gânglios dos Invertebrados/metabolismo , Masculino , Piloro/metabolismo
11.
Stem Cells Transl Med ; 9(6): 713-723, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32181603

RESUMO

Transplantation of neural stem cells is a promising approach in treatment of intestinal dysfunctionality. The interstitial cells of Cajal (ICCs) are also critical in conditions such as pyloric dysfunctionality and gastroparesis. The objective of this study was to replenish neurons and ICCs in a dysfunctional pylorus as cell-based therapy to restore functionality. ICCs and enteric neural progenitor cells (NPCs) were isolated from rat duodenum and transduced with fluorescent proteins. Rat pylorus was harvested, and an ex-vivo neuromuscular dysfunctional model was developed by selective ablation of neurons and ICCs via chemical treatments. Cellular repopulation and restoration of motility were assessed by immunohistochemistry, qPCR, and functional analysis after delivery of fluorescently tagged cells. Chemical treatment of pylorus resulted in significant depletion of ICCs (67%, P = .0024; n = 3) and neural cells (83%, P = .0012; n = 3). Delivered ICCs and NPCs survived and integrated with host muscle layers. Co-injection of ICCs with NPCs exhibited 34.4% (P = .0004; n = 3) and 61.0% (P = .0003; n = 3) upregulation of ANO1 and ßIII tubulin, respectively. This regeneration resulted in the restoration of agonist-induced excitatory contraction (82%) and neuron evoked relaxation (83%). The functional studies with specific neuronal nitric oxide (NO) synthase blocker confirmed that restoration of relaxation was NO mediated and neuronally derived. The simultaneous delivery of ICCs observed 35.7% higher neuronal differentiation and functional restoration compared with injection of NPCs alone. Injected NPCs and ICCs integrated into the dysfunctional ex vivo pylorus tissues and restored neuromuscular functionality. The co-transplantation of NPCs and ICCs can be used to treat neurodegenerative disorders of the pylorus.


Assuntos
Células Intersticiais de Cajal/citologia , Modelos Biológicos , Células-Tronco Neurais/citologia , Piloro/fisiologia , Animais , Separação Celular , Junção Neuromuscular/fisiopatologia , Neurônios/fisiologia , Ratos
12.
J Neurophysiol ; 122(4): 1623-1633, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31411938

RESUMO

Many neurons receive synchronous input from heterogeneous presynaptic neurons with distinct properties. An instructive example is the crustacean stomatogastric pyloric circuit pacemaker group, consisting of the anterior burster (AB) and pyloric dilator (PD) neurons, which are active synchronously and exert a combined synaptic action on most pyloric follower neurons. Previous studies in lobster have indicated that AB is glutamatergic, whereas PD is cholinergic. However, although the stomatogastric system of the crab Cancer borealis has become a preferred system for exploration of cellular and synaptic basis of circuit dynamics, the pacemaker synaptic output has not been carefully analyzed in this species. We examined the synaptic properties of these neurons using a combination of single-cell mRNA analysis, electrophysiology, and pharmacology. The crab PD neuron expresses high levels of choline acetyltransferase and the vesicular acetylcholine transporter mRNAs, hallmarks of cholinergic neurons. In contrast, the AB neuron expresses neither cholinergic marker but expresses high levels of vesicular glutamate transporter mRNA, consistent with a glutamatergic phenotype. Notably, in the combined synapses to follower neurons, 70-75% of the total current was blocked by putative glutamatergic blockers, but short-term synaptic plasticity remained unchanged, and although the total pacemaker current in two follower neuron types was different, this difference did not contribute to the phasing of the follower neurons. These findings provide a guide for similar explorations of heterogeneous synaptic connections in other systems and a baseline in this system for the exploration of the differential influence of neuromodulators.NEW & NOTEWORTHY The pacemaker-driven pyloric circuit of the Jonah crab stomatogastric nervous system is a well-studied model system for exploring circuit dynamics and neuromodulation, yet the understanding of the synaptic properties of the two pacemaker neuron types is based on older analyses in other species. We use single-cell PCR and electrophysiology to explore the neurotransmitters used by the pacemaker neurons and their distinct contribution to the combined synaptic potentials.


Assuntos
Relógios Biológicos , Gânglios dos Invertebrados/fisiologia , Neurônios/classificação , Piloro/inervação , Transmissão Sináptica , Acetilcolina/metabolismo , Animais , Braquiúros , Colina O-Acetiltransferase/genética , Colina O-Acetiltransferase/metabolismo , Gânglios dos Invertebrados/citologia , Ácido Glutâmico/metabolismo , Neurônios/metabolismo , Neurônios/fisiologia , Piloro/fisiologia , Proteínas Vesiculares de Transporte de Acetilcolina/genética , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo , Proteínas Vesiculares de Transporte de Glutamato/genética , Proteínas Vesiculares de Transporte de Glutamato/metabolismo
13.
J Exp Biol ; 222(Pt 5)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30630966

RESUMO

The heart and pyloric rhythms of crustaceans have been studied separately and extensively over many years. Local and hormonal neuromodulation and sensory inputs into these central pattern generator circuits play a significant role in an animal's response to perturbations, but are usually lost or removed during in vitro studies. To examine simultaneously the in vivo motor output of the crustacean heart and pyloric rhythms, we used photoplethysmography. In the population measured (n=49), the heart rhythm frequency ranged from 0.3 to 2.3 Hz. The pyloric rhythm varied from 0.2 to 1.6 Hz. We observed a weak correlation between the frequencies of the heart and pyloric rhythms. During multiple hour-long recordings, many animals held at a controlled temperature showed strong inhibitory bouts in which the heart decreased in frequency or become quiescent and the pyloric rhythm decreased in frequency. We measured the simultaneous responses of the rhythms to temperature ramps by heating or cooling the saline bath while recording both the heart and pyloric muscle movements. Q10, critical temperature (temperature at which muscle function is compromised) and changes in frequency were calculated for each of the rhythms tested. The heart rhythm was more robust to high temperature than the pyloric rhythm.


Assuntos
Braquiúros/fisiologia , Coração/fisiologia , Piloro/fisiologia , Animais , Frequência Cardíaca/fisiologia , Masculino , Monitorização Fisiológica , Periodicidade , Temperatura
14.
J Neurophysiol ; 121(3): 950-972, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30649961

RESUMO

Microcircuit modulation by peptides is well established, but the cellular/synaptic mechanisms whereby identified neurons with identified peptide transmitters modulate microcircuits remain unknown for most systems. Here, we describe the distribution of GYRKPPFNGSIFamide (Gly1-SIFamide) immunoreactivity (Gly1-SIFamide-IR) in the stomatogastric nervous system (STNS) of the crab Cancer borealis and the Gly1-SIFamide actions on the two feeding-related circuits in the stomatogastric ganglion (STG). Gly1-SIFamide-IR localized to somata in the paired commissural ganglia (CoGs), two axons in the nerves connecting each CoG with the STG, and the CoG and STG neuropil. We identified one Gly1-SIFamide-IR projection neuron innervating the STG as the previously identified modulatory commissural neuron 5 (MCN5). Brief (~10 s) MCN5 stimulation excites some pyloric circuit neurons. We now find that bath applying Gly1-SIFamide to the isolated STG also enhanced pyloric rhythm activity and activated an imperfectly coordinated gastric mill rhythm that included unusually prolonged bursts in two circuit neurons [inferior cardiac (IC), lateral posterior gastric (LPG)]. Furthermore, longer duration (>30 s) MCN5 stimulation activated a Gly1-SIFamide-like gastric mill rhythm, including prolonged IC and LPG bursting. The prolonged LPG bursting decreased the coincidence of its activity with neurons to which it is electrically coupled. We also identified local circuit feedback onto the MCN5 axon terminals, which may contribute to some distinctions between the responses to MCN5 stimulation and Gly1-SIFamide application. Thus, MCN5 adds to the few identified projection neurons that modulate a well-defined circuit at least partly via an identified neuropeptide transmitter and provides an opportunity to study peptide regulation of electrical coupled neurons in a functional context. NEW & NOTEWORTHY Limited insight exists regarding how identified peptidergic neurons modulate microcircuits. We show that the modulatory projection neuron modulatory commissural neuron 5 (MCN5) is peptidergic, containing Gly1-SIFamide. MCN5 and Gly1-SIFamide elicit similar output from two well-defined motor circuits. Their distinct actions may result partly from circuit feedback onto the MCN5 axon terminals. Their similar actions include eliciting divergent activity patterns in normally coactive, electrically coupled neurons, providing an opportunity to examine peptide modulation of electrically coupled neurons in a functional context.


Assuntos
Axônios/fisiologia , Gânglios dos Invertebrados/fisiologia , Contração Muscular , Neuropeptídeos/farmacologia , Piloro/inervação , Potenciais de Ação , Animais , Axônios/efeitos dos fármacos , Braquiúros , Retroalimentação Fisiológica , Gânglios dos Invertebrados/citologia , Gânglios dos Invertebrados/efeitos dos fármacos , Periodicidade , Piloro/fisiologia
15.
Elife ; 72018 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-30592258

RESUMO

The activity of neuronal circuits depends on the properties of the constituent neurons and their underlying synaptic and intrinsic currents. We describe the effects of extreme changes in extracellular pH - from pH 5.5 to 10.4 - on two central pattern generating networks, the stomatogastric and cardiac ganglia of the crab, Cancer borealis. Given that the physiological properties of ion channels are known to be sensitive to pH within the range tested, it is surprising that these rhythms generally remained robust from pH 6.1 to pH 8.8. The pH sensitivity of these rhythms was highly variable between animals and, unexpectedly, between ganglia. Animal-to-animal variability was likely a consequence of similar network performance arising from variable sets of underlying conductances. Together, these results illustrate the potential difficulty in generalizing the effects of environmental perturbation across circuits, even within the same animal.


Assuntos
Braquiúros/fisiologia , Geradores de Padrão Central/fisiologia , Espaço Extracelular/química , Animais , Concentração de Íons de Hidrogênio , Masculino , Rede Nervosa/fisiologia , Neurônios/fisiologia , Piloro/inervação , Piloro/fisiologia
16.
J Neurosci ; 38(42): 8976-8988, 2018 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-30185461

RESUMO

Neurons in the central pattern-generating circuits in the crustacean stomatogastric ganglion (STG) release neurotransmitter both as a graded function of presynaptic membrane potential that persists in TTX and in response to action potentials. In the STG of the male crab Cancer borealis, the modulators oxotremorine, C. borealis tachykinin-related peptide Ia (CabTRP1a), red pigment concentrating hormone (RPCH), proctolin, TNRNFLRFamide, and crustacean cardioactive peptide (CCAP) produce and sustain robust pyloric rhythms by activating the same modulatory current (IMI), albeit on different subsets of pyloric network targets. The muscarinic agonist oxotremorine, and the peptides CabTRP1a and RPCH elicited rhythmic triphasic intracellular alternating fluctuations of activity in the presence of TTX. Intracellular waveforms of pyloric neurons in oxotremorine and CabTRP1a in TTX were similar to those in the intact rhythm, and phase relationships among neurons were conserved. Although cycle frequency was conserved in oxotremorine and TTX, it was altered in CabTRP1a in the presence of TTX. Both rhythms were primarily driven by the pacemaker kernel consisting of the Anterior Burster and Pyloric Dilator neurons. In contrast, in TTX the circuit remained silent in proctolin, TNRNFLRFamide, and CCAP. These experiments show that graded synaptic transmission in the absence of voltage-gated Na+ current is sufficient to sustain rhythmic motor activity in some, but not other, modulatory conditions, even when each modulator activates the same ionic current. This further demonstrates that similar rhythmic motor patterns can be produced by qualitatively different mechanisms, one that depends on the activity of voltage-gated Na+ channels, and one that can persist in their absence.SIGNIFICANCE STATEMENT The pyloric rhythm of the crab stomatogastric ganglion depends both on spike-mediated and graded synaptic transmission. We activate the pyloric rhythm with a wide variety of different neuromodulators, all of which converge on the same voltage-dependent inward current. Interestingly, when action potentials and spike-mediated transmission are blocked using TTX, we find that the muscarinic agonist oxotremorine and the neuropeptide CabTRP1a sustain rhythmic alternations and appropriate phases of activity in the absence of action potentials. In contrast, TTX blocks rhythmic activity in the presence of other modulators. This demonstrates fundamental differences in the burst-generation mechanisms in different modulators that would not be suspected on the basis of their cellular actions at the level of the targeted current.


Assuntos
Potenciais de Ação/fisiologia , Geradores de Padrão Central/fisiologia , Gânglios dos Invertebrados/fisiologia , Neurotransmissores/fisiologia , Transmissão Sináptica , Animais , Braquiúros , Geradores de Padrão Central/efeitos dos fármacos , Gânglios dos Invertebrados/diagnóstico por imagem , Masculino , Agonistas Muscarínicos/administração & dosagem , Neuropeptídeos/administração & dosagem , Neuropeptídeos/fisiologia , Neurotransmissores/administração & dosagem , Oligopeptídeos/administração & dosagem , Oligopeptídeos/fisiologia , Oxotremorina/administração & dosagem , Piloro/fisiologia , Ácido Pirrolidonocarboxílico/administração & dosagem , Ácido Pirrolidonocarboxílico/análogos & derivados , Bloqueadores dos Canais de Sódio/administração & dosagem , Tetrodotoxina/administração & dosagem
17.
Neurogastroenterol Motil ; 30(12): e13445, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30109904

RESUMO

BACKGROUND: Perforated duodenal ulcers can be treated with a covered stent. Stent migration is a severe complication, sometimes requiring surgery. Pyloric physiology during stent treatment has not been studied and mechanisms for migration are unknown. The aim of this study was to investigate the pyloric response to distention, mimicking stent treatment, using the EndoFLIP. METHODS: A nonsurvival study in five pigs was carried out, followed by a pilot study in one volunteer. Animals were gastroscoped during anaesthesia and the EndoFLIP was placed straddling the pylorus. Baseline distensibility readings were performed at stepwise balloon distentions to 20, 30, 40, and 50 mL, measuring pyloric cross-sectional area and pressure. Measurements were repeated after administration of a prokinetic drug and after a liquid meal. In the human study, readings were performed in conscious sedation at baseline and after stimulation with metoclopramide. KEY RESULTS: During baseline readings, the pylorus was shown to open more with increasing distention together with higher amplitude motility waves. Reaching maximum distention-volume (50 mL), pyloric pressure increased significantly (P = 0.016), and motility waves disappeared. After prokinetic stimulation, the pressure decreased and the motility waves increased in frequency and amplitude. After food stimulation, the pressure stayed low and the motility showed increase in amplitude. During both tests, the pylorus showed higher pressure and lack of motility waves at maximum probe distention. CONCLUSIONS AND INFERENCES: The pylorus seems to act as a sphincter at low distention but when further dilated starts acting as a pump. Fully distended the pyloric motility disappears and the pressure remains high, suggesting that a stent with high-radial force might show less migration.


Assuntos
Migração de Corpo Estranho/fisiopatologia , Piloro/fisiologia , Stents/efeitos adversos , Animais , Úlcera Duodenal/cirurgia , Motilidade Gastrointestinal/fisiologia , Humanos , Projetos Piloto , Suínos
18.
Obes Surg ; 27(11): 2836-2844, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28478583

RESUMO

INTRODUCTION: Laparoscopic sleeve gastrectomy is one of the most common techniques in bariatric surgery, but there is no consensus on the optimal distance from the pylorus to start the gastric transection. The aim of this study is to determine the differences in gastric emptying, gastric distension and metabolic response between two starting distances. MATERIAL AND METHODS: This is a prospective randomised study of 60 patients (30 patients with the section at 3 cm and 30 patients at 8 cm from the pylorus). We calculate at 6 and 12 months from surgery gastric emptying by scintigraphy (T1/2 min), gastric volume by CT scan (cc) and metabolic response by blood sample analysis (glucose, HbA1c, insulin, HOMA-IR, GLP-1, GIP and C-peptide). RESULTS: Gastric emptying increases the speed significantly in both groups but is greater in the 3-cm group (p < 0.05). Dividing groups into type 2 diabetic patients and non-diabetic patients, the speed in non-diabetic patients is significantly higher for the 3-cm group. Residual volume increases significantly in both groups, and there are no differences between them. One year after surgery, there are significant improvements in the hyperinsulinaemia in the patients of the 3-cm group with respect to the 8-cm group, but only in diabetic patients. No differences between groups are found regarding changes in GLP-1 or GIP. CONCLUSIONS: Gastric emptying is faster in patients with antrum resection. The distance does not influence the gastric emptying of diabetic patients. Other mechanisms may explain metabolic response besides GLP-1 and its association with improvements in diabetes via gastric emptying.


Assuntos
Gastrectomia/reabilitação , Esvaziamento Gástrico/fisiologia , Laparoscopia/reabilitação , Obesidade Mórbida/reabilitação , Obesidade Mórbida/cirurgia , Adulto , Idoso , Peptídeo C/sangue , Feminino , Gastrectomia/efeitos adversos , Gastrectomia/métodos , Peptídeo 1 Semelhante ao Glucagon/sangue , Glucose/metabolismo , Humanos , Insulina/metabolismo , Laparoscopia/efeitos adversos , Laparoscopia/métodos , Masculino , Pessoa de Meia-Idade , Obesidade Mórbida/metabolismo , Obesidade Mórbida/fisiopatologia , Tamanho do Órgão , Estudos Prospectivos , Piloro/fisiologia , Piloro/cirurgia , Estômago/diagnóstico por imagem , Estômago/patologia
19.
J Neurophysiol ; 115(5): 2434-45, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-26912595

RESUMO

The hyperpolarization-activated inward cationic current (Ih) is known to regulate the rhythmicity, excitability, and synaptic transmission in heart cells and many types of neurons across a variety of species, including some pyloric and gastric mill neurons in the stomatogastric ganglion (STG) in Cancer borealis and Panulirus interruptus However, little is known about the role of Ih in regulating the gastric mill dynamics and its contribution to the dynamical bifurcation of the gastric mill and pyloric networks. We investigated the role of Ih in the rhythmic activity and cellular excitability of both the gastric mill neurons (medial gastric, gastric mill) and pyloric neurons (pyloric dilator, lateral pyloric) in Homarus americanus Through testing the burst period between 5 and 50 mM CsCl, and elimination of postinhibitory rebound and voltage sag, we found that 30 mM CsCl can sufficiently block Ih in both the pyloric and gastric mill neurons. Our results show that Ih maintains the excitability of both the pyloric and gastric mill neurons. However, Ih regulates slow oscillations of the pyloric and gastric mill neurons differently. Specifically, blocking Ih diminishes the difference between the pyloric and gastric mill burst periods by increasing the pyloric burst period and decreasing the gastric mill burst period. Moreover, the phase-plane analysis shows that blocking Ih causes the trajectory of slow oscillations of the gastric mill neurons to change toward the pyloric sinusoidal-like trajectories. In addition to regulating the pyloric rhythm, we found that Ih is also essential for the gastric mill rhythms and differentially regulates these two dynamics.


Assuntos
Potenciais de Ação , Gânglios dos Invertebrados/fisiologia , Neurônios/fisiologia , Piloro/inervação , Animais , Gânglios dos Invertebrados/citologia , Esvaziamento Gástrico , Contração Muscular , Nephropidae , Neurônios/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Piloro/fisiologia , Canais de Sódio/metabolismo
20.
J Exp Biol ; 218(Pt 24): 3950-61, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26519507

RESUMO

The mechanisms of rhythmic motor pattern generation have been studied in detail in vitro, but the long-term stability and sources of variability in vivo are often not well described. The crab stomatogastric ganglion contains the well-characterized gastric mill (chewing) and pyloric (filtering of food) central pattern generators. In vitro, the pyloric rhythm is stereotyped with little variation, but inter-circuit interactions and neuromodulation can alter both rhythm cycle frequency and structure. The range of variation of activity in vivo is, with few exceptions, unknown. Curiously, although the pattern-generating circuits in vivo are constantly exposed to hormonal and neural modulation, the majority of published data show only the unperturbed canonical motor patterns typically observed in vitro. Using long-term extracellular recordings (N=27 animals), we identified the range and sources of variability of the pyloric and gastric mill rhythms recorded continuously over 4 days in freely behaving Jonah crabs (Cancer borealis). Although there was no evidence of innate daily rhythmicity, a 12 h light-driven cycle did manifest. The frequency of both rhythms increased modestly, albeit consistently, during the 3 h before and 3 h after the lights changed. This cycle was occluded by sensory stimulation (feeding), which significantly influenced both pyloric cycle frequency and structure. This was the only instance where the structure of the rhythm changed. In unfed animals the structure remained stable, even when the frequency varied substantially. So, although central pattern generating circuits are capable of producing many patterns, in vivo outputs typically remain stable in the absence of sensory stimulation.


Assuntos
Braquiúros/fisiologia , Animais , Gânglios dos Invertebrados/fisiologia , Trato Gastrointestinal/inervação , Luz , Masculino , Atividade Motora/fisiologia , Periodicidade , Piloro/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA