Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
ACS Nano ; 18(21): 13781-13793, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38752333

RESUMO

Pine wood nematode (PWN) disease is a globally devastating forest disease caused by infestation with PWN, Bursaphelenchus xylophilus, which mainly occurs through the vector insect Japanese pine sawyer (JPS), Monochamus alternatus. PWN disease is notoriously difficult to manage effectively and is known as the "cancer of pine trees." In this study, dual enzyme-responsive nanopesticides (AVM@EC@Pectin) were prepared using nanocoating avermectin (AVM) after modification with natural polymers. The proposed treatment can respond to the cell wall-degrading enzymes secreted by PWNs and vector insects during pine tree infestation to intelligently release pesticides to cut off the transmission and infestation pathways and realize the integrated control of PWN disease. The LC50 value of AVM@EC@Pectin was 11.19 mg/L for PWN and 26.31 mg/L for JPS. The insecticidal activity of AVM@EC@Pectin was higher than that of the commercial emulsifiable concentrate (AVM-EC), and the photostability, adhesion, and target penetration were improved. The half-life (t1/2) of AVM@EC@Pectin was 133.7 min, which is approximately twice that of AVM-EC (68.2 min). Sprayed and injected applications showed that nanopesticides had superior bidirectional transportation, with five-times higher AVM contents detected in the roots relative to those of AVM-EC when sprayed at the top. The safety experiment showed that the proposed treatment had lower toxicity and higher safety for nontarget organisms in the application environment and human cells. This study presents a green, safe, and effective strategy for the integrated management of PWN disease.


Assuntos
Biomassa , Ivermectina , Pinus , Animais , Pinus/parasitologia , Pinus/química , Ivermectina/análogos & derivados , Ivermectina/farmacologia , Ivermectina/química , Ivermectina/metabolismo , Doenças das Plantas/parasitologia , Doenças das Plantas/prevenção & controle , Nematoides/efeitos dos fármacos , Inseticidas/farmacologia , Inseticidas/química , Nanopartículas/química , Humanos
2.
Mol Plant Pathol ; 24(9): 1033-1046, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37448165

RESUMO

Lipase is involved in lipid hydrolysis, which is related to nematodes' energy reserves and stress resistance. However, the role of lipases in Bursaphelenchus xylophilus, a notorious plant-parasitic nematode responsible for severe damage to pine forest ecosystems, remains largely obscure. Here, we characterized a class III lipase as a candidate effector and named it BxLip-3. It was transcriptionally up-regulated in the parasitic stages of B. xylophilus and specifically expressed in the oesophageal gland cells and the intestine. In addition, BxLip-3 suppressed cell death triggered by the pathogen-associated molecular patterns PsXEG1 and BxCDP1 in Nicotiana benthamiana, and its Lipase-3 domain is essential for immunosuppression. Silencing of the BxLip-3 gene resulted in a delay in disease onset and increased the activity of antioxidant enzymes and the expression of pathogenesis-related (PR) genes. Plant chitinases are thought to be PR proteins involved in the defence system against pathogen attack. Using yeast two-hybrid and co-immunoprecipitation assays, we identified two class I chitinases in Pinus thunbergii, PtChia1-3 and PtChia1-4, as targets of BxLip-3. The expression of these two chitinases was up-regulated during B. xylophilus inoculation and inhibited by BxLip-3. Overall, this study illustrated that BxLip-3 is a crucial virulence factor that plays a critical role in the interaction between B. xylophilus and host pine.


Assuntos
Quitinases , Pinus , Tylenchida , Animais , Xylophilus , Ecossistema , Quitinases/genética , Pinus/parasitologia , Tylenchida/genética , Doenças das Plantas/parasitologia
3.
Int J Mol Sci ; 23(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36142347

RESUMO

Peptidases are very important to parasites, which have central roles in parasite biology and pathogenesis. In this study, by comparative genome analysis, genome-wide peptidase diversities among plant-parasitic nematodes are estimated. We find that genes encoding cysteine peptidases in family C13 (legumain) are significantly abundant in pine wood nematodes Bursaphelenchus genomes, compared to those in other plant-parasitic nematodes. By phylogenetic analysis, a clade of B. xylophilus-specific legumain is identified. RT-qPCR detection shows that these genes are highly expressed at early stage during the nematode infection process. Utilizing transgene technology, cDNAs of three species-specific legumain were introduced into the Arabidopsis γvpe mutant. Functional complementation assay shows that these B. xylophilus legumains can fully complement the activity of Arabidopsis γVPE to mediate plant cell death triggered by the fungal toxin FB1. Secretory activities of these legumains are experimentally validated. By comparative transcriptome analysis, genes involved in plant cell death mediated by legumains are identified, which enrich in GO terms related to ubiquitin protein transferase activity in category molecular function, and response to stimuli in category biological process. Our results suggest that B. xylophilu-specific legumains have potential as effectors to be involved in nematode-plant interaction and can be related to host cell death.


Assuntos
Arabidopsis , Micotoxinas , Parasitos , Pinus , Rabditídios , Tylenchida , Animais , Arabidopsis/genética , Cisteína/genética , Cisteína Endopeptidases , Peptídeo Hidrolases/genética , Filogenia , Pinus/parasitologia , Doenças das Plantas/parasitologia , Plantas/parasitologia , Transferases/genética , Tylenchida/genética , Ubiquitinas/genética , Virulência , Xylophilus
4.
Int J Mol Sci ; 23(12)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35742858

RESUMO

Bursaphelenchus xylophilus is the most economically important species of migratory plant-parasitic nematodes (PPNs) and causes severe damage to forestry in China. The successful infection of B. xylophilus relies on the secretion of a repertoire of effector proteins. The effectors, which suppress the host pine immune response, are key to the facilitation of B. xylophilus parasitism. An exhaustive list of candidate effectors of B. xylophilus was predicted, but not all have been identified and characterized. Here, an effector, named BxSCD3, has been implicated in the suppression of host immunity. BxSCD3 could suppress pathogen-associated molecular patterns (PAMPs) PsXEG1- and INF1-triggered cell death when it was secreted into the intracellular space in Nicotiana benthamiana. BxSCD3 was highly up-regulated in the early infection stages of B. xylophilus. BxSCD3 does not affect B. xylophilus reproduction, either at the mycophagous stage or the phytophagous stage, but it contributes to the virulence of B. xylophilus. Moreover, BxSCD3 significantly influenced the relative expression levels of defense-related (PR) genes PtPR-3 and PtPR-6 in Pinus thunbergii in the early infection stage. These results suggest that BxSCD3 is an important toxic factor and plays a key role in the interaction between B. xylophilus and host pine.


Assuntos
Pinus , Rabditídios , Tylenchida , Animais , Pinus/parasitologia , Doenças das Plantas/parasitologia , Tylenchida/genética , Virulência/genética , Xylophilus
5.
BMC Plant Biol ; 21(1): 224, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34011295

RESUMO

BACKGROUND: The pine wood nematode (PWN), Bursaphelenchus xylophilus, is a devastating pathogen of many Pinus species in China. The aim of this study was to understand the interactive molecular mechanism of PWN and its host by comparing differentially expressed genes and candidate effectors from three transcriptomes of B. xylophilus at different infection stages. RESULTS: In total, 62, 69 and 46 candidate effectors were identified in three transcriptomes (2.5 h postinfection, 6, 12 and 24 h postinoculation and 6 and 15 d postinfection, respectively). In addition to uncharacterized pioneers, other candidate effectors were involved in the degradation of host tissues, suppression of host defenses, targeting plant signaling pathways, feeding and detoxification, which helped B. xylophilus survive successfully in the host. Seven candidate effectors were identified in both our study and the B. xylophilus transcriptome at 2.5 h postinfection, and one candidate effector was identified in all three transcriptomes. These common candidate effectors were upregulated at infection stages, and one of them suppressed pathogen-associated molecular pattern (PAMP) PsXEG1-triggered cell death in Nicotiana benthamiana. CONCLUSIONS: The results indicated that B. xylophilus secreted various candidate effectors, and some of them continued to function throughout all infection stages. These various candidate effectors were important to B. xylophilus infection and survival, and they functioned in different ways (such as breaking down host cell walls, suppressing host defenses, promoting feeding efficiency, promoting detoxification and playing virulence functions). The present results provide valuable resources for in-depth research on the pathogenesis of B. xylophilus from the perspective of effectors.


Assuntos
Interações Hospedeiro-Parasita/genética , Infecções/genética , Nematoides/genética , Nematoides/parasitologia , Parasitos/genética , Pinus/parasitologia , Virulência/genética , Animais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas
6.
Sci Rep ; 11(1): 3908, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33594100

RESUMO

The third-stage dispersal juvenile (DJ3) of pinewood nematode (PWN) is highly associated with low-temperature survival and spread of the nematode. Oil-Red-O staining showed that its lipid content was significantly higher compared with other PWN stages. Weighted gene coexpression network analysis identified that genes in the pink module were highly related to DJ3 induced in the laboratory (DJ3-lab). These genes were arranged according to their gene significance (GS) to DJ3-lab. Of the top 30 genes with the highest GS, seven were found to be highly homologous to the cysteine protease family cathepsin 1 (CATH1). The top 30 genes with the highest weight value to each of the seven genes in the pink module were selected, and finally 35 genes were obtained. Between these seven CATH1 homologous genes and their 35 highly related genes, 15 were related to fat metabolism or autophagy. These autophagy-related genes were also found to be highly correlated with other genes in the pink module, suggesting that autophagy might be involved in the mechanism of longevity in DJ3 and the formation of DJ3 by regulating genes related to fat metabolism.


Assuntos
Autofagia/genética , Metabolismo dos Lipídeos/genética , Nematoides/genética , Distribuição Animal , Animais , Feminino , Perfilação da Expressão Gênica , Masculino , Nematoides/metabolismo , Pinus/parasitologia
7.
J Appl Microbiol ; 131(1): 404-412, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33305527

RESUMO

AIMS: Esteya vermicola is an endoparasitic fungus producing lunate conidia, which kill pine wood nematode (PWN), and PWN could cause pine wilt disease (PWD). The aims of this study were to increase production and confirm the resistance (temperature and UV irradiation) of lunate conidia, and further determine the effective concentrations of conidia infecting PWN. METHODS AND RESULTS: In this study, rice was used as a carrier to absorb conidial suspension to propagate conidia. The optimal conditions for lunate conidia production were 25°C temperature, 9 days of culture time, 2 : 1 rice/distilled water ratio and 10% inoculum size. The germination rate of E. vermicola cultured on potato dextrose agar was influenced by UV irradiation, similar to growth on rice. Esteya vermicola cultured on rice under heat stress might be more suitable for application in the field. The concentration (1 × 108 conidia per ml) to kill PWN had the highest infectivity among the four conidia concentrations tested after 3 days of inoculation. CONCLUSIONS: This study showed a rice substrate-supported high-quality conidia production and the optimal infectivity concentration of E. vermicola. SIGNIFICANCE AND IMPACT OF THE STUDY: These results provide the necessary process of an economical and efficient biological control strategy against PWD.


Assuntos
Aclimatação/fisiologia , Nematoides/microbiologia , Ophiostomatales/crescimento & desenvolvimento , Esporos Fúngicos/crescimento & desenvolvimento , Animais , Meios de Cultura/química , Fermentação , Ophiostomatales/fisiologia , Pinus/parasitologia , Doenças das Plantas/parasitologia , Doenças das Plantas/prevenção & controle , Esporos Fúngicos/fisiologia , Temperatura , Raios Ultravioleta
8.
Int J Mol Sci ; 22(1)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33375157

RESUMO

Dendroctonus-bark beetles are natural agents contributing to vital processes in coniferous forests, such as regeneration, succession, and material recycling, as they colonize and kill damaged, stressed, or old pine trees. These beetles spend most of their life cycle under stem and roots bark where they breed, develop, and feed on phloem. This tissue is rich in essential nutrients and complex molecules such as starch, cellulose, hemicellulose, and lignin, which apparently are not available for these beetles. We evaluated the digestive capacity of Dendroctonusrhizophagus to hydrolyze starch. Our aim was to identify α-amylases and characterize them both molecularly and biochemically. The findings showed that D. rhizophagus has an α-amylase gene (AmyDr) with a single isoform, and ORF of 1452 bp encoding a 483-amino acid protein (53.15 kDa) with a predicted signal peptide of 16 amino acids. AmyDr has a mutation in the chlorine-binding site, present in other phytophagous insects and in a marine bacterium. Docking analysis showed that AmyDr presents a higher binding affinity to amylopectin compared to amylose, and an affinity binding equally stable to calcium, chlorine, and nitrate ions. AmyDr native protein showed amylolytic activity in the head-pronotum and gut, and its recombinant protein, a polypeptide of ~53 kDa, showed conformational stability, and its activity is maintained both in the presence and absence of chlorine and nitrate ions. The AmyDr gene showed a differential expression significantly higher in the gut than the head-pronotum, indicating that starch hydrolysis occurs mainly in the midgut. An overview of the AmyDr gene expression suggests that the amylolytic activity is regulated through the developmental stages of this bark beetle and associated with starch availability in the host tree.


Assuntos
Besouros/metabolismo , Trato Gastrointestinal/metabolismo , Pinus/parasitologia , Casca de Planta/parasitologia , Amido/metabolismo , alfa-Amilases/metabolismo , Amilopectina/metabolismo , Amilose/metabolismo , Animais , Ligação Competitiva , Besouros/enzimologia , Besouros/genética , Trato Gastrointestinal/enzimologia , Regulação Enzimológica da Expressão Gênica , Hidrólise , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Ligação Proteica , alfa-Amilases/genética
9.
Mol Biochem Parasitol ; 238: 111291, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32479776

RESUMO

In free-living and parasitic nematodes, the methylation of phosphoethanolamine to phosphocholine provides a key metabolite to sustain phospholipid biosynthesis for growth and development. Because the phosphoethanolamine methyltransferases (PMT) of nematodes are essential for normal growth and development, these enzymes are potential targets of inhibitor design. The pine wilt nematode (Bursaphelenchus xylophilus) causes extensive damage to trees used for lumber and paper in Asia. As a first step toward testing BxPMT1 as a potential nematicide target, we determined the 2.05 Å resolution x-ray crystal structure of the enzyme as a dead-end complex with phosphoethanolamine and S-adenosylhomocysteine. The three-dimensional structure of BxPMT1 served as a template for site-directed mutagenesis to probe the contribution of active site residues to catalysis and phosphoethanolamine binding using steady-state kinetic analysis. Biochemical analysis of the mutants identifies key residues on the ß1d-α6 loop (W123F, M126I, and Y127F) and ß1e-α7 loop (S155A, S160A, H170A, T178V, and Y180F) that form the phosphobase binding site and suggest that Tyr127 facilitates the methylation reaction in BxPMT1.


Assuntos
Etanolaminas/química , Proteínas de Helminto/química , Metiltransferases/química , Nematoides/enzimologia , Pinus/parasitologia , Doenças das Plantas/parasitologia , Sequência de Aminoácidos , Animais , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Etanolaminas/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Cinética , Metiltransferases/genética , Metiltransferases/metabolismo , Modelos Moleculares , Nematoides/genética , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Termodinâmica
10.
Mol Plant Pathol ; 21(7): 923-935, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32319206

RESUMO

The migratory plant-parasitic nematode Bursaphelenchus xylophilus is the causal agent of pine wilt disease, which causes serious damage to pine forests in China. Plant immunity plays an important role in plant resistance to multiple pathogens. Activation of the plant immune system is generally determined by immune receptors, including plant pattern recognition receptors, which mediate pattern recognition. However, little is known about molecular pattern recognition in the interaction between pines and B. xylophilus. Based on the B. xylophilus transcriptome at the early stages of infection and Agrobacterium tumefaciens-mediated transient expression and infiltration of recombinant proteins produced by Pichia pastoris in many plant species, a novel molecular pattern (BxCDP1) was characterized in B. xylophilus. We found that BxCDP1 was highly up-regulated at the early infection stages of B. xylophilus, and was similar to a protein in Pararhizobium haloflavum. BxCDP1 triggered cell death in Nicotiana benthamiana when secreted into the apoplast, and this effect was dependent on brassinosteroid-insensitive 1-associated kinase 1, but independent of suppressor of BIR1-1. BxCDP1 also exhibited cell death-inducing activity in pine, Arabidopsis, tomato, pepper, and lettuce. BxCDP1 triggered reactive oxygen species production and the expression of PAMP-triggered immunity marker genes (NbAcre31, NbPTI5, and NbCyp71D20) in N. benthamiana. It also induced the expression of pathogenesis-related genes (PtPR-3, PtPR-4, and PtPR-5) in Pinus thunbergii. These results suggest that as a new B. xylophilus molecular pattern, BxCDP1 can not only be recognized by many plant species, but also triggers innate immunity in N. benthamiana and defence responses of P. thunbergii.


Assuntos
Proteínas de Helminto/imunologia , Moléculas com Motivos Associados a Patógenos/imunologia , Pinus/imunologia , Pinus/parasitologia , Imunidade Vegetal , Rabditídios/imunologia , Animais , Morte Celular , Pinus/genética , Células Vegetais , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Nicotiana/genética
11.
Int J Mol Sci ; 21(3)2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32024175

RESUMO

: Bursaphelenchus xylophilus is a nematode species that has damaged pine trees worldwide, but its pathogenesis has not been fully characterized. α-pinene helps protect host species during the early B. xylophilus infection and colonization stages. In this study, we identified potential molecular mimicry proteins based on a comparative transcriptomic analysis of B. xylophilus. The expression levels of three genes encoding secreted B. xylophilus proteins were influenced by α-pinene. We cloned one gene encoding a thaumatin-like protein, Bx-tlp-2 (accession number MK000287), and another gene encoding a cysteine proteinase inhibitor, Bx-cpi (accession number MK000288). Additionally, α-pinene appeared to induce Bx-tlp-1 expression, but had the opposite effect on Bx-cpi expression. An analysis of the expression of the potential molecular mimicry proteins in B. xylophilus infecting pine trees revealed that the α-pinene content was consistent with the expression levels of Bx-tlp-1 (Bx-cpi) and Pm-tlp (Pm-cpi) over time. Thus, these genes likely have important roles contributing to the infection of pine species by B. xylophilus. The results of this study may be relevant for future investigations of the functions of Bx-tlp-1, Bx-tlp-2 and Bx-cpi, which may provide a point to explore the relationship between B. xylophilus and host pines.


Assuntos
Monoterpenos Bicíclicos/farmacologia , Proteínas de Helminto/metabolismo , Interações Hospedeiro-Parasita/genética , Mimetismo Molecular , Pinus/parasitologia , Doenças das Plantas/parasitologia , Tylenchida/metabolismo , Animais , Proteínas de Helminto/genética , Filogenia , Transcriptoma , Tylenchida/efeitos dos fármacos , Tylenchida/genética
12.
Acta Biochim Biophys Sin (Shanghai) ; 51(10): 1071-1078, 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31559428

RESUMO

Pine wilt disease, caused by the pine wood nematode Bursaphelenchus xylophilus, leads to severe damage to pine forests in China. In our previous study, effectors secreted by this pathogen were shown to play roles in the different infection stages of pine wilt disease, and a series of candidate effectors were predicted by transcriptome sequencing. This study identified and characterized a novel effector, BxSapB3, which was among these candidate effectors. Agrobacterium-mediated transient expression was used to identify BxSapB3. BxSapB3 was secreted by B. xylophilus and found to be capable of inducing cell death in Nicotiana benthamiana. Quantitative real-time PCR (qRT-PCR) analysis revealed that BxSapB3 was upregulated in a highly virulent strain of B. xylophilus and expressed at lower levels in a weakly virulent strain at the early stages of infection. When BxSapB3 was silenced in B. xylophilus, the process of infection was delayed. These results indicate that BxSapB3 acts as an effector and contributes to virulence at the early stages of B. xylophilus infection.


Assuntos
Proteínas de Helminto/genética , Pinus/parasitologia , Doenças das Plantas/parasitologia , Tylenchida/genética , Animais , Expressão Gênica , Interferência de RNA , Tylenchida/patogenicidade , Fatores de Virulência/genética
13.
Int J Mol Sci ; 20(1)2019 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-30626082

RESUMO

The pine wood nematode (PWN), Bursaphelenchus xylophilus, is the pathogen of pine wilt disease (PWD), resulting in huge losses in pine forests. However, its pathogenic mechanism remains unclear. The cathepsin L-like cysteine proteinase (CPL) genes are multifunctional genes related to the parasitic abilities of plant-parasitic nematodes, but their functions in PWN remain unclear. We cloned three cpl genes of PWN (Bx-cpls) by rapid amplification of cDNA ends (RACE) and analyzed their characteristics using bioinformatic methods. The tissue specificity of cpl gene of PWN (Bx-cpl) was studied using in situ mRNA hybridization (ISH). The functions of Bx-cpls in development and pathogenicity were investigated using real-time quantitative PCR (qPCR) and RNA interference (RNAi). The results showed that the full-length cDNAs of Bx-cpl-1, Bx-cpl-2, and Bx-cpl-3 were 1163 bp, 1305 bp, and 1302 bp, respectively. Bx-cpls could accumulate specifically in the egg, intestine, and genital system of PWN. During different developmental stages of PWN, the expression of Bx-cpls in the egg stage was highest. After infection, the expression levels of Bx-cpls increased and reached their highest at the initial stage of PWD, then declined gradually. The silencing of Bx-cpl could reduce the feeding, reproduction, and pathogenicity of PWN. These results revealed that Bx-cpls play multiple roles in the development and pathogenic processes of PWN.


Assuntos
Catepsina L/genética , Pinus/parasitologia , Tylenchida/crescimento & desenvolvimento , Tylenchida/patogenicidade , Animais , Catepsina L/metabolismo , Comportamento Alimentar , Regulação da Expressão Gênica no Desenvolvimento , Filogenia , Doenças das Plantas/parasitologia , Interferência de RNA , RNA de Cadeia Dupla/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodução/genética , Análise de Sequência de DNA , Tylenchida/enzimologia , Tylenchida/genética
14.
Mol Plant Microbe Interact ; 32(4): 452-463, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30351223

RESUMO

The pine wood nematode (PWN) Bursaphelenchus xylophilus has caused serious damage to pine forests in China. Effectors secreted by phytonematodes play a role in host infection. We identified and characterized an effector, BxSapB1, based on the B. xylophilus transcriptome at the early stages of infection and the transient expression of proteins in Nicotiana benthamiana. BxSapB1 triggered cell death in N. benthamiana when secreted into the apoplast, and this effect was independent of N. benthamiana brassinosteroid-insensitive 1-associated kinase 1 (NbBAK1) and suppressor of BIR1-1 (NbSOBIR1). The signal peptide of BxSapB1 was proven to be functional in yeast using the yeast signal sequence trap system and BxSapB1 was strongly expressed in the subventral gland cells of B. xylophilus, as revealed by in-situ hybridization. In addition, based on local BLAST analysis, the BxSapB1 showed 100% identity to BUX.s00139.62, which was identified from the B. xylophilus secretome during Pinus thunbergii infection. BxSapB1 was upregulated in a highly virulent strain and downregulated in a weakly virulent strain of PWN at the early stages of infection. RNA interference assays showed that silencing BxSapB1 resulted in decreased expression of pathogenesis-related genes (PtPR-1b, PtPR-3, and PtPR-5) as well as delayed onset of symptoms in P. thunbergii infected by B. xylophilus. The combined data suggest that BxSapB1 can trigger cell death in N. benthamiana and that it contributes to the virulence in B. xylophilus during parasitic interaction.


Assuntos
Pinus , Tylenchida , Virulência , Animais , Morte Celular , China , Pinus/parasitologia , Tylenchida/genética , Tylenchida/patogenicidade , Virulência/genética
15.
Comput Biol Chem ; 77: 291-296, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30399505

RESUMO

The pinewood nematode, Bursaphelenchus xylophilus, is an important plant-parasitic nematode responsible for the development of the pine wilt disease and recognised as a major forest pest. Previous studies on the comparison of B. xylophilus and B. mucronatus secretomes obtained under maritime pine, Pinus pinaster, wood extract stimulus revealed that several cysteine proteases were increased in B. xylophilus secretome. In nematodes, proteases are known to play critical roles in parasitic processes like tissue penetration, digestion of host tissues for nutrition and evasion of host immune response. To gain further insight into the possible role of cysteine proteases on B. xylophilus pathogenicity, the molecular characterisation of four secreted cysteine peptidases was performed. BxCP3 and BxCP11 were identified as cathepsin L-like proteins and BxCP7 and BxCP8 as cathepsin B proteins. Only BxCP8 revealed high homology with another B. xylophilus cathepsin B referred on GenBank, all the others differ from the closer proteins deposited in this database. In silico three-dimensional structures of the four BxCP suggest that these proteins are pro-enzymes that become active when the pro-peptide is cleaved. BxCP7 and BxCP8 predicted structures revealed the presence of an occluding loop that occludes the active site cleft, typical of cathepsin B proteases.


Assuntos
Cisteína Proteases/química , Nematoides/química , Nematoides/enzimologia , Pinus/parasitologia , Sequência de Aminoácidos , Animais , Catepsinas/química , Catepsinas/genética , Catepsinas/metabolismo , Cisteína Proteases/genética , Cisteína Proteases/metabolismo , Modelos Moleculares , Nematoides/genética , Filogenia , Conformação Proteica , Alinhamento de Sequência
16.
Molecules ; 23(7)2018 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-30041426

RESUMO

Bursaphelenchus xylophilus is a destructive phytophagous nematode that mainly infects pine species and causes pine wilt disease (PWD). PWD is one of the most devastating diseases that has damaged the pine forests of eastern Asia and Portugal for the last four decades. B. xylophilus infects healthy pine trees through Monochamus beetles and its subsequent proliferation results in destruction of the infected pine trees. The poor water solubility and high cost of currently used trunk-injected chemicals such as avermectin and abamectin for the prevention of PWD are major concerns. Thus, for the identification of new compounds targeting the different targets, five proteins including cathepsin L-like cystein proteinase, peroxiredoxins, hsp90, venome allergen protein and tubulin that are known to be important for development and pathogenicity of B. xylophilus were selected. The compounds were virtually screened against five proposed targets through molecular docking into hypothetical binding sites located in a homology-built protein model. Of the fifteen nematicides screened, amocarzine, mebendazole and flubendazole were judged to bind best. For these best docked compounds, structural and electronic properties were calculated through density functional theory studies. The results emphasize that these compounds could be potential lead compounds that can be further developed into nematicidal chemical against B. xylophilus. However, further studies are required to ascertain the nematicidal activity of these compounds against phytophagous nematode.


Assuntos
Antinematódeos/química , Antinematódeos/farmacologia , Nematoides/efeitos dos fármacos , Pinus/parasitologia , Animais , Sítios de Ligação , Descoberta de Drogas , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Relação Estrutura-Atividade
17.
Sci Rep ; 7(1): 14850, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29093477

RESUMO

ß-glucosidases catalyze the final step of cellulose hydrolysis and are essential in cellulose degradation. A ß-glucosidase gene, cen502, was identified and isolated from a metagenomic library from Bursaphelenchus xylophilus via functional screening. Analyses indicated that cen502 encodes a 465 amino acid polypeptide that contains a catalytic domain belonging to the glycoside hydrolase family 1 (GH1). Cen502 was heterologously expressed, purified, and biochemically characterized. Recombinant Cen502 displayed optimum enzymatic activity at pH 8.0 and 38 °C. The enzyme had highest specific activity to p-nitrophenyl-ß-D-glucopyranoside (pNPG; 180.3 U/mg) and had K m and V max values of 2.334 mol/ml and 9.017 µmol/min/mg, respectively. The addition of Fe2+ and Mn2+ significantly increased Cen502 ß-glucosidase activity by 60% and 50%, respectively, while 10% and 25% loss of ß-glucosidase activity was induced by addition of Pb2+ and K+, respectively. Cen502 exhibited activity against a broad array of substrates, including cellobiose, lactose, salicin, lichenan, laminarin, and sophorose. However, Cen502 displayed a preference for the hydrolysis of ß-1,4 glycosidic bonds rather than ß-1,3, ß-1,6, or ß-1,2 bonds. Our results indicate that Cen502 is a novel ß-glucosidase derived from bacteria associated with B. xylophilus and may represent a promising target to enhance the efficiency of cellulose bio-degradation in industrial applications.


Assuntos
Metagenômica/métodos , Nematoides/enzimologia , beta-Glucosidase/isolamento & purificação , Animais , Celulose/metabolismo , Glucosídeos/metabolismo , Microbiota/genética , Nematoides/microbiologia , Pinus/parasitologia , beta-Glucosidase/metabolismo
18.
PLoS One ; 12(6): e0178496, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28570707

RESUMO

The pine aphid Cinara pinitabulaeformis Zhang et Zhang is the main pine pest in China, it causes pine needles to produce dense dew (honeydew) which can lead to sooty mold (black filamentous saprophytic ascomycetes). Although common chemical and physical strategies are used to prevent the disease caused by C. pinitabulaeformis Zhang et Zhang, new strategies based on biological and/or genetic approaches are promising to control and eradicate the disease. However, there is no information about genomics, proteomics or transcriptomics to allow the design of new control strategies for this pine aphid. We used next generation sequencing technology to sequence the transcriptome of C. pinitabulaeformis Zhang et Zhang and built a transcriptome database. We identified 80,259 unigenes assigned for Gene Ontology (GO) terms and information for a total of 11,609 classified unigenes was obtained in the Clusters of Orthologous Groups (COGs). A total of 10,806 annotated unigenes were analyzed to identify the represented biological pathways, among them 8,845 unigenes matched with 228 KEGG pathways. In addition, our data describe propagative viruses, nutrition-related genes, detoxification related molecules, olfactory related receptors, stressed-related protein, putative insecticide resistance genes and possible insecticide targets. Moreover, this study provides valuable information about putative insecticide resistance related genes and for the design of new genetic/biological based strategies to manage and control C. pinitabulaeformis Zhang et Zhang populations.


Assuntos
Afídeos/genética , Genes de Insetos , Praguicidas , Pinus/parasitologia , Transcriptoma , Animais
19.
PLoS One ; 11(1): e0147855, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26815657

RESUMO

Monochamus alternatus Hope is the main vector in China of the Pine Wilt Disease caused by the pine wood nematode Bursaphelenchus xylophilus. Although chemical control is traditionally used to prevent pine wilt disease, new strategies based in biological control are promising ways for the management of the disease. However, there is no deep sequence analysis of Monochamus alternatus Hope that describes the transcriptome and no information is available about gene function of this insect vector. We used next generation sequencing technology to sequence the whole fourth instar larva transcriptome of Monochamus alternatus Hope and successfully built a Monochamus alternatus Hope transcriptome database. In total, 105,612 unigenes were assigned for Gene Ontology (GO) terms, information for 16,730 classified unigenes was obtained in the Clusters of Orthologous Groups (COGs) database, and 13,024 unigenes matched with 224 predicted pathways in the Kyoto Encyclopedia of Genes and Genome (KEGG). In addition, genes related to putative insecticide resistance-related genes, RNAi, the Bt receptor, intestinal digestive enzymes, possible future insect control targets and immune-related molecules are described. This study provides valuable basic information that can be used as a gateway to develop new molecular tools for Monochamus alternatus Hope control strategies.


Assuntos
Besouros/genética , Insetos Vetores/genética , Pinus/parasitologia , Doenças das Plantas/parasitologia , Transcriptoma , Tylenchida/fisiologia , Animais , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Insetos/genética , Resistência a Inseticidas , Larva/genética , Doenças das Plantas/etiologia
20.
Tree Physiol ; 35(9): 987-99, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26220737

RESUMO

The pine wilt disease (PWD), caused by the pinewood nematode (PWN) Bursaphelenchus xylophilus (Steiner et Buhrer) Nickle, is one of the most serious threats to pine forests worldwide. Here we studied several components of susceptibility to PWN infection in a model group of pine species widely distributed in Europe (Pinus pinaster Ait., P. pinea L., P. sylvestris L. and P. radiata D. Don), specifically concerning anatomical and chemical traits putatively related to nematode resistance, whole-plant nematode population after experimental inoculation, and several biochemical and physiological traits indicative of plant performance, damage and defensive responses 60 days post inoculation (dpi) in 3-year-old plants. Pinus pinaster was the most susceptible species to PWN colonization, with a 13-fold increase in nematode population size following inoculation, showing up to 35-fold more nematodes than the other species. Pinus pinea was the most resistant species, with an extremely reduced nematode population 60 dpi. Axial resin canals were significantly wider in P. pinaster than in the other species, which may have facilitated nematode dispersal through the stem and contributed to its high susceptibility; nevertheless, this trait does not seem to fully determinate the susceptible character of a species, as P. sylvestris showed similar nematode migration rates to P. pinaster but narrower axial resin canals. Nematode inoculation significantly affected stem water content and polyphenolic concentration, and leaf chlorophyll and lipid peroxidation in all species. In general, P. pinaster and P. sylvestris showed similar chemical responses after infection, whereas P. radiata, which co-exists with the PWN in its native range, showed some degree of tolerance to the nematode. This work provides evidence that the complex interactions between B. xylophilus and its hosts are species-specific, with P. pinaster showing a strong susceptibility to the pathogen, P. pinea being the most tolerant species, and P. sylvestris and P. radiata having a moderate susceptibility, apparently through distinct coping mechanisms.


Assuntos
Especificidade de Hospedeiro , Nematoides/fisiologia , Pinus/parasitologia , Doenças das Plantas/parasitologia , Animais , Suscetibilidade a Doenças , Europa (Continente) , Geografia , Estresse Oxidativo , Pinus/anatomia & histologia , Especificidade da Espécie , Xilema/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA