Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Int J Mol Sci ; 25(14)2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39063143

RESUMO

The frequent occurrence of viral infections poses a serious threat to human life. Identifying effective antiviral components is urgent. In China, pearls have been important traditional medicinal ingredients since ancient times, exhibiting various therapeutic properties, including detoxification properties. In this study, a peptide, KKCH, which acts against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was derived from Pinctada fucata pearls. Molecular docking showed that it bound to the same pocket of the SARS-CoV-2 S protein and cell surface target angiotensin-converting enzyme II (ACE2). The function of KKCH was analyzed through surface plasmon resonance (SPR), Enzyme-Linked Immunosorbent Assays, immunofluorescence, and simulation methods using the SARS-CoV-2 pseudovirus and live virus. The results showed that KKCH had a good affinity for ACE2 (KD = 6.24 × 10-7 M) and could inhibit the binding of the S1 protein to ACE2 via competitive binding. As a natural peptide, KKCH inhibited the binding of the SARS-CoV-2 S1 protein to the surface of human BEAS-2B and HEK293T cells. Moreover, viral experiments confirmed the antiviral activity of KKCH against both the SARS-CoV-2 spike pseudovirus and SARS-CoV-2 live virus, with half-maximal inhibitory concentration (IC50) values of 398.1 µM and 462.4 µM, respectively. This study provides new insights and potential avenues for the prevention and treatment of SARS-CoV-2 infections.


Assuntos
Enzima de Conversão de Angiotensina 2 , Antivirais , Tratamento Farmacológico da COVID-19 , Peptídeos , Pinctada , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Animais , Humanos , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/química , Antivirais/farmacologia , Antivirais/química , COVID-19/virologia , Células HEK293 , Simulação de Acoplamento Molecular , Peptídeos/farmacologia , Peptídeos/química , Ligação Proteica , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/química
2.
Fish Shellfish Immunol ; 150: 109658, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38801841

RESUMO

microRNAs are a class of non-coding RNAs with post-transcriptional regulatory functions in eukaryotes. In our previous study, miR-184-3p was identified in the hemocyte transcriptome of Pinctada fucata martensii (Pm-miR-184-3p), and its expression was shown to be up-regulated following transplantation surgery; however, its role in regulating transplantation immunity has not yet been clarified. Here, the role of Pm-miR-184-3p in regulating the immune response of P. f. martensii was studied. The expression of Pm-miR-184-3p increased following the stimulation of pathogen-associated molecular patterns, and Pm-miR-184-3p overexpression increased the activity of antioxidant-related enzymes, such as superoxide dismutase and catalase. Transcriptome analysis obtained 1096 differentially expressed genes (DEGs) after overexpression of Pm-miR-184-3p, and these DEGs were significantly enriched in conserved pathways such as the Cell cycle pathway and NF-kappa B signaling pathway, as well as GO terms including base excision repair, cell cycle, and DNA replication, suggesting that Pm-miR-184-3p could enhance the inflammation process. Target prediction and dual luciferase analysis revealed that pro-inflammatory related genes Pm-TLR3 and Pm-FN were the potential target of Pm-miR-184-3p. We speculate that Pm-miR-184-3p may utilize negative regulation of target genes to delay the activation of corresponding immune pathways, potentially preventing excessive inflammatory responses and achieving a delicate balance within the organism. Overall, Pm-miR-184-3p play a key role in regulating cellular responses to transplantation. Our findings provide new insights into the immune response of P. f. martensii to transplantation.


Assuntos
Imunidade Inata , MicroRNAs , Pinctada , Animais , Pinctada/genética , Pinctada/imunologia , MicroRNAs/genética , Imunidade Inata/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/imunologia , Transcriptoma
3.
Mar Biotechnol (NY) ; 26(3): 460-474, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38613620

RESUMO

Colorful shells in bivalves are mostly caused by the presence of biological pigments, among which melanin is a key component in the formation of shell colours. Cyclic adenosine monophosphate (cAMP) is an important messenger in the regulation of pigmentation in some species. However, the role of cAMP in bivalve melanogenesis has not yet been reported. In this study, we performed in vitro and in vivo experiments to determine the role of cAMP in regulating melanogenesis in Pacific oysters. Besides, the function of cAMP-responsive element modulator (CREM) and the interactions between CREM and melanogenic genes were investigated. Our results showed that a high level of cAMP promotes the expression of melanogenic genes in Pacific oysters. CREM controls the expression of the MITF gene under cAMP regulation. In addition, CREM can regulate melanogenic gene expression, tyrosine metabolism, and melanin synthesis. These results indicate that cAMP plays an important role in the regulation of melanogenesis in Pacific oysters. CREM is a key transcription factor in the oyster melanin synthesis pathway, which plays a crucial role in oyster melanin synthesis through a cAMP-mediated CREM-MITF-TYR axis.


Assuntos
Modulador de Elemento de Resposta do AMP Cíclico , AMP Cíclico , Melaninas , Animais , Melaninas/biossíntese , Melaninas/metabolismo , AMP Cíclico/metabolismo , Modulador de Elemento de Resposta do AMP Cíclico/metabolismo , Modulador de Elemento de Resposta do AMP Cíclico/genética , Pigmentação/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Fator de Transcrição Associado à Microftalmia/genética , Regulação da Expressão Gênica , Pinctada/genética , Pinctada/metabolismo
4.
Environ Sci Pollut Res Int ; 31(15): 23262-23282, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38418790

RESUMO

This study investigated the effect of heavy metals on the pearl oyster Pinctada radiata from 5 sites along the coast of Alexandria, with focus on its ecological health and potential risks to human consumption. Pollution results showed that Abu-Qir had the highest Cu and Cd values. Montaza and Eastern Harbor had the highest Fe and Pb values, respectively. Statistically, differences in metal concentrations among study sites were significant (p < 0.05). Non-carcinogenic risk (TTHQ) of tested metals and carcinogenic ones of Cd and Pb showed "high risk" on human health by consuming pearl oysters. Morphometric measurements and condition indices were studied to assess growth patterns and health in relation to heavy metals exposure. Key findings showed detectable declines in size and condition index in Eastern Harbor, whereas Abu-Qir recorded the highest values. This condition index performance presented Abu-Qir, Mammora, and Miami as ideal locations for spat collection and oyster rearing, potentially enhancing Egyptian pearl farming. Average values of spatial proximate contents of pearl oyster showed that it was rich in proteins (33.07-58.52%) with low fat content (1.39-1.87%) and carbohydrates (9.72-17.63%). Biochemical composition of pearl oyster demonstrated its high nutritional value which supported its promotion as a functional food for human consumption. The calorie content of pearl oyster was less than 2 Kcal, making this species an alternative source of healthy food to reduce obesity. Regression analysis indicated that Cu, Cd, and Pb had significant effect on 2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity, calories, vitamins, and pigment content of the collected oysters.


Assuntos
Metais Pesados , Ostreidae , Pinctada , Animais , Humanos , Pinctada/metabolismo , Cádmio/análise , Chumbo/análise , Metais Pesados/análise , Ostreidae/química , Medição de Risco , Biometria , Monitoramento Ambiental
5.
Fish Shellfish Immunol ; 144: 109251, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38040133

RESUMO

nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that play an important role in the homeostatic regulation of physiological functions. Our previous studies showed that nAChRs in the genome of pearl oyster Pinctada fucata martensii (PmnAChRs) were expanded through tandem duplication. This study aimed to analyze the function of five tandemly duplicated PmnAChRs in the transplantation immunity in P. f. martensii. Transcriptome analysis reveals that the differentially expressed genes (DEGs) shared between PmnAChR-RNAi and the control group were functionally involved in Signal transduction, Immune system et al., and most of the related genes were down-regulated in the PmnAChR-RNAi group. The different copies of PmnAChR may regulate transplantation immunity through various pathways, such as Wnt, protein digestion and absorption, Hippo, and gap junction pathway. The inflammation factor interleukin-17 (IL-17) and tumor necrosis factor-alpha (TNF-α) were down-regulated in PmnAChR-1, 4, 5-RNAi group, and the serum from the pearl oysters in the PmnAChR-1-4-RNAi group could promote the proliferation of the Vibrio harveyi, indicating the immunosuppressive function after down-regulation of PmnAChRs. The different responses of antioxidant enzymes and diverse signal pathways after down-regulation of PmnAChRs suggested that the five tandemly duplicated PmnAChRs may cooperate with different α type PmnAChRs and constitute the functional ion channel in the membrane. Results of this study not only provide insight for the effective regulation of the transplantation immunity, but also provide a theoretical reference for the study of the adaptive evolutionary mechanism of repeating genes.


Assuntos
Pinctada , Receptores Nicotínicos , Animais , Transcriptoma , Receptores Nicotínicos/metabolismo , Perfilação da Expressão Gênica/veterinária , Genoma
6.
Fish Shellfish Immunol ; 143: 109215, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37951320

RESUMO

Marine lectins are a group of proteins that possess specific carbohydrate recognition and binding domains. They exhibit various activities, including antimicrobial, antitumor, antiviral, and immunomodulatory effects. In this study, a novel galectin-binding lectin gene named PFL-96 (GenBank: OQ561753.1) was cloned from Pinctada fucata. The PFL-96 gene has an open reading frame of 324 base pairs (bp) and encodes a protein comprising 107 amino acids. The protein has a molecular weight of 11.95 kDa and an isoelectric point of 9.27. It contains an N-terminal signal peptide and a galactose-binding lectin domain. The sequence identity to lectin proteins from fish, echinoderms, coelenterates, and shellfish ranges from 31.90 to 40.00 %. In the phylogenetic analysis, it was found that the PFL-96 protein is closely related to the lectin from Pteria penguin. The PFL-96 recombinant protein exhibited coagulation activity on 2 % rabbit red blood cells at a concentration of ≥8 µg/mL. Additionally, it showed significant hemolytic activity at a concentration of ≥32 µg/mL. The PFL-96 recombinant protein exhibited significant antibacterial activity against Bacillus subtilis, Staphylococcus aureus, Candida albicans, and Vibrio alginolyticus, with minimum inhibitory concentrations (MIC) of 4, 8, 16, and 16 µg/mL, respectively. The minimum bactericidal concentrations (MBC) were determined to be 8, 16, 32, and 32 µg/mL, respectively. Furthermore, the PFL-96 recombinant protein exhibited inhibitory effects on the proliferation of Hela tumor cells, HepG2 tumor cells, and C666-1 tumor cells, with IC50 values of 7.962, 8.007, and 9.502 µg/mL, respectively. These findings suggest that the recombinant protein PFL-96 exhibits significant bioactivity in vitro, contributing to a better understanding of the active compounds found in P. fucata. The present study establishes a fundamental basis for further investigation into the mechanism of action and structural optimization of the recombinant protein PFL-96. The aim is to develop potential candidates for antibacterial and anti-tumor agents.


Assuntos
Pinctada , Animais , Coelhos , Pinctada/metabolismo , Sequência de Aminoácidos , Filogenia , Clonagem Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/metabolismo , Galectinas/genética , Galectinas/metabolismo , Antibacterianos/metabolismo
7.
Biotechnol Lett ; 45(11-12): 1495-1511, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37874433

RESUMO

Recently, natural tyrosinase inhibitors have gained attention in clinical cosmetology research. In this study, the enzymatic hydrolysis of Pinctada martensii meat by protease from Bacillus licheniformis, 401 peptides with tyrosinase inhibitory were identified after isolated by ultrafiltration and Sephadex G-15 from the fraction F4. The peptide effects on the tyrosinase activity and structure were evaluated using molecular docking. Three synthetic peptides classified as W1 (WDRPKDDGGSPIK), W2 (DRGYPPVMF), and W3 (SGGGGGGGLGSGGSIRSSY), which had the lowest binding energies were selected for in vitro synthesis and biological activity investigation. The W3 peptide (5 mg/mL) had the highest tyrosinase activity, SPF, DPPH, and ABTS clearance values, and total antioxidant capacity. W3 did not affect the survival rate of mouse melanoma B16-F10 cells (1.0-5.0 mg/mL) but decreased the melanin content. Hence, W3 could be suitable for multifunctional tyrosinase inhibition and provides a novel method to use marine organisms as natural tyrosinase inhibitor sources.


Assuntos
Monofenol Mono-Oxigenase , Pinctada , Camundongos , Animais , Pinctada/química , Pinctada/metabolismo , Simulação de Acoplamento Molecular , Carne , Peptídeos/química , Melaninas/metabolismo
8.
Front Immunol ; 14: 1247544, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37854612

RESUMO

Introduction: In the pearl culture industry, a major challenge is the overactive immunological response in pearl oysters resulting from allotransplantation, leading to shell-bead rejection and death. To better understand the molecular mechanisms of postoperative recovery and the regulatory role of DNA methylation in gene expression, we analyzed the changes in DNA methylation levels after allotransplantation in pearl oyster Pinctada fucata martensii, and elucidated the regulatory function of DNA methylation in promoter activity of nicotinic acetylcholine receptor (nAChR) gene. Methods: We constructed nine DNA methylomes at different time points after allotransplantation and used bisulfite genomic sequencing PCR technology (BSP) to verify the methylation status in the promoter of nAChR. We performed Dual luciferase assays to determine the effect of the dense methylation region in the promoter on transcriptional activity and used DNA pull-down and mass spectrometry analysis to assess the capability of transcription factor binding with the dense methylation region. Result: The DNA methylomes reveal that CG-type methylation is predominant, with a trend opposite to non-CG-type methylation. Promoters, particularly CpG island-rich regions, were less frequently methylated than gene function elements. We identified 5,679 to 7,945 differentially methylated genes (DMGs) in the gene body, and 2,146 to 3,385 DMGs in the promoter at each time point compared to the pre-grafting group. Gene ontology and pathway enrichment analyses showed that these DMGs were mainly associated with "cellular process", "Membrane", "Epstein-Barr virus infection", "Notch signaling pathway", "Fanconi anemia pathway", and "Nucleotide excision repair". Our study also found that the DNA methylation patterns of the promoter region of nAChR gene were consistent with the DNA methylomics data. We further demonstrated that the dense methylation region in the promoter of nAChR affects transcriptional activity, and that the methylation status in the promoter modulates the binding of different transcription factors, particularly transcriptional repressors. Conclusion: These findings enhance our understanding of the immune response and regulation mechanism induced by DNA methylation in pearl oysters after allotransplantation.


Assuntos
Infecções por Vírus Epstein-Barr , Pinctada , Animais , Transcriptoma , Pinctada/genética , Metilação de DNA , Infecções por Vírus Epstein-Barr/genética , Herpesvirus Humano 4/genética , Ilhas de CpG , DNA/metabolismo
9.
Sci Total Environ ; 905: 166894, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37704154

RESUMO

Byssus is important for marine bivalves to adhere robustly to diverse substrates and resist environmental impacts. The winged pearl oyster, Pteria penguin, can reattach or not reattach to the same environment, which leaves the development and survival of the oyster population at risk. In this study, diverse methods were employed to evaluate the byssus quality and explore the mechanism of byssus secretion at different temperatures. The results demonstrated that oysters maintained their byssus properties at different temperatures through polyphenol oxidase (PPO) and reactive oxygen species (ROS) variation. They were both higher at 27 °C than at 21 °C. Furthermore, PPO activities of WB27 (31.78 U/g ± 1.50 U/g) were significantly higher than NB27, WB21, and NB21. Sectional observation revealed three types of vesicles, from which a novel vesicle might participate in byssogenesis as a putative metal storage particle. Moreover, cytoskeletal proteins may cooperate with cilia to transport byssal proteins, which then facilitate byssus formation under the regulation of upstream signals. Transcriptome analysis demonstrated that protein quality control, ubiquitin-mediated proteolysis, and cytoskeletal reorganization-related genes contributed to adaptation to temperature changes and byssus fabrication, and protection-related genes play a critical role in byssogenesis, byssus toughness, and durability. These results were utilized to create a byssogenesis mechanism model, to reveal the foot gland and vesicle types of P. penguin and provide new insights into adaptation to temperature changes and byssus fabrication in sessile bivalves.


Assuntos
Bivalves , Pinctada , Spheniscidae , Animais , Temperatura , Perfilação da Expressão Gênica , Proteínas
10.
ACS Appl Mater Interfaces ; 15(22): 26227-26240, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37226779

RESUMO

Osteosarcoma is prone to metastasis and has a low long-term survival rate. The drug treatment of osteosarcoma, side effects of treatment drugs, and prognosis of patients with lung metastasis continue to present significant challenges, and the efficacy of drugs used in the treatment of osteosarcoma remains low. The development of new therapeutic drugs is urgently needed. In this study, we successfully isolated Pinctada martensii mucilage exosome-like nanovesicles (PMMENs). Our findings demonstrated that PMMENs inhibited the viability and proliferation of 143B cells, induced apoptosis, and inhibited cell proliferation by suppressing the activation of the ERK1/2 and Wnt signaling pathways. Furthermore, PMMENs inhibited cell migration and invasion by downregulating N-cadherin, vimentin, and matrix metalloprotease-2 protein expression levels. Transcriptomic and metabolomic analyses revealed that differential genes were co-enriched with differential metabolites in cancer signaling pathways. These results suggest that PMMENs may exert anti-tumor activity by targeting the ERK1/2 and Wnt signaling pathways. Moreover, tumor xenograft model experiments showed that PMMENs can inhibit the growth of osteosarcoma in mice. Thus, PMMENs may be a potential anti-osteosarcoma drug.


Assuntos
Neoplasias Ósseas , Exossomos , Osteossarcoma , Pinctada , Humanos , Animais , Camundongos , Exossomos/metabolismo , Linhagem Celular Tumoral , Neoplasias Ósseas/patologia , Apoptose , Proliferação de Células , Via de Sinalização Wnt , Osteossarcoma/metabolismo , Movimento Celular
11.
Food Funct ; 14(9): 4242-4253, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37067400

RESUMO

Pearl oyster meat, a by-product of pearl production, is rich in protein, but has a low utilization rate. Our previous study showed that pearl oyster meat hydrolysates have potential anti-inflammatory activity. In this study, highly active peptides from pearl oyster meat hydrolysates were purified, identified, and extracted, and their anti-inflammatory activity was further investigated. A total of 206 peptides were identified, and three novel anti-inflammatory peptides, TWP (402.1903 Da), TAMY (484.1992 Da) and FPGA (390.1903 Da), were screened by molecular docking. The molecular docking results showed that TWP, TAMY and FPGA can bind to key regions in the cyclooxygenase-2 (COX-2) active site. Furthermore, the three anti-inflammatory peptides can effectively regulate the release of inflammatory mediators from RAW264.7 macrophages by reducing the levels of nitric oxide (NO) and pro-inflammatory cytokines (such as TNF-α, IL-6 and IL-1ß), and increasing the production of anti-inflammatory cytokine IL-10, showing great anti-inflammatory activity. This study provides a new theoretical reference for the development of functional foods or nutritional supplements with natural anti-inflammatory effects.


Assuntos
Pinctada , Animais , Pinctada/metabolismo , Simulação de Acoplamento Molecular , Peptídeos/farmacologia , Peptídeos/metabolismo , Macrófagos , Citocinas/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo
12.
Fish Shellfish Immunol ; 135: 108691, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36924911

RESUMO

Antimicrobial peptides (AMPs) play important roles in the immune defense against pathogenic microorganisms. For instance, histone 2A (H2A)-derived AMPs is an antimicrobial peptide involved in the host's innate immune defense and immunoregulation. AMPs have been isolated from the pearl oyster Pinctada fucata martensii but their role in host defense remains poorly understood. To elucidate the structural features of P. f. martensii H2A (PmH2A)-derived AMPs and their potential immune functions, we synthesized a series of laboratory-designed synthetic analogs of PmH2A and examined their antimicrobial properties, as well as their mechanisms of action. This analysis revealed inhibitory effects on the growth of Gram-positive and Gram-negative bacteria. Further assessment by transmission electron microscopy (TEM) of two of the three peptides, PmH2A-AMP and PmH2A-AMP(5-13)[KLLK]3, confirmed that it exerted an anti-bacterial activity through membrane lysis. Finally, we found that the hemocytes and gills of P. f. martensii released antimicrobial H2A histones in response to LPS exposure, mimicking tissue damage and infection. This immune response is reminiscent of the neutrophil extracellular traps (NETs) recently described in oysters. Thus, the LPS challenge is sufficient to induce histone-derived peptide accumulation in pearl oyster P.f. martensii.


Assuntos
Pinctada , Animais , Histonas , Peptídeos Antimicrobianos , Lipopolissacarídeos/farmacologia , Antibacterianos/farmacologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Peptídeos/farmacologia
13.
Molecules ; 28(2)2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36677922

RESUMO

Free radicals are associated with aging and many diseases. Antioxidant peptides with good antioxidant activity and absorbability are one of the hotspots in antioxidant researches. In our study, pearl shell (Pinctada martensii) meat hydrolysate was purified, and after identification by proteomics, six novel antioxidant peptides SPSSS, SGTAV, TGVAS, GGSIT, NSVAA, and GGSLT were screened by bioinformatics analysis. The antioxidant peptides exhibited good cellular antioxidant activity (CAA) and the CAA of SGTAV (EC50: 0.009 mg/mL) and SPSSS (EC50: 0.027 mg/mL) were better than that of positive control GSH (EC50: 0.030 mg/mL). In the AAPH-induced oxidative damage models, the antioxidant peptides significantly increased the viability of HepG2 cells, and the cell viability of SGTAV, SPSSS, and NAVAA were significantly restored from 79.41% to 107.43% and from 101.09% and 100.09%, respectively. In terms of antioxidant mechanism by molecular docking, SGTAV, SPSSS, and NAVAA could tightly bind to free radicals (DPPH and ABTS), antioxidant enzymes (CAT and SOD), and antioxidant channel protein (Keap1), suggesting that the antioxidant peptides had multiple antioxidant activities and had structure-activity linkages. This study suggests that the antioxidant peptides above are expected to become new natural materials for functional food industries, which contribute to the high-value applications of pearl shell meat.


Assuntos
Antioxidantes , Fator 2 Relacionado a NF-E2 , Antioxidantes/farmacologia , Antioxidantes/química , Proteína 1 Associada a ECH Semelhante a Kelch , Carne , Simulação de Acoplamento Molecular , Peptídeos/farmacologia , Peptídeos/química , Pinctada
14.
Mar Biotechnol (NY) ; 25(4): 503-518, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36629944

RESUMO

Pearl oyster shells comprise two layers, a prismatic and nacreous layer, of calcium carbonate. The nacreous layer has been used in Chinese medicine since ancient times. In this study, we investigated the effects of the extract from the nacreous layer of pearl oysters (nacre extract) on D-galactose-induced brain and skin aging. Treatment with nacre extract led to the recovery of D-galactose-induced memory impairment, as examined using the Barnes maze, novel object recognition, and Y-maze tests. A histological study showed that nacre extract suppressed D-galactose-induced neuronal cell death and the expression of B cell lymphoma 2 (Bcl-2)-associated X protein (Bax), which causes apoptosis in the hippocampus. In addition, the expression levels of brain-derived neurotrophic factor, which counteracts age-related brain dysfunction, and nicotinamide adenine dinucleotide-dependent deacetylase (sirtuin 1), which delays aging and extends lifespan, increased after nacre extract treatment. Moreover, the nacre extract showed anti-aging effects against D-galactose-induced skin aging; it suppressed D-galactose-induced wrinkle formation, decreased skin moisture, decreased epidermal thickness, and destroyed collagen arrangement associated with aging. Furthermore, the nacre extract suppressed oxidative stress associated with aging in the brain and skin by upregulating the expression of catalase and superoxide dismutase. The expression level of the cellular senescence marker p16, which is induced by oxidative stress, was elevated in the hippocampus and skin epidermal layer of D-galactose-treated mice, and it was suppressed by the administration of nacre extract. These results show that the nacre extract can suppress D-galactose-induced aging by enhancing anti-oxidant activity and suppressing p16 expression. Thus, the nacre extract may be an effective anti-aging agent.


Assuntos
Nácar , Pinctada , Envelhecimento da Pele , Animais , Camundongos , Nácar/metabolismo , Pinctada/metabolismo , Galactose/metabolismo , Galactose/farmacologia , Carbonato de Cálcio/metabolismo , Encéfalo/metabolismo
15.
Fish Shellfish Immunol ; 132: 108439, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36423807

RESUMO

Because it is difficult to isolate standard antimicrobial peptides (AMPs) using traditional biochemical approaches, we designed, synthesized, and evaluated a series of structurally altered histone-derived AMPs (HDAPs) from the pearl oyster Pinctada fucata martensii using molecular cloning approaches. Four histone-homolog genes (PmH2A, PmH2B, PmH3, and PmH4-1) were identified, of which PmH2A and PmH2B had yet to be described. PmH2A and PmH2B were therefore cloned using Rapid Amplification of cDNA Ends (RACE) and characterized. Constitutive PmH2A and PmH2B mRNA expression was detected in all six pearl oyster tissues tested, with comparatively greater transcript abundance in the gonads. Because α-helical content, hydrophilicity index, and the presence of a proline hinge may be the three important factors influencing the antimicrobial efficacy of HDAPs, we synthesized a series of eight N- and C-terminally truncated or amino acid-substituted synthetic candidate HDAP analogs derived from PmH2A, PmH2B, PmH3, and PmH4-1. Only the PmH2A- and PmH4-derived AMPs inhibited bacterial growth. The PmH2A-derived AMPs were α-helical proteins, while the PmH4-derived AMPs were extended strand/random coil proteins. Our results suggested that having an α-helical structure was particularly important for the antibacterial efficacy of the PmH2A-derived peptides; amphipathic structures (hydrophilic index, 0.3 to -0.3) may enhance the antimicrobial function of both the PmH2A- and PmH4-derived peptides. The high antibacterial efficacy of one of the HDAP analogs studied, PmH2A-AMP (5-13) [KLLK]3, indicated that this protein may represent a promising candidate for the treatment of bacterial infections in aquaculture mollusk species. This first study of HDAPs from the pearl oyster P. f. martensii provides new insights into the design and function of highly effective antimicrobial peptides.


Assuntos
Pinctada , Animais , Pinctada/metabolismo , Histonas/metabolismo , Peptídeos Antimicrobianos , Peptídeos/farmacologia
16.
Sci Rep ; 12(1): 21644, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36517536

RESUMO

The combined effects of temperature and salinity on the digestion and respiration metabolism of Pinctada fucata were evaluated via response surface methodology and box-benhnken design under laboratory condition. Results indicated that the primary and secondary effects of salinity and temperature had significant effects on amylase (AMS) of P. fucata (P < 0.05)., The digestive enzyme reached the maximum activity when temperature was 26 °C. The AMS and trypsin (TRYP) increased at first, and then decreased with increasing temperature. The Lipase (LPS) was positively correlated with either salinity or temperature. Salinity had no significant effect on TRYP as a primary effect (P > 0.05), but had a significant effect on TRYP as a secondary effect (P < 0.01). These effects were completely opposite to the effect of temperature on pepsin (PEP) as primary and secondary effects. The combined effects of salinity and temperature on AMS, TRYP and PEP were significant (P < 0.01), but had no significant effect on LPS (P > 0.05). The primary, secondary and interaction effects of salinity had significant effects on NKA (Na+-K+-ATPase) of P. fucata (P < 0.05), and NKA presented a U-shaped distribution with increasing salinity. The quadratic and interactive effects of temperature had a significant effect on AKP (P < 0.05), and AKP showed a U-shaped distribution with increasing temperature. Lactate dehydrogenase (LDH) activity decreased at first, and then increased when temperature and salinity changed from 20 to 30 °C and 23-33 ‰, respectively. The expression of GPX gene affected by temperature in gills may be delayed compared with that in hepatopancreas, and its expression is tissue-specific. The appropriate digestion and respiratory metabolism index models were established under the combined temperature and salinity conditions. The optimization results showed that the optimal combination of temperature and salinity was 26.288 °C/28.272‰. The desirability was 0.832. Results from the present study will provide a theoretical reference for shellfish culture affected by environmental interactions and the establishment of related index models.


Assuntos
Pinctada , Salinidade , Animais , Pinctada/genética , Temperatura , Lipopolissacarídeos/farmacologia , Brânquias/metabolismo , Respiração , Digestão , ATPase Trocadora de Sódio-Potássio/metabolismo
17.
Mar Drugs ; 20(12)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36547917

RESUMO

Long-term exposure to ultraviolet-B (UVB) can cause photoaging. Peptides from Pinctada martensii meat have been shown to have anti-photoaging activities, but their mechanism of action is rarely studied. In this study, Pinctada martensii meat hydrolysates (PME) were prepared by digestive enzymes and then separated by ultrafiltration and Sephadex G-25 gel filtration chromatography to obtain a purified fraction (G2). The fraction G2 was identified by ultra-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS), and peptide sequences were synthesized by solid-phase synthesis. The mechanism of anti-photoaging activities was investigated using a human immortalised epidermal (HaCaT) cell model. Results showed that peptides from Pinctada martensii meat increased UVB-induced cell viability and reduced the contents of interstitial collagenase (MMP-1) and matrix lysing enzyme (MMP-3) in HaCaT cells. Furthermore, the fraction of G2 significantly downregulated the expression of p38, EKR, JNK, MMP-1, and MMP-3 in HaCaT cells. The peptide sequences Phe-His (FH), Ala-Leu (AL), Met-Tyr (MY), Ala-Gly-Phe (AGF), and Ile-Tyr-Pro (IYP) were identified and synthesized. Besides, FH reduced the contents of MMP-1 and MMP-3 in HaCaT cells, combining them effectively in molecular docking analysis. Thus, peptides from Pinctada martensii meat showed anti-photoaging activities and might have the potential to be used as an anti-photoaging agent in functional foods.


Assuntos
Metaloproteinase 1 da Matriz , Peptídeos , Pinctada , Envelhecimento da Pele , Animais , Humanos , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , Carne , Simulação de Acoplamento Molecular , Peptídeos/química , Peptídeos/isolamento & purificação , Peptídeos/farmacologia , Pinctada/química , Espectrometria de Massas em Tandem , Raios Ultravioleta , Envelhecimento da Pele/efeitos dos fármacos
18.
Fish Shellfish Immunol ; 130: 132-140, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36084889

RESUMO

Non-coding RNAs (ncRNAs) have been implicated in a variety of biological processes. However, most ncRNAs are of unknown function and are as-yet unannotated. The immune-related functions of ncRNAs in the pearl oyster Pinctada fucata martensii were explored based on transcriptomic differences in the expression levels of long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and messenger RNAs (mRNAs) in the hemocytes of P.f. martensii after challenge by the pathogenic bacterium Vibrio parahaemolyticus. Across the challenged and control pearl oysters, 144 miRNAs and 14,571 lncRNAs were identified. In total, 13,375 ncRNAs were differentially expressed between the challenged and control pearl oysters; in the challenged pearl oysters as compared to the controls, 15 miRNAs and 5147 lncRNAs were upregulated, while 51 miRNAs and 8162 lncRNAs were downregulated. The sequencing results were validated using quantitative real-time polymerase chain reaction (qRT-PCR) analysis. GO and KEGG pathway analysis showed that genes targeted by the differentially expressed ncRNAs were associated with the vascular endothelial growth factor (VEGF) signaling pathway and the nuclear factor kappa-B (NF-κB) signaling pathway. An lncRNA-mRNA-miRNA network that was developed based on the transcriptomic results of this study suggested that lncRNAs may compete with miRNAs for mRNA binding sites. This study may provide a useful framework for the detection of additional novel ncRNAs, as well as new insights into the pathogenic mechanisms underlying the response of P.f. martensii to V. parahaemolyticus.


Assuntos
MicroRNAs , Pinctada , RNA Longo não Codificante , RNA Mensageiro , Vibrio parahaemolyticus , Animais , Imunidade , MicroRNAs/genética , NF-kappa B/metabolismo , Pinctada/genética , Pinctada/imunologia , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Vibrio parahaemolyticus/patogenicidade
19.
Fish Shellfish Immunol ; 129: 191-198, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36029945

RESUMO

Decitabine (DAC), an inhibitor of DNA methyltransferase, is typically used to reverse DNA methylation and is considered an epigenetic modifying drug. DNA methylation is crucial to the regulation of gene expression without altering genetic information. Our previous research showed that the DNA methylation levels of many immune-related genes changed after the pre-grafting condition in pearl production. In the present study, we evaluated the DNA methylation level and analyzed transcriptome, enzyme, and antimicrobial activities after DAC treatment to evaluate the effect of DAC on DNA methylation and immune system of pearl oyster Pinctada fucata martensii. Results showed that DAC significantly decreased the level of global DNA methylation in the hemocytes of the pearl oysters. Transcriptome analysis obtained 577 differentially expressed genes (DEGs) between the control and DAC treatment group. The DEGs were mainly enriched in the following pathways: "Relaxin signaling pathway," "Cytosolic DNA-sensing pathway," "Platelet activation," and "Peroxisome," and related genes were overexpressed after DAC treatment. DAC treatment resulted in a substantial increase in the levels of serum superoxide dismutase, interleukin-17, phenol oxidase, tumor necrosis factor, and antimicrobial activity, compared with the control. These results suggested that DAC can alter DNA methylation level, activate immune-related genes, and improve the level of humoral immunity in pearl oysters, thereby increasing our understanding of the mechanism underlying DNA methylation in immune regulation.


Assuntos
Anti-Infecciosos , Pinctada , Relaxina , Animais , Anti-Infecciosos/metabolismo , DNA/metabolismo , Decitabina/metabolismo , Imunidade Inata/genética , Interleucina-17/metabolismo , Metiltransferases/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Relaxina/metabolismo , Superóxido Dismutase/metabolismo , Fatores de Necrose Tumoral/metabolismo
20.
Mar Drugs ; 20(7)2022 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-35877710

RESUMO

Previous studies found that both oral and topical administration of enzymatic digestion products < 3 K Da ultrafiltration fractions of Pinctada martensii mantle (PMPs) had pro-healing effects. Thus, we further purified them by Sephadex-G25 and screened them by cellular assays to obtain Pinctada martensii purified peptides (PMPPs). In this study, we explored the mechanism of PMPPs on wound healing by in vivo, in vitro, and in silico experiments. LC-MS/MS results showed that PMPPs consisted of 33 peptides with molecular weights ranging from 758.43 to 2014.04 Da, and the characteristic peptide was Leu-Asp. The results of cellular assays showed that PMPPs promoted the proliferation of human skin fibroblasts (HSF) (135%) and human immortalized keratinocyte (HaCaT) cells (125%) very significantly at 12.5 µg/mL. The in vivo results showed that PMPPs could achieve scarless healing by inhibiting the inflammatory response, accelerating the epithelialization process, and regulating collagen I/III ratio. The optimal peptide sequence FAFQAEIAQLMS of PMPPs was screened for key protein receptors in wound healing (EGFR1, FGFR1, and MMP-1) with the help of molecular docking technique, which also showed to be the key pro-healing active peptide sequence. Therefore, it may provide a therapeutic strategy with great potential for wound healing.


Assuntos
Pinctada , Animais , Cromatografia Líquida , Humanos , Simulação de Acoplamento Molecular , Peptídeos/química , Pinctada/química , Espectrometria de Massas em Tandem , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA