Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 501
Filtrar
1.
J Med Chem ; 67(4): 3112-3126, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38325398

RESUMO

CDK2 is a critical regulator of the cell cycle. For a variety of human cancers, the dysregulation of CDK2/cyclin E1 can lead to tumor growth and proliferation. Historically, early efforts to develop CDK2 inhibitors with clinical applications proved unsuccessful due to challenges in achieving selectivity over off-target CDK isoforms with associated toxicity. In this report, we describe the discovery of (4-pyrazolyl)-2-aminopyrimidines as a potent class of CDK2 inhibitors that display selectivity over CDKs 1, 4, 6, 7, and 9. SAR studies led to the identification of compound 17, a kinase selective and highly potent CDK2 inhibitor (IC50 = 0.29 nM). The evaluation of 17 in CCNE1-amplified mouse models shows the pharmacodynamic inhibition of CDK2, measured by reduced Rb phosphorylation, and antitumor activity.


Assuntos
Quinases Ciclina-Dependentes , Neoplasias , Animais , Humanos , Camundongos , Quinase 2 Dependente de Ciclina , Quinase 4 Dependente de Ciclina/metabolismo , Fosforilação , Pirimidinas/farmacologia , Pirazóis/química , Pirazóis/metabolismo , Pirazóis/farmacologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-37813296

RESUMO

Fipronil is a broad-spectrum pesticide presenting high acute toxicity to non-target organisms, particularly to aquatic species. Natural compounds stand out as promising alternatives to the use of synthetic pesticides such as fipronil. Thus, our study aimed to compare the toxicity of carvacrol (natural), acetylcarvacrol (semisynthetic), and fipronil (synthetic) to early staged zebrafish. We conducted a series of toxicity assays at concentrations ranging from 0.01 µM to 25 µM for fipronil and 0.01 µM to 200 µM for carvacrol and acetylcarvacrol, depending on the assay, after 7-days post-fertilization (dpf). The potency (EC50) of fipronil was ∼1 µM for both deformities and mortality at 7 dpf, whereas EC50 was >50 µM for carvacrol and >70 µM for acetylcarvacrol. Fipronil at 0.1 and 1 µM caused a decrease in body length and swim bladder area of larvae at 7dpf, but no difference was observed for either carvacrol or acetylcarvacrol. Based upon the visual motor response test, fipronil induced hypoactivity in larval zebrafish at 1 µM and acetylcarvacrol induced hyperactivity at 0.1 µM. Anxiolytic-type behaviors were not affected by any of these chemicals. All chemicals increased the production of reactive oxygen species at 7 dpf, but not at 2 dpf. Genes related to swim bladder inflation, oxidative stress, lipid metabolism, and mitochondrial activity were measured; only fipronil induced upregulation of atp5f1c. There were no changes were observed in oxygen consumption rates of fish and apoptosis. Taken together, our data suggest that carvacrol and its derivative may be safer replacements for fipronil due to their lower acute toxicity.


Assuntos
Praguicidas , Poluentes Químicos da Água , Animais , Peixe-Zebra/metabolismo , Pirazóis/toxicidade , Pirazóis/metabolismo , Larva , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
3.
J Biochem ; 174(2): 143-164, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37039772

RESUMO

Here, we show that 3,5-bis[(1E)-2-(2,6-dichlorophenyl)ethenyl]-1H-pyrazole 2l depolymerizes microtubules and reduces the number of growing tips of microtubules. The fluorescence recovery after photobleaching experiment in live MCF-7 cells showed that pyrazole 2l suppresses spindle microtubule dynamics. Further, the compound inhibits chromosome movements, activates the spindle assembly checkpoint and blocks mitosis in MCF-7 cells. Pyrazole 2l treatment induced cell death in a variety of pathways. Pyrazole 2l induces cell death independent of BubR1 and p53 levels of MCF-7 cells upon microtubule depolymerization. Further, pyrazole 2l increases the interaction between NF-κB and microtubules and enhances the nuclear localization of NF-κB at its half-maximal proliferation inhibitory concentration while a high concentration of the compound reduced the nuclear localization of NF-κB. Interestingly, the compound exerted significantly stronger antiproliferative effects in cancerous cells than in non-cancerous cells. The results indicated that pyrazole 2l inhibits mitosis by targeting microtubules, induces several types of cell death stimuli and suggests its potential as a lead in developing anticancer agent.


Assuntos
Tubulina (Proteína) , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/metabolismo , Tubulina (Proteína)/metabolismo , NF-kappa B/metabolismo , Microtúbulos/metabolismo , Mitose , Morte Celular , Pirazóis/farmacologia , Pirazóis/metabolismo , Células HeLa
4.
Molecules ; 28(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36985590

RESUMO

Selpercatinib (SLP; brand name Retevmo®) is a selective and potent RE arranged during transfection (RET) inhibitor. On 21 September 2022, the FDA granted regular approval to SLP (Retevmo, Eli Lilly, and Company). It is considered the only and first RET inhibitor for adults with metastatic or locally advanced solid tumors with RET gene fusion. In the current experiment, a highly specific, sensitive, and fast liquid chromatography tandem mass spectrometry (LC-MS/MS) method for quantifying SLP in human liver microsomes (HLMs) was developed and applied to the metabolic stability evaluation of SLP. The LC-MS/MS method was validated following the bioanalytical methodology validation guidelines outlined by the FDA (linearity, selectivity, matrix effect, accuracy, precision, carryover, and extraction recovery). SLP was detected by a triple quadrupole detector (TQD) using a positive ESI source and multiple reaction monitoring (MRM) mode for mass spectrometric analysis and estimation of analytes ions. The IS-normalized matrix effect and extraction recovery were acceptable according to the FDA guidelines for the bioanalysis of SLP. The SLP calibration standards were linear from 1 to 3000 ng/mL HLMs matrix, with a regression equation (y = 1.7298x + 3.62941) and coefficient of variation (r2 = 0.9949). The intra-batch and inter-batch precision and accuracy of the developed LC-MS/MS method were -6.56-5.22% and 5.08-3.15%, respectively. SLP and filgotinib (FLG) (internal standard; IS) were chromatographically separated using a Luna 3 µm PFP (2) stationary phase (150 × 4.6 mm) with an isocratic mobile phase at 23 ± 1 °C. The limit of quantification (LOQ) was 0.78 ng/mL, revealing the LC-MS/MS method sensitivity. The intrinsic clearance and in vitro t1/2 (metabolic stability) of SLP in the HLMs matrix were 34 mL/min/kg and 23.82 min, respectively, which proposed an intermediate metabolic clearance rate of SLP, confirming the great value of this type of kinetic experiment for more accurate metabolic stability predictions. The literature review approved that the established LC-MS/MS method is the first developed and reported method for quantifying SLP metabolic stability.


Assuntos
Microssomos Hepáticos , Espectrometria de Massas em Tandem , Adulto , Humanos , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Microssomos Hepáticos/metabolismo , Pirazóis/metabolismo , Reprodutibilidade dos Testes
5.
Pestic Biochem Physiol ; 189: 105314, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36549811

RESUMO

Tebufenpyrad is classified as a pyrazole acaricide and insecticide. It is widely used for several crops, especially in greenhouses, in several countries. While its unfavorable effects on non-target organisms have already been established, relatively little is known about its reproductive toxicity. Therefore, we demonstrated the biochemical effects of tebufenpyrad using porcine trophectoderm and porcine luminal epithelial cells, which are involved in implantation. We found that tebufenpyrad had antiproliferative effects and reduced cell viability. Tebufenpyrad also triggered apoptosis and excessive reactive oxygen species production. Furthermore, it induced cell cycle arrest in the G1 phase and disrupted calcium homeostasis in the cytosol and mitochondria. MAPK signaling pathways and the crosstalk among them were altered following tebufenpyrad treatment. In addition, the migration ability of cells was reduced after treatment with tebufenpyrad. Lastly, tebufenpyrad influenced the expression of genes related to pregnancy. Collectively, these results reveal the mechanism of the biochemical and physiological effects of tebufenpyrad to both trophectoderm and uterine cells and suggest that tebufenpyrad reduces the potential of successful implantation.


Assuntos
Cálcio , Pirazóis , Gravidez , Feminino , Suínos , Animais , Proliferação de Células , Cálcio/metabolismo , Pontos de Checagem do Ciclo Celular , Pirazóis/toxicidade , Pirazóis/metabolismo , Células Epiteliais , Homeostase
6.
Proc Natl Acad Sci U S A ; 119(36): e2205608119, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36037385

RESUMO

Cop9 signalosome (CSN) regulates the function of cullin-RING E3 ubiquitin ligases (CRLs) by deconjugating the ubiquitin-like protein NEDD8 from the cullin subunit. To understand the physiological impact of CSN function on the CRL network and cell proliferation, we combined quantitative mass spectrometry and genome-wide CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa) screens to identify factors that modulate cell viability upon inhibition of CSN by the small molecule CSN5i-3. CRL components and regulators strongly modulated the antiproliferative effects of CSN5i-3, and in addition we found two pathways involved in genome integrity, SCFFBXO5-APC/C-GMNN and CUL4DTL-SETD8, that contribute substantially to the toxicity of CSN inhibition. Our data highlight the importance of CSN-mediated NEDD8 deconjugation and adaptive exchange of CRL substrate receptors in sustaining CRL function and suggest approaches for leveraging CSN inhibition for the treatment of cancer.


Assuntos
Replicação do DNA , Ubiquitina-Proteína Ligases , Azepinas/metabolismo , Complexo do Signalossomo COP9/antagonistas & inibidores , Complexo do Signalossomo COP9/genética , Complexo do Signalossomo COP9/metabolismo , Sobrevivência Celular , Proteínas Culina/genética , Proteínas Culina/metabolismo , Imidazóis/metabolismo , Proteína NEDD8/metabolismo , Pirazóis/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
7.
Int J Mol Sci ; 23(12)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35743131

RESUMO

Dermal fibroblasts in pathological scars secrete constitutively elevated levels of TGF-ß, signaling the transcription of fibrotic genes via activin-like kinase 5 (ALK5). In the present study, we examine the antifibrotic effects of galunisertib, a small-molecule inhibitor of ALK5, on fibroproliferative dermal fibroblasts in an in vitro model of wound healing. We induced fibrosis in human dermal fibroblasts with exogenous TGF-ß and performed cellular proliferation assays after treatment with varying concentrations of galunisertib. Dermal fibroblast proliferation was diminished to homeostatic levels without cytotoxicity at concentrations as high as 10 µM. An in vitro scratch assay revealed that galunisertib significantly enhanced cellular migration and in vitro wound closure beginning 24 h post-injury. A gene expression analysis demonstrated a significant attenuation of fibrotic gene expression, including collagen-1a, alpha-smooth muscle actin, fibronectin, and connective tissue growth factor, with increased expression of the antifibrotic genes MMP1 and decorin. Protein synthesis assays confirmed drug activity and corroborated the transcription findings. In summary, galunisertib simultaneously exerts antifibrotic effects on dermal fibroblasts while enhancing rates of in vitro wound closure. Galunisertib has already completed phase II clinical trials for cancer therapy with minimal adverse effects and is a promising candidate for the treatment and prevention of pathological cutaneous scars.


Assuntos
Cicatriz , Fator de Crescimento Transformador beta , Proliferação de Células , Células Cultivadas , Cicatriz/patologia , Fibroblastos/metabolismo , Fibrose , Humanos , Pirazóis/metabolismo , Pirazóis/farmacologia , Quinolinas , Fator de Crescimento Transformador beta/metabolismo
8.
Proc Natl Acad Sci U S A ; 119(15): e2110846119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35385353

RESUMO

Ebola virus (EBOV) disease is characterized by lymphopenia, breach in vascular integrity, cytokine storm, and multiorgan failure. The pathophysiology of organ involvement, however, is incompletely understood. Using [18F]-DPA-714 positron emission tomography (PET) imaging targeting the translocator protein (TSPO), an immune cell marker, we sought to characterize the progression of EBOV-associated organ-level pathophysiology in the EBOV Rhesus macaque model. Dynamic [18F]-DPA-714 PET/computed tomography imaging was performed longitudinally at baseline and at multiple time points after EBOV inoculation, and distribution volumes (Vt) were calculated as a measure of peripheral TSPO binding. Using a mixed-effect linear regression model, spleen and lung Vt decreased, while the bone marrow Vt increased over time after infection. No clear trend was found for liver Vt. Multiple plasma cytokines correlated negatively with lung/spleen Vt and positively with bone marrow Vt. Multiplex immunofluorescence staining in spleen and lung sections confirmed organ-level lymphoid and monocytic loss/apoptosis, thus validating the imaging results. Our findings are consistent with EBOV-induced progressive monocytic and lymphocytic depletion in the spleen, rather than immune activation, as well as depletion of alveolar macrophages in the lungs, with inefficient reactive neutrophilic activation. Increased bone marrow Vt, on the other hand, suggests hematopoietic activation in response to systemic immune cell depletion and leukocytosis and could have prognostic relevance. In vivo PET imaging provided better understanding of organ-level pathophysiology during EBOV infection. A similar approach can be used to delineate the pathophysiology of other systemic infections and to evaluate the effectiveness of newly developed treatment and vaccine strategies.


Assuntos
Doença pelo Vírus Ebola , Tomografia por Emissão de Pósitrons , Receptores de GABA , Animais , Biomarcadores/metabolismo , Modelos Animais de Doenças , Doença pelo Vírus Ebola/diagnóstico por imagem , Doença pelo Vírus Ebola/patologia , Pulmão/patologia , Macaca mulatta , Tomografia por Emissão de Pósitrons/métodos , Pirazóis/metabolismo , Pirimidinas/metabolismo , Receptores de GABA/metabolismo , Baço/patologia
9.
J Med Chem ; 65(3): 2149-2173, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35080396

RESUMO

Pseudomonas aeruginosa is of major concern for cystic fibrosis patients where this infection can be fatal. With the emergence of drug-resistant strains, there is an urgent need to develop novel antibiotics against P. aeruginosa. MurB is a promising target for novel antibiotic development as it is involved in the cell wall biosynthesis. MurB has been shown to be essential in P. aeruginosa, and importantly, no MurB homologue exists in eukaryotic cells. A fragment-based drug discovery approach was used to target Pa MurB. This led to the identification of a number of fragments, which were shown to bind to MurB. One fragment, a phenylpyrazole scaffold, was shown by ITC to bind with an affinity of Kd = 2.88 mM (LE 0.23). Using a structure guided approach, different substitutions were synthesized and the initial fragment was optimized to obtain a small molecule with Kd = 3.57 µM (LE 0.35).


Assuntos
Antibacterianos/química , Proteínas de Bactérias/antagonistas & inibidores , Oxirredutases/antagonistas & inibidores , Pseudomonas aeruginosa/enzimologia , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Fibrose Cística/complicações , Fibrose Cística/mortalidade , Fibrose Cística/patologia , Avaliação Pré-Clínica de Medicamentos , Humanos , Ligantes , Conformação Molecular , Simulação de Acoplamento Molecular , Oxirredutases/metabolismo , Infecções por Pseudomonas/complicações , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Pirazóis/química , Pirazóis/metabolismo , Pirazóis/farmacologia , Pirazóis/uso terapêutico
10.
Int J Mol Sci ; 22(23)2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34884931

RESUMO

Neuroblastoma is a severe childhood disease, accounting for ~10% of all infant cancers. The amplification of the MYCN gene, coding for the N-Myc transcription factor, is an essential marker correlated with tumor progression and poor prognosis. In neuroblastoma cells, the mitotic kinase Aurora-A (AURKA), also frequently overexpressed in cancer, prevents N-Myc degradation by directly binding to a highly conserved N-Myc region. As a result, elevated levels of N-Myc are observed. During recent years, it has been demonstrated that some ATP competitive inhibitors of AURKA also cause essential conformational changes in the structure of the activation loop of the kinase that prevents N-Myc binding, thus impairing the formation of the AURKA/N-Myc complex. In this study, starting from a screening of crystal structures of AURKA in complexes with known inhibitors, we identified additional compounds affecting the conformation of the kinase activation loop. We assessed the ability of such compounds to disrupt the interaction between AURKA and N-Myc in vitro, using Surface Plasmon Resonance competition assays, and in tumor cell lines overexpressing MYCN, by performing Proximity Ligation Assays. Finally, their effects on N-Myc cellular levels and cell viability were investigated. Our results identify PHA-680626 as an amphosteric inhibitor both in vitro and in MYCN overexpressing cell lines, thus expanding the repertoire of known conformational disrupting inhibitors of the AURKA/N-Myc complex and confirming that altering the conformation of the activation loop of AURKA with a small molecule is an effective strategy to destabilize the AURKA/N-Myc interaction in neuroblastoma cancer cells.


Assuntos
Aurora Quinase A/metabolismo , Proteína Proto-Oncogênica N-Myc/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Pirróis/farmacologia , Trifosfato de Adenosina/metabolismo , Antineoplásicos/farmacologia , Aurora Quinase A/antagonistas & inibidores , Aurora Quinase A/química , Azepinas/metabolismo , Azepinas/farmacologia , Benzazepinas/metabolismo , Benzazepinas/farmacologia , Sítios de Ligação , Ligação Competitiva , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Proteína Proto-Oncogênica N-Myc/química , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Conformação Proteica , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Pirazóis/metabolismo , Pirimidinas/metabolismo , Pirimidinas/farmacologia , Pirróis/metabolismo , Ressonância de Plasmônio de Superfície
11.
Theranostics ; 11(19): 9571-9586, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34646387

RESUMO

Rationale: Head and neck squamous cell carcinoma (HNSCC) represent the 4th most aggressive cancer. 50% of patients relapse to the current treatments combining surgery, radiotherapy and cisplatin and die two years after the diagnosis. Elevated expression of the polo-like kinase 1 (Plk1) correlated to a poor prognosis in epidermoid carcinomas. Methods: The molecular links between Plk1 and resistance to cisplatin/radiotherapy were investigated in patients and cell lines resistant to cisplatin and/or to radiotherapy. The therapeutic relevance of the Plk1 inhibitor onvansertib, alone or combined with cisplatin/radiotherapy, was evaluated on the proliferation/migration on HNSCC cell lines, in experimental HNSCC in mice, in a zebrafish metastasis model and on patient-derived 3D tumor sections. Results: Plk1 expression correlated to a bad prognosis in HNSCC and increased after relapse on cisplatin/radiotherapy. Onvansertib induced mitotic arrest, chromosomic abnormalities and polyploidy leading to apoptosis of sensitive and resistant HNSCC cells at nanomolar concentrations without any effects on normal cells. Onvansertib inhibited the growth of experimental HNSCC in mice and metastatic dissemination in zebrafishes. Moreover, onvansertib combined to cisplatin and/or radiotherapy resulted in a synergic induction of tumor cell death. The efficacy of onvansertib alone and in combination with reference treatments was confirmed on 3D viable sections of HNSCC surgical specimens. Conclusions: Targeting Plk1 by onvansertib represents a new strategy for HNSCC patients at the diagnosis in combination with reference treatments, or alone as a second line treatment for HNCSCC patients experiencing relapses.


Assuntos
Piperazinas/uso terapêutico , Pirazóis/uso terapêutico , Quinazolinas/uso terapêutico , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/patologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cisplatino/uso terapêutico , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Humanos , Camundongos , Camundongos Nus , Recidiva Local de Neoplasia/tratamento farmacológico , Piperazinas/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/metabolismo , Pirazóis/metabolismo , Quinazolinas/metabolismo , Radioterapia/métodos , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Peixe-Zebra , Quinase 1 Polo-Like
12.
J Med Chem ; 64(16): 12163-12180, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34375113

RESUMO

Rash is one of the primary dose-limiting toxicities of Akt (protein kinase B) inhibitors in clinical trials. Here, we demonstrate the inhibition of Akt2 isozyme may be a driver for keratinocyte apoptosis, which promotes us to search for new selective Akt inhibitors with an improved cutaneous safety property. According to our previous research, compound 2 is selected for further optimization for overcoming the disadvantages of compound 1, including high Akt2 inhibition and high toxicity against HaCaT keratinocytes. The dihedral angle-based design and molecular dynamics simulation lead to the identification of Hu7691 (B5) that achieves a 24-fold selectivity between Akt1 and Akt2. Hu7691 exhibits low activity in inducing HaCaT apoptosis, promising kinase selectivity, and excellent anticancer cell proliferation potencies. Based on the superior results of safety property, pharmacokinetic profile, and in vivo efficacy, the National Medical Products Administration (NMPA) approved the investigational new drug (IND) application of Hu7691.


Assuntos
Benzamidas/uso terapêutico , Exantema/prevenção & controle , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Pirazóis/uso terapêutico , Animais , Benzamidas/química , Benzamidas/metabolismo , Benzamidas/toxicidade , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cães , Feminino , Células HEK293 , Humanos , Queratinócitos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Neoplasias/complicações , Ligação Proteica , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/toxicidade , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirazóis/química , Pirazóis/metabolismo , Pirazóis/toxicidade , Ratos Sprague-Dawley , Relação Estrutura-Atividade
13.
J Inorg Biochem ; 223: 111545, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34303108

RESUMO

Three Ru(II)-DMSO complexes (1-3) containing 2-(3-pyrazolyl)pyridine (PzPy), 2-pyrazol-3-ylfuran (PzO), or 2-pyrazol-3-ylthiophene (PzS) ligand, were synthesized and characterized. The monodentate coordination of the heterocyclic pyrazolyl ligand (PzPy) with Ru(II) ion via N atom was confirmed by single crystal X-ray diffraction. Complex 1 could be converted to the known η2-bidentate PzPy complex cis(Cl), cis(S)-[RuCl2(PzPy)(DMSO)2] (4) under reflux conditions. The mechanism underlying binding mode transformation was studied by 1H NMR spectroscopy and density functional theory (DFT) calculations. The binding abilities of the complexes (1-4) with calf-thymus (CT) DNA and bovine serum albumin (BSA) were investigated using spectroscopic and molecular docking techniques. Among the four Ru(II) complexes, complexes 1 and 3 inhibited the long-term proliferation of human breast cancer cells, whereas complexes 2 and 4 did not inhibit their proliferation to a considerable extent. Interestingly, complexes 1 and 3 did not induce significant cell death but rather attenuated the clonogenicity of breast cancer cells by upregulating reactive oxygen species (ROS), endoplasmic reticulum (ER) and autophagic stress.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Dimetil Sulfóxido/análogos & derivados , Dimetil Sulfóxido/farmacologia , Pirazóis/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Bovinos , Linhagem Celular Tumoral , Complexos de Coordenação/síntese química , Complexos de Coordenação/metabolismo , DNA/metabolismo , Dimetil Sulfóxido/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica , Pirazóis/síntese química , Pirazóis/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Rutênio/química , Soroalbumina Bovina/metabolismo
14.
Bioorg Med Chem Lett ; 49: 128286, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34314844

RESUMO

The mTOR and HDAC dual suppression is meaningful for counteracting drug resistance resulted from kinase mutation and bypass mechanisms. Herein, we communicate our recent discovery of a novel structural series of mTOR/HDAC bi-functional inhibitors featuring the pyrazolopyrimidine core via pharmacophore-merging strategy. More than half of them exerted potent dual-target inhibitory activities. In particular, compound 50 exhibited IC50 values of 0.49 and 0.91 nM against mTOR and HDAC1, respectively, along with remarkably enhanced anti-proliferative activity (IC50 = 1.74 µM) against MV4-11 cell line than mTOR inhibitor MLN-0128 (IC50 = 5.84 µM) and HDAC inhibitor SAHA (IC50 = 8.44 µM). Its intracellular intervention of both mTOR signaling and HDAC was validated by the Western blot analysis. Moreover, as the first disclosed mTOR/HDAC dual inhibitor with selectivity for some specific HDAC subtypes, it has the potential to alleviate the adverse effects resulted from pan-HDAC inhibition. Attributed to its favorable in vitro performance, compound 50 is valuable for further functional investigation as a polypharmacological anti-cancer agent.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Inibidores de MTOR/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/metabolismo , Histona Desacetilases/metabolismo , Humanos , Inibidores de MTOR/síntese química , Inibidores de MTOR/metabolismo , Simulação de Acoplamento Molecular , Ligação Proteica , Pirazóis/síntese química , Pirazóis/metabolismo , Pirimidinas/síntese química , Pirimidinas/metabolismo , Serina-Treonina Quinases TOR/metabolismo
15.
Eur J Med Chem ; 223: 113627, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34171657

RESUMO

The tropomyosin receptor kinases TRKs are responsible for different tumor types which caused by NTRK gene fusion, and have been identified as a successful target for anticancer therapeutics. Herein, we report a potent and selectivity TRKs inhibitor 19m through rational drug design strategy from a micromolar potency hit 17a. Compound 19m significantly inhibits the proliferation of TRK-dependent cell lines (Km-12), while it has no inhibitory effect on TRK-independent cell lines (A549 and THLE-2). Furthermore, kinases selectivity profiling showed that in addition to TRKs, compound 19m only displayed relatively strong inhibitory activity on ALK. These data may indicate that compound 19m has a good drug safety. Partial ADME properties were evaluated in vitro and in vivo. Compound 19m exhibited a good AUC values and volume of distribution and low clearance in the pharmacokinetics experiment of rats. Finally, a pharmacophore model guided by experimental results is proposed. We hope this theoretical model can help researchers find type I TRK inhibitors more efficiently.


Assuntos
Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Pirróis/farmacologia , Receptor trkA/antagonistas & inibidores , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Estabilidade de Medicamentos , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Humanos , Microssomos Hepáticos/metabolismo , Simulação de Acoplamento Molecular , Ligação Proteica , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacocinética , Pirazóis/síntese química , Pirazóis/metabolismo , Pirazóis/farmacocinética , Pirróis/síntese química , Pirróis/metabolismo , Pirróis/farmacocinética , Ratos Sprague-Dawley , Receptor trkA/metabolismo
16.
Int J Mol Sci ; 22(10)2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34067708

RESUMO

Deletion of phenylalanine at position 508 (F508del) in the CFTR chloride channel is the most frequent mutation in cystic fibrosis (CF) patients. F508del impairs the stability and folding of the CFTR protein, thus resulting in mistrafficking and premature degradation. F508del-CFTR defects can be overcome with small molecules termed correctors. We investigated the efficacy and properties of VX-445, a newly developed corrector, which is one of the three active principles present in a drug (Trikafta®/Kaftrio®) recently approved for the treatment of CF patients with F508del mutation. We found that VX-445, particularly in combination with type I (VX-809, VX-661) and type II (corr-4a) correctors, elicits a large rescue of F508del-CFTR function. In particular, in primary bronchial epithelial cells of CF patients, the maximal rescue obtained with corrector combinations including VX-445 was close to 60-70% of CFTR function in non-CF cells. Despite this high efficacy, analysis of ubiquitylation, resistance to thermoaggregation, protein half-life, and subcellular localization revealed that corrector combinations did not fully normalize F508del-CFTR behavior. Our study indicates that it is still possible to further improve mutant CFTR rescue with the development of corrector combinations having maximal effects on mutant CFTR structural and functional properties.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/efeitos dos fármacos , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Pirazóis/farmacologia , Piridinas/farmacologia , Pirrolidinas/farmacologia , Aminofenóis/farmacologia , Aminopiridinas/farmacologia , Benzodioxóis/farmacologia , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Combinação de Medicamentos , Células Epiteliais/metabolismo , Humanos , Indóis/farmacologia , Dobramento de Proteína/efeitos dos fármacos , Pirazóis/metabolismo , Piridinas/metabolismo , Pirrolidinas/metabolismo , Quinolinas/farmacologia
17.
J Inorg Biochem ; 222: 111505, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34144467

RESUMO

Two new lanthanide complexes [PrL2(EA)2]NO3 (complex 1) and [SmL2(EA)2]NO3 (complex 2) (H2L = 5-(Pyrazol-1-yl)nicotinic acid, EA = CH3CH2OH) were synthesized. The structures were characterized by single crystal X-ray and elemental analysis. The interaction between the complex and fish sperm DNA(FS-DNA) was monitored using ultraviolet and fluorescence spectroscopy, and the binding constants were determined. Both complexes showed the ability to effectively bind DNA, and the molecular docking technology was used to simulate the binding of the complex and DNA. In addition, through the annexin V-Fluorescein Isothiocyanate(FITC)/ Propidium Iodide (PI) test experiment, tetrazollium [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT) in vitro test, and cell morphology apoptosis studies, it was shown that the complex can effectively induce HeLa tumor cell apoptosis. Compared with cisplatin and complex, complex 1 shows significant cancer cell inhibition, and we hope that this new type of complex will open up new ways for the next generation of drugs in biomedical applications.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Ácidos Nicotínicos/farmacologia , Pirazóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Apoptose/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/metabolismo , DNA/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Ácidos Nicotínicos/síntese química , Ácidos Nicotínicos/metabolismo , Praseodímio/química , Pirazóis/síntese química , Pirazóis/metabolismo , Samário/química
18.
Eur J Med Chem ; 223: 113653, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34161866

RESUMO

Si113, a pyrazolo[3,4-d]pyrimidine derivative, gained more attention as an anticancer agent due to its potent anticancer activity on both in vitro and in vivo hepatocellular carcinomas (HCC) and ovarian carcinoma models. But the drawback is the low water solubility which prevents its further development. In this context, we successfully overcame this limitation by synthesizing two novel prodrugs introducing the amino acid sequence D-Ala-Leu-Lys (TP). Moreover, TP sequence has a high affinity with plasmin, a protease recognized as overexpressed in many solid cancers, including HCC and ovarian carcinoma. The prodrugs were synthesized and fully characterized in terms of in vitro ADME properties, plasma stability and plasmin-induced release of the parent drug. The inhibitory activity against Sgk1 was evaluated and in vitro growth inhibition was evaluated on ovarian carcinoma and HCC cell lines in the presence and absence of human plasmin. In vivo pharmacokinetic properties and preliminary tissue distribution confirmed a better profile highlighting the importance of the prodrug approach. Finally, the prodrug antitumor efficacy was evaluated in an HCC xenografted murine model, where a significant reduction (around 90%) in tumor growth was observed. Treatment with ProSi113-TP in combination with paclitaxel in a paclitaxel-resistant ovarian carcinoma xenografted murine model, resulted in an impressive reduction of tumor volume greater than 95%. Our results revealed a promising activity of Si113 prodrugs and pave the way for their further development against resistant cancer.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Fibrinolisina/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Ovarianas/tratamento farmacológico , Pró-Fármacos/metabolismo , Pirazóis/uso terapêutico , Pirimidinas/uso terapêutico , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Estabilidade de Medicamentos , Feminino , Meia-Vida , Humanos , Proteínas Imediatamente Precoces/antagonistas & inibidores , Proteínas Imediatamente Precoces/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Nus , Neoplasias Ovarianas/patologia , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Pirazóis/química , Pirazóis/metabolismo , Pirazóis/farmacologia , Pirimidinas/química , Pirimidinas/metabolismo , Pirimidinas/farmacologia , Transplante Heterólogo
19.
Bioorg Chem ; 114: 105034, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34116264

RESUMO

Blockade of the programmed cell death-1 (PD-1)/programmed cell death-ligand 1 (PD-L1) signalling pathway is a promising tumour immunotherapeutic approach, and small molecule drugs have more advantages than monoclonal antibody macromolecules in clinical applications. Therefore, a series of 1-methyl-1H-pyrazolo[4,3-b]pyridine derivatives as PD-1/PD-L1 interaction novel small-molecule inhibitors were designed employing a ring fusion strategy. The inhibitory activity of compounds was evaluated by the HTRF assay, among which D38 was identified as the most potent PD-1/PD-L1 interaction inhibitor with an IC50 value of 9.6 nM. Furthermore, D38 exhibited prominent inhibitory activity against the PD-1/PD-L1 interaction with an EC50 value of 1.61 µM in a coculture model of PD-L1/TCR activator-expressing CHO cells and PD-1-expressing Jurkat cells. In addition, the preliminary structure-activity relationships (SARs) of compounds were elucidated, and the binding mode of D38 with the PD-L1 dimer was analysed by molecular docking. Overall, D38 could be employed as a prospective lead compound of PD-1/PD-L1 interaction inhibitors for further development.


Assuntos
Antígeno B7-H1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Pirazóis/farmacologia , Piridinas/farmacologia , Animais , Antígeno B7-H1/metabolismo , Células CHO , Cricetulus , Desenho de Fármacos , Humanos , Células Jurkat , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica , Pirazóis/síntese química , Pirazóis/metabolismo , Pirazóis/toxicidade , Piridinas/síntese química , Piridinas/metabolismo , Piridinas/toxicidade , Relação Estrutura-Atividade
20.
J Med Chem ; 64(9): 5850-5862, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33945681

RESUMO

The cullin-RING ubiquitin ligases (CRLs) are ubiquitin E3 enzymes that play a key role in controlling proteasomal degradation and are activated by neddylation. We previously reported inhibitors that target CRL activation by disrupting the interaction of defective in cullin neddylation 1 (DCN1), a CRL neddylation co-E3, and UBE2M, a neddylation E2. Our first-generation inhibitors possessed poor oral bioavailability and fairly rapid clearance that hindered the study of acute inhibition of DCN-controlled CRL activity in vivo. Herein, we report studies to improve the pharmacokinetic performance of the pyrazolo-pyridone inhibitors. The current best inhibitor, 40, inhibits the interaction of DCN1 and UBE2M, blocks NEDD8 transfer in biochemical assays, thermally stabilizes cellular DCN1, and inhibits anchorage-independent growth in a DCN1 amplified squamous cell carcinoma cell line. Additionally, we demonstrate that a single oral 50 mg/kg dose sustains plasma exposures above the biochemical IC90 for 24 h in mice.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Pirazóis/química , Piridinas/química , Enzimas de Conjugação de Ubiquitina/metabolismo , Administração Oral , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Desenho de Fármacos , Estabilidade de Medicamentos , Meia-Vida , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Camundongos , Simulação de Dinâmica Molecular , Pirazóis/metabolismo , Pirazóis/farmacologia , Piridinas/metabolismo , Piridinas/farmacologia , Relação Estrutura-Atividade , Enzimas de Conjugação de Ubiquitina/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA