Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 63(23): 14780-14804, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33210922

RESUMO

The tyrosine phosphatase SHP2 controls the activity of pivotal signaling pathways, including MAPK, JAK-STAT, and PI3K-Akt. Aberrant SHP2 activity leads to uncontrolled cell proliferation, tumorigenesis, and metastasis. SHP2 signaling was recently linked to drug resistance against cancer medications such as MEK and BRAF inhibitors. In this work, we present the development of a novel class of azaindole SHP2 inhibitors. We applied scaffold hopping and bioisosteric replacement concepts to eliminate unwanted structural motifs and to improve the inhibitor characteristics of the previously reported pyrazolone SHP2 inhibitors. The most potent azaindole 45 inhibits SHP2 with an IC50 = 0.031 µM in an enzymatic assay and with an IC50 = 2.6 µM in human pancreas cells (HPAF-II). Evaluation in a series of cellular assays for metastasis and drug resistance demonstrated efficient SHP2 blockade. Finally, 45 inhibited proliferation of two cancer cell lines that are resistant to cancer drugs and diminished ERK signaling.


Assuntos
Inibidores Enzimáticos/farmacologia , Indóis/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Pirazolonas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Domínio Catalítico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Humanos , Indóis/síntese química , Indóis/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Ligação Proteica , Proteína Tirosina Fosfatase não Receptora Tipo 11/química , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Pirazolonas/síntese química , Pirazolonas/metabolismo , Relação Estrutura-Atividade
2.
Talanta ; 191: 545-552, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30262097

RESUMO

Forensic toxicologists typically work with body fluids, such as blood and urine, or visceral tissues. The analysis of alternative samples, such as bone marrow, can be requested when the commonly used samples are unavailable due to an extended time lapse between the time of death and collection of the material to be analysed. In this study, a method for the analysis of the lipophilic drug famprofazone (FA) and its metabolites, methamphetamine (MA) and amphetamine (AM), in bone marrow was developed, validated and applied to bone marrow from pigs given controlled doses of famprofazone. This method involves enzymatic bone-cleaning, fragmentation of the bones with the assistance of a micro electric motor, optimization of clean-up and LLE (liquid/liquid extraction) conditions and determination by GC/MS. After evaluation through statistical tests, such as Shapiro Wilk for normality and Cochran for homoscedasticity, a linear model was applied in the range of 100 (LOQ) - 2000 ng g-1. Inter-day precision and bias was always < 4.6%. In real sample analysis, bone marrow FA and MA concentrations ranged from 103 to 232 and from 174 to 267 ng g-1, respectively; AM was not detected. The obtained results are useful for application in forensic toxicological protocols (human autopsy cases) and as a starting point for the development of further analytical tools.


Assuntos
Anfetamina/metabolismo , Medula Óssea/metabolismo , Metanfetamina/análogos & derivados , Metanfetamina/metabolismo , Pirazolonas/metabolismo , Anfetamina/isolamento & purificação , Animais , Autopsia , Modelos Lineares , Metanfetamina/isolamento & purificação , Pirazolonas/isolamento & purificação , Solventes/química , Suínos
3.
Acta Pharmacol Sin ; 39(10): 1622-1632, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29795358

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a clinical syndrome characterized by hepatic steatosis. NAFLD is closely linked to obesity, insulin resistance and dyslipidemia. AMP-activated protein kinase (AMPK) functions as an energy sensor and plays a central role in regulating lipid metabolism. In this study, we identified a series of novel pyrazolone AMPK activators using a homogeneous time-resolved fluorescence assay (HTRF) based on the AMPKα2ß1γ1 complex. Compound 29 (C29) is a candidate compound that directly activated the kinase domain of AMPK with an EC50 value of 2.1-0.2 µmol/L and acted as a non-selective activator of AMPK complexes. Treatment of HepG2 cells with C29 (20, 40 µmol/L) dose-dependently inhibited triglyceride accumulation. Chronic administration of C29 (10, 30 mg/kg every day, po, for 5 weeks) significantly improved lipid metabolism in both the liver and the plasma of ob/ob mice. These results demonstrate that the AMPK activators could be part of a novel treatment approach for NAFLD and associated metabolic disorders.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Ativadores de Enzimas/uso terapêutico , Lipogênese/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Pirazolonas/uso terapêutico , Proteínas Quinases Ativadas por AMP/química , Animais , Cães , Ativadores de Enzimas/química , Ativadores de Enzimas/metabolismo , Haplorrinos , Células Hep G2 , Humanos , Fígado/metabolismo , Camundongos , Microssomos Hepáticos/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Domínios Proteicos/efeitos dos fármacos , Pirazolonas/química , Pirazolonas/metabolismo , Ratos , Relação Estrutura-Atividade
4.
Mater Sci Eng C Mater Biol Appl ; 74: 70-85, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28254336

RESUMO

The nanomaterial with the novel biologically active compounds has been actively investigated for application in cancer research. Substantial use of nanofibrous scaffold for cancer research with potentially bioactive compounds through electrospinning has not been fully explored. Here, we describe the series of fabrication of nanofibrous scaffold loaded with novel potential biologically active hydroxybenzo[a]phenazine pyrazol-5(4H)-one derivatives were designed, synthesized by a simple one-pot, two step four component condensation based on Michael type addition reaction of lawsone, benzene-1,2-diamine, aromatic aldehydes and 3-methyl-1-phenyl-1H-pyrazol-5(4H)-one as the substrates. The heterogeneous solid state catalyst (Fe (III) Y-Zeolite) could effectively catalyze the reaction to obtain the product with high yield and short reaction time. The synthesized compounds (5a-5p) were analyzed by NMR, FTIR and HRMS analysis. Compound 5c was confirmed by single crystal XRD studies. All the compounds were biologically evaluated for their potential inhibitory effect on anticancer (MCF-7, Hep-2) and microbial (MRSA, MTCC 201 and FRCA) activities. Among the compounds 5i exhibited the highest levels of inhibitory activity against both MCF-7, Hep-2 cell lines. Furthermore, the compound 5i (BPP) was evaluated for DNA fragmentation, flow cytometry studies and cytotoxicity against MCF-7, Hep-2 and NIH 3T3 fibroblast cell lines. In addition, molecular docking (PDB ID: 1T46) studies were performed to predict the binding affinity of ligand with receptor. Moreover, the synthesized BPP compound was loaded in to the PHB-PCL nanofibrous scaffold to check the cytotoxicity against the MCF-7, Hep-2 and NIH 3T3 fibroblast cell lines. The in vitro apoptotic potential of the PHB-PCL-BPP nanofibrous scaffold was assessed against MCF-7, Hep-2 cancerous cells and fibroblast cells at 12, 24 and 48h respectively. The nanofibrous scaffold with BPP can induce apoptosis and also suppress the proliferation of cancerous cells. We anticipate that our results can provide better potential research in nanomaterial based cancer research.


Assuntos
Nanofibras/química , Fenazinas/química , Pirazolonas/química , Animais , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antineoplásicos/química , Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Sítios de Ligação , Candida albicans/efeitos dos fármacos , Catálise , Linhagem Celular Tumoral , Fragmentação do DNA/efeitos dos fármacos , Liberação Controlada de Fármacos , Compostos Férricos/química , Humanos , Células MCF-7 , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Camundongos , Microscopia Eletrônica de Varredura , Simulação de Acoplamento Molecular , Células NIH 3T3 , Proibitinas , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-kit/química , Proteínas Proto-Oncogênicas c-kit/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Pirazolonas/metabolismo , Pirazolonas/toxicidade , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
5.
Bioorg Med Chem ; 23(14): 4072-81, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25882522

RESUMO

Ligands of the FPR2 receptor initiate many signaling pathways including activation of phospholipase C, protein kinase C, the mitogen-activated protein kinase, and phosphatidylinositol 3-kinase/protein kinase B pathway. The possible actions include also calcium flux, superoxide generation, as well as migration and proliferation of monocytes. FPR2 activation may induce a pro- and anti-inflammatory effect depending on the ligand type. It is also found that this receptor is involved in tumor growth. Most of currently known FPR2 ligands are agonists since they were designed based on N-formyl peptides, which are natural agonists of formyl receptors. Since the non-peptide drugs are indispensable for effective treatment strategies, we performed a docking study of such ligands employing a generated dual template homology model of the FPR2 receptor. The study revealed different binding modes of particular classes of these drugs. Based on the obtained docking poses we proposed a detailed location of three hydrophobic pockets in orthosteric binding site of FPR2. Our model emphasizes the importance of aromatic stacking, especially with regard to residues His102(3.29) and Phe257(6.51), for binding of FPR2 ligands. We also identified other residues important for non-peptide ligand binding in the binding site of FPR2.


Assuntos
Receptores de Formil Peptídeo/química , Receptores de Formil Peptídeo/metabolismo , Receptores de Lipoxinas/química , Receptores de Lipoxinas/metabolismo , Relação Estrutura-Atividade , Benzimidazóis/química , Benzimidazóis/metabolismo , Sítios de Ligação , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Modelos Moleculares , Simulação de Acoplamento Molecular , Compostos de Fenilureia/química , Compostos de Fenilureia/metabolismo , Compostos de Fenilureia/farmacologia , Conformação Proteica , Pirazolonas/química , Pirazolonas/metabolismo , Piridazinas/química , Piridazinas/metabolismo , Quinazolinonas/química , Quinazolinonas/metabolismo , Receptores de Formil Peptídeo/agonistas , Receptores de Formil Peptídeo/antagonistas & inibidores , Receptores de Lipoxinas/agonistas , Receptores de Lipoxinas/antagonistas & inibidores
6.
Transplantation ; 78(3): 324-32, 2004 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-15316358

RESUMO

BACKGROUND: Orthotopic liver transplantation (OLT) requires cold ischemic storage followed by warm reperfusion. Although c-Jun N-terminal kinase (JNK) is rapidly activated after OLT, the functional consequences of JNK activation are unknown. The aim of this study was to address the role of JNK after OLT using the selective JNK inhibitor CC-401. METHODS: Donors, recipients, or stored liver explants were treated with vehicle or JNK inhibitor before OLT by an arterialized two-cuff method with 40 hours of cold storage. Recipients were assessed for 30-day survival, and graft injury was assessed over time by hepatic histology, serum transaminases, caspase 3 activation, cytosolic cytochrome c, and lipid peroxidation. RESULTS: Survival after OLT increased after donor plus storage and storage only treatment with JNK inhibitor (P<0.05). Treatment of recipient only did not improve survival. Increased survival correlated with improved hepatic histology and serum aspartate aminotransferase levels. JNK inhibition significantly decreased nonparenchymal cell killing at 60 minutes after reperfusion (P<0.05) and pericentral necrosis at 8 hours after reperfusion (P<0.01). JNK inhibition decreased cytochrome c release, caspase 3 activation (P<0.05), and lipid peroxidation (P<0.05). JNK inhibition also transiently blocked phosphorylation of c-Jun at 60 minutes after reperfusion (P<0.05) without affecting other MAPK signaling, including p-38 and Erk activation. CONCLUSIONS: JNK inhibition decreases hepatic necrosis and apoptosis after OLT, suggesting that JNK activation promotes cell death by both pathways. Inhibition of JNK may be a new therapeutic strategy to prevent liver injury after transplantation.


Assuntos
Apoptose/fisiologia , Transplante de Fígado/patologia , Fígado/enzimologia , Fígado/lesões , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Animais , Caspase 3 , Caspases/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno , Fígado/patologia , Transplante de Fígado/fisiologia , Masculino , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Necrose , Pirazolonas/metabolismo , Ratos , Ratos Endogâmicos Lew , Transplante Isogênico , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA