Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 613
Filtrar
1.
Clin Toxicol (Phila) ; 62(7): 412-424, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38984827

RESUMO

INTRODUCTION: Chlorfenapyr, a N-substituted halogenated pyrrole, is a broad-spectrum insecticide. The insecticidal activity of chlorfenapyr depends on its biotransformation by hepatic cytochrome P450 monooxygenases to tralopyril, which uncouples mitochondrial oxidative phosphorylation and disrupts adenosine triphosphate production. Neither the metabolism of chlorfenapyr nor the mechanism of tralopyril is completely elucidated. Acute human chlorfenapyr poisoning is not well characterized, and best practice in management following acute exposure is unclear. The purpose of this review is to characterize acute human chlorfenapyr poisoning by its clinical course, laboratory investigations, and imaging findings and propose a management plan for acute human chlorfenapyr exposure. METHODS: We systematically searched PubMed, Web of Science, Google Scholar, and EMBASE from inception to April 2024 across all languages for human chlorfenapyr and tralopyril cases, with descriptions of exposure, clinical manifestations, and clinical course included. Only manuscripts and abstracts from scientific conferences with sufficient clinical data following acute human exposures were included. In vitro studies, animal studies, agricultural studies, environmental impact studies, and non-clinical human studies were excluded. We then reviewed citations of included studies for additional eligible publications. Non-English publications were translated using Google Translate or primarily translated by our authors. The study adhered to Preferred Reporting for Systematic Reviews and Meta-analyses (PRISMA) guidelines for systematic reviews. RESULTS: We identified 3,376 publications of which 48 met study inclusion criteria, describing 75 unique cases of human poisoning from ingestion, inhalation, dermal exposure, and intra-abdominal injection of chlorfenapyr. No cases of tralopyril exposure were identified. The median time from exposure to symptom onset was six hours (interquartile range 1-48 hours). The most frequent initial or presenting signs/symptoms included diaphoresis, nausea and/or vomiting, and altered mental status. While hyperthermia (≥38 degrees centigrade) was less common at presentation, hyperthermia developed in 61 percent of all patients and was temporally associated with clinical deterioration and death. Most common laboratory abnormalities included elevated blood creatine kinase activity, hepatic aminotransferase activities, and lactate concentration. Imaging studies of the central nervous system often showed extensive symmetrical white matter abnormalities with swelling. Case fatality was 76 percent, and survivors commonly experienced sustained neurological sequelae. Management strategies were highly varied, and the effectiveness of specific medical interventions was unclear. DISCUSSION: Acute human chlorfenapyr poisoning is characterized by a latent period as long as 14 days, deterioration over hours to days, and can result in serious morbidity and mortality. Development of hyperthermia, likely driven by oxidative phosphorylation uncoupling by tralopyril, is an ominous clinical sign and is temporally associated with clinical decompensation and death. Laboratory abnormalities, particularly elevated creatine kinase activity, hepatic aminotransferase activities, and lactate concentration, were common, but only creatine kinase activity differed amongst survivors and fatalities. Best clinical practice in the management of patients exposed to chlorfenapyr is unclear, and we opine that a conservative approach with close clinical monitoring and supportive care is prudent. LIMITATIONS: The limitations of all reviews include their inherent retrospective and observational nature as well as publication bias that emphasizes severe outcomes, thus impacting the spectrum of illness and skewing mortality percentage. In addition, we interrogated a finite number of databases for publications on human chlorfenapyr exposure and there were limited cases with laboratory testing to confirm chlorfenapyr poisoning. Analysis of our systematic review was not powered to detect differences between groups, comparative statistics were not performed, and significance is not reported. CONCLUSIONS: Acute human chlorfenapyr toxicity is characterized by a latent period following exposure, development of new or progression of established signs/symptoms, potential for critical illness, rapid deterioration, serious morbidity, and mortality. A conservative approach to patient management is prudent.


Assuntos
Inseticidas , Piretrinas , Humanos , Piretrinas/intoxicação , Piretrinas/toxicidade , Inseticidas/intoxicação , Adulto , Feminino , Masculino , Pessoa de Meia-Idade , Intoxicação/terapia
2.
Pestic Biochem Physiol ; 203: 106008, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39084774

RESUMO

Deltamethrin (DLM) is a newer kind of insecticide that is used on pets, livestock, and crops, as well as to combat malaria vectors and household pests. It belongs to the synthetic pyrethroid group and is being promoted as an alternative to organophosphate chemicals due to its persistent and destructive effects. The current study aimed to evaluate the impact of sub-chronic oral exposure to DLM on autoimmune activity in rats. Three groups of male albino rats (15 rats/group) including the control group, the ethanol-treated group (1 ml/rat), and the DLM-treated group (5 mg/kg b.w). Samples of blood were taken from all groups at 4-, 8- and 12-week intervals for the determination of hematological, cytokines, and immunological parameters. T lymphocyte subsets and Treg lymphocytes were determined in serum using flow cytometric acquisition. The results revealed that DLM significantly increased TNF-α, IL-33, IL-6, IL-17, IgG, IgM, WBCs, differential count, and platelets while decreasing Hb concentration and RBCs. Additionally, DLM decreased the number of T-cell subsets (CD3, CD4, CD5, and CD8) and Treg lymphocytes. All of these impacts became more severe over time. It is possible to conclude that the sub-chronic oral exposure to DLM disturbed autoimmune activity through the disturbances in immunological indices, CDs subset Treg lymphocytes.


Assuntos
Inseticidas , Nitrilas , Piretrinas , Animais , Piretrinas/toxicidade , Piretrinas/administração & dosagem , Nitrilas/toxicidade , Nitrilas/farmacologia , Nitrilas/administração & dosagem , Masculino , Ratos , Inseticidas/toxicidade , Citocinas/sangue , Citocinas/metabolismo , Autoimunidade/efeitos dos fármacos , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia , Fator de Necrose Tumoral alfa/sangue , Ratos Wistar
3.
Pestic Biochem Physiol ; 202: 105918, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879320

RESUMO

Transcription factors play an important role in regulating the expression of detoxification genes (e.g. P450s) that confer insecticide resistance. Our previous study identified a series of candidate transcription factors (CYP6B7-fenvalerate association proteins, CAPs) that may be related to fenvalerate-induced expression of CYP6B7 in a field HDTJ strain of H. armigera. Whether these CAPs can mediate the transcript of CYP6B7 induced by fenvalerate in a susceptible HDS strain of H. armigera remains unknown. Further study showed that the expression levels of multiple CAPs were significantly induced by fenvalerate in HDS strain. Knockdown of CAP19 [fatty acid synthase-like (FAS)], CAP22 [polysaccharide biosynthesis domain-containing protein 1 (PBDC1)], CAP24 [5-formyltetrahydrofolate cycloligase (5-FCL)], CAP30 [peptidoglycan recognition protein LB-like (PGRP)] and CAP33 [NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 11 (NDUFA11)] resulted in significant inhibition of CYP6B7 and some other P450 genes expression; meanwhile, the sensitivity of HDS strain larvae to fenvalerate was significantly increased. In addition, PBDC1, PGRP and NDUFA11, either alone or in combination, could significantly enhance the activity of CYP6B7 promoter in HDS strain, as well as the expression level of CYP6B7 gene in Sf9 cells line. These results suggested that PBDC1, PGRP and NDUFA11 may be involved in the transcript regulation of key detoxifying genes in response to fenvalerate in HDS strain of H. armigera.


Assuntos
Proteínas de Insetos , Inseticidas , Mariposas , Nitrilas , Piretrinas , Animais , Piretrinas/farmacologia , Piretrinas/toxicidade , Nitrilas/farmacologia , Nitrilas/toxicidade , Inseticidas/farmacologia , Inseticidas/toxicidade , Mariposas/genética , Mariposas/efeitos dos fármacos , Mariposas/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Resistência a Inseticidas/genética , Família 6 do Citocromo P450/genética , Família 6 do Citocromo P450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Helicoverpa armigera
4.
Artigo em Inglês | MEDLINE | ID: mdl-38844189

RESUMO

In this study, we focused on confirming the steroid hormone receptor-mediated endocrine-disrupting potential of the pyrethroid insecticide fenvalerate and unraveling the underlying mechanisms. Therefore, we assessed estrogen receptor-α (ERα)- and androgen receptor (AR)-mediated responses in vitro using a hormone response element-dependent transcription activation assay with a luciferase reporter following the Organization for Economic Cooperation and Development (OECD) test guidelines. We observed that fenvalerate acted as estrogen by inducing the translocation of cytosolic ERα to the nucleus via ERα dimerization, whereas it exhibited no AR-mediated androgen response element-dependent luciferase activity. Furthermore, we confirmed that fenvalerate-induced activation of ERα caused lipid accumulation, promoted in a fenvalerate-dependent manner in 3 T3-L1 adipocytes. Moreover, fenvalerate-induced lipid accumulation was inhibited in the presence of an ERα-selective antagonist, whereas it remained unaffected in the presence of a glucocorticoid receptor (GR)-specific inhibitor. In addition, fenvalerate was found to stimulate the expression of transcription factors that promote lipid accumulation in 3 T1-L1 adipocytes, and co-treatment with an ERα-selective antagonist suppressed adipogenic/ lipogenic transcription factors at both mRNA and protein levels. These findings suggest that fenvalerate exposure may lead to lipid accumulation by interfering with ERα activation-dependent processes, thus causing an ERα-mediated endocrine-disrupting effect.


Assuntos
Células 3T3-L1 , Disruptores Endócrinos , Receptor alfa de Estrogênio , Nitrilas , Piretrinas , Piretrinas/toxicidade , Animais , Nitrilas/toxicidade , Camundongos , Disruptores Endócrinos/toxicidade , Receptor alfa de Estrogênio/metabolismo , Receptor alfa de Estrogênio/genética , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Receptores Androgênicos/metabolismo , Inseticidas/toxicidade , Organização para a Cooperação e Desenvolvimento Econômico
5.
Sci Total Environ ; 933: 173126, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38734105

RESUMO

Studying the toxic effects of pesticides on bees has consistently been a prominent area of interest for researchers. Nonetheless, existing research has predominantly concentrated on individual toxicity assessments, leaving a gap in our understanding of mixed toxicity. This study delves into the individual and combined toxic effects of abamectin (ABA) and lambda-cyhalothrin (LCY) on honey bees (Apis mellifera) in laboratory settings. We discovered that ABA (96 h-LC50 value of 0.079 mg/L) exhibited greater acute toxicity to honey bees compared to LCY (96 h-LC50 value of 9.177 mg/L). Moreover, the mixture of ABA and LCY presented an acute antagonistic effect on honey bees. Additionally, our results indicated that exposure to LCY, at medium concentration, led to a reduction in the abundance of gut core bacterium Snodgrassella. However, an increase in the abundance of Bifidobacterium was noted when exposed to a medium concentration of LCY and its mixture with ABA. Transcriptomic analysis revealed significant regulation of certain genes in the medium concentration of all three treatments compared to the control group, primarily enriching in metabolism and immune-related pathways. Following chronic exposure to field-relevant concentrations of ABA, LCY, and their mixture, there were significant alterations in the activities of immunity-related enzyme polyphenol oxidase (PPO) and detoxification enzymes glutathione S-transferase (GST) and carboxylesterase (CarE). Additionally, the expression of four genes (abaecin, cyp9e2, cyp302a1, and GstD1) associated with immune and detoxification metabolism was significantly altered. These findings suggest a potential health risk posed by the insecticides ABA and LCY to honey bees. Despite exhibiting acute antagonistic effect, mixed exposure still induced damage to bees at all levels. This study advances our knowledge of the potential adverse effects of individual or combined exposure to these two pesticides on non-target pollinators and offers crucial guidance for the use of insecticides in agricultural production.


Assuntos
Inseticidas , Ivermectina , Nitrilas , Piretrinas , Animais , Piretrinas/toxicidade , Abelhas/efeitos dos fármacos , Abelhas/fisiologia , Nitrilas/toxicidade , Ivermectina/análogos & derivados , Ivermectina/toxicidade , Inseticidas/toxicidade
6.
Sci Total Environ ; 934: 173097, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38729356

RESUMO

Pyrethroid insecticides, such as beta-cyfluthrin, are used extensively globally, including in households and agriculture, and have been detected in the milk and urine of humans and cattle. Beta-cyfluthrin exhibits toxic effects, including neurotoxicity and male reproductive toxicity; however, few studies have investigated female reproductive toxicity despite its wide environmental distribution. The present study investigates effects of beta-cyfluthrin on implantation in porcine cells (pTr from the trophectoderm and pLE from the endometrial luminal epithelium). To identify the various physiological changes induced by beta-cyfluthrin, such as apoptosis and lipid peroxidation, flow cytometry analysis and immunofluorescence were performed with various reagents. In addition, the expression of genes and proteins associated with intracellular changes was confirmed using qRT-PCR and western blotting. Beta-cyfluthrin induced cell-cycle arrest and altered intracellular calcium flux. It also disrupted the mitochondrial function and promoted reactive oxygen species (ROS) production, leading to lipid peroxidation. Moreover, ROS induced by beta-cyfluthrin altered mitogen-activated protein kinase (MAPK) pathways and decreased cell migration capability. The expression levels of genes that are significant during early pregnancy were altered by beta-cyfluthrin in both cell lines. The changes resulted in apoptosis and diminished cell proliferation of pTr and pLE. Collectively, the results imply that beta-cyfluthrin disrupts the implantation process by affecting the physiology of the trophectoderm and endometrial luminal epithelial cells. The present study is the first to reveal the cellular mechanisms of beta-cyfluthrin on the female reproductive system and highlights the need for further in-depth research into its hazards.


Assuntos
Células Epiteliais , Inseticidas , Mitocôndrias , Nitrilas , Piretrinas , Espécies Reativas de Oxigênio , Transdução de Sinais , Animais , Espécies Reativas de Oxigênio/metabolismo , Feminino , Piretrinas/toxicidade , Nitrilas/toxicidade , Suínos , Inseticidas/toxicidade , Células Epiteliais/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Transdução de Sinais/efeitos dos fármacos , Implantação do Embrião/efeitos dos fármacos , Útero/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Trofoblastos/efeitos dos fármacos
7.
Environ Res ; 257: 119267, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38815718

RESUMO

Natural pyrethrins are widely used in agriculture because of their good insecticidal activity. Meanwhile, natural pyrethrins play an important role in the safety evaluation of pyrethroids as precursors for structural development of pyrethroid insecticides. However, there are fewer studies evaluating the neurological safety of natural pyrethrins on non-target organisms. In this study, we used SH-SY5Y cells and zebrafish embryos to explore the neurotoxicity of natural pyrethrins. Natural pyrethrins were able to induce SH-SY5Y cells damage, as evidenced by decreased viability, cycle block, apoptosis and DNA damage. The apoptotic pathway may be related to the involvement of mitochondria and the results showed that natural pyrethrins induced a rise in Capase-3 viability, Ca2+ overload, a decrease in adenosine triphosphate (ATP) and a collapse of mitochondrial membrane potential in SH-SY5Y cells. Natural pyrethrins may mediate DNA damage in SH-SY5Y cells through oxidative stress. The results showed that natural pyrethrins induced an increase in reactive oxygen species (ROS) levels, superoxide dismutase (SOD) activity, malondialdehyde (MDA) content and catalase (CAT) activity, and induced a decrease in glutathione peroxidase (GPx) activity in SH-SY5Y cells. In vivo, natural pyrethrins induced developmental malformations in zebrafish embryos, which were mainly characterized by pericardial edema and yolk sac edema. Meanwhile, the results showed that natural pyrethrins induced damage to the Huc-GFP axis and disturbed lipid metabolism in the head of zebrafish embryos. Further results showed elevated ROS levels and apoptosis in the head of zebrafish embryos, which corroborated with the results of the cell model. Finally, the results of mRNA expression assay of neurodevelopment-related genes indicated that natural pyrethrins exposure interfered with their expression and led to neurodevelopmental damage in zebrafish embryos. Our study may raise concerns about the neurological safety of natural pyrethrins on non-target organisms.


Assuntos
Embrião não Mamífero , Piretrinas , Peixe-Zebra , Animais , Peixe-Zebra/embriologia , Piretrinas/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Apoptose/efeitos dos fármacos , Inseticidas/toxicidade , Dano ao DNA/efeitos dos fármacos , Linhagem Celular Tumoral , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
8.
Pestic Biochem Physiol ; 201: 105849, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685233

RESUMO

Beta-cypermethrin (ß-CYP) consists of four chiral isomers, acting as an environmental estrogen and causing reproductive toxicity, neurotoxicity, and dysfunctions in multiple organ systems. This study investigated the toxic effects of ß-CYP, its isomers, metabolite 3-phenoxybenzoic acid (3-PBA), and 17ß-estradiol (E2) on HTR-8/SVneo cells. We focused on the toxic mechanisms of ß-CYP and its specific isomers. Our results showed that ß-CYP and its isomers inhibit HTR-8/SVneo cell proliferation similarly to E2, with 100 µM 1S-trans-αR displaying significant toxicity after 48 h. Notably, 1S-trans-αR, 1R-trans-αS, and ß-CYP were more potent in inducing apoptosis and cell cycle arrest than 1R-cis-αS and 1S-cis-αR at 48 h. AO/EB staining and flow cytometry indicated dose-dependent apoptosis in HTR-8/SVneo cells, particularly at 100 µM 1R-trans-αS. Scratch assays revealed that ß-CYP and its isomers variably reduced cell migration. Receptor inhibition assays demonstrated that post-ICI 182780 treatment, which inhibits estrogen receptor α (ERα) or estrogen receptor ß (ERß), ß-CYP, its isomers, and E2 reduced HTR-8/SVneo cell viability, whereas milrinone, a phosphodiesterase 3 A (PDE3A) inhibitor, increased viability. Molecular docking studies indicated a higher affinity of ß-CYP, its isomers, and E2 for PDE3A than for ERα or ERß. Consequently, ß-CYP, its isomers, and E2 consistently led to decreased cell viability. Transcriptomics and RT-qPCR analyses showed differential expression in treated cells: up-regulation of Il24 and Ptgs2, and down-regulation of Myo7a and Pdgfrb, suggesting the PI3K-AKT signaling pathway as a potential route for toxicity. This study aims to provide a comprehensive evaluation of the cytotoxicity of chiral pesticides and their mechanisms.


Assuntos
Apoptose , Piretrinas , Humanos , Piretrinas/toxicidade , Piretrinas/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular , Simulação de Acoplamento Molecular , Estradiol/farmacologia , Proliferação de Células/efeitos dos fármacos , Inseticidas/toxicidade , Inseticidas/farmacologia , Inseticidas/química , Isomerismo , Movimento Celular/efeitos dos fármacos , Benzoatos/farmacologia , Benzoatos/química , Estereoisomerismo , Sobrevivência Celular/efeitos dos fármacos , Receptor alfa de Estrogênio/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos
9.
Environ Sci Pollut Res Int ; 31(20): 29174-29184, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38568309

RESUMO

Pesticide formulations are typically applied as mixtures, and their synergistic effects can increase toxicity to the organisms in the environment. Despite pesticide mixtures being the leading cause of pesticide exposure incidents, little attention has been given to assessing their combined toxicity and interactions. This survey purposed to reveal the cumulative toxic effects of deltamethrin (DEL) and cyazofamid (CYA) on earthworms (Eisenia fetida) by examining multiple endpoints. Our findings revealed that the LC50 values of DEL for E. fetida, following 7- and 14-day exposures, ranged from 887.7 (728-1095) to 1552 (1226-2298) mg kg-1, while those of CYA ranged from 316.8 (246.2-489.4) to 483.2 (326.1-1202) mg kg-1. The combinations of DEL and CYA induced synergistic influences on the organisms. The contents of Cu/Zn-SOD and CarE showed significant variations when exposed to DEL, CYA, and their combinations compared to the untreated group. Furthermore, the mixture administration resulted in more pronounced alterations in the expression of five genes (hsp70, tctp, gst, mt, and crt) associated with cellular stress, carcinogenesis, detoxification, and endoplasmic reticulum compared to single exposures. In conclusion, our comprehensive findings provided detailed insights into the cumulative toxic effects of chemical mixtures across miscellaneous endpoints and concentration ranges. These results underscored the importance of considering mixture administration during ecological risk evaluations of chemicals.


Assuntos
Nitrilas , Oligoquetos , Piretrinas , Animais , Oligoquetos/efeitos dos fármacos , Piretrinas/toxicidade , Nitrilas/toxicidade
10.
Sci Total Environ ; 927: 172041, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38554955

RESUMO

Bifenthrin (BF) is a broad-spectrum insecticide that has gained widespread use due to its high effectiveness. However, there is limited research on the potential toxic effects of bifenthrin pollution on amphibians. This study aimed to investigate the 50 % lethal concentration (LC50) and safety concentration of Chinese giant salamanders (CGS) exposed to BF (at 0, 6.25,12.5,25 and 50 µg/L BF) for 96 h. Subsequently, CGS were exposed to BF (at 0, 0.04, and 4 µg/L BF) for one week to investigate its toxic effects. Clinical poisoning symptoms, liver pathology, oxidative stress factors, DNA damage, and transcriptome differences were observed and analyzed. The results indicate that exposure to BF at 4 µg/L significantly decreased the adenosine-triphosphate (ATP), superoxide dismutase (SOD), glutathione (GSH), and catalase (CAT) contents in the brain, liver, and kidney of CGS. Additionally, the study found that the malondialdehyde (MDA), reactive oxygen species (ROS), and 8-hydroxydeoxyguanosine (8-OHdG) contents were increased. The liver tissue exhibited significant inflammatory reactions and structural malformations. RNA-seq analysis of the liver showed that BF caused abnormal antioxidant indices of CGS. This affected molecular function genes such as catalytic activity, ATP-dependent activity, metabolic processes, signaling and immune system processes, behavior, and detoxification, which were significantly upregulated, resulting in the differential genes significantly enriched in the calcium signaling pathway, PPARα signaling pathway and NF-kB signaling pathway. The results suggest that BF induces the abnormal production of free radicals, which overwhelms the body's self-defense system, leading to varying degrees of oxidative stress. This can result in oxidative damage, DNA damage, abnormal lipid metabolism, autoimmune diseases, clinical poisoning symptoms, and tissue inflammation. This work provides a theoretical basis for the rational application of bifenthrin and environmental risk assessment, as well as scientific guidance for the conservation of amphibian populations.


Assuntos
Dano ao DNA , Inseticidas , Larva , Estresse Oxidativo , Piretrinas , Transcriptoma , Urodelos , Animais , Estresse Oxidativo/efeitos dos fármacos , Inseticidas/toxicidade , Piretrinas/toxicidade , Larva/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Urodelos/genética , Urodelos/fisiologia , Poluentes Químicos da Água/toxicidade , Fígado/efeitos dos fármacos
11.
Sci Total Environ ; 925: 171790, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38508253

RESUMO

Fenvalerate (FEN), a type II pyrethroid pesticide, finds extensive application in agriculture, graziery and public spaces for pest control, resulting in severe environmental pollution. As an environmental endocrine disruptor with estrogen-like activity, exposure to FEN exhibited adverse effects on ovarian functions. Additionally, the presence of the metabolite of FEN in women's urine shows a positive association with the risk of primary ovarian insufficiency (POI). In mammals, the primordial follicle pool established during the early life serves as a reservoir for storing all available oocytes throughout the female reproductive life. The initial size of the primordial follicle pool and the rate of its depletion affect the occurrence of POI. Nevertheless, there is very limited research about the impact of FEN exposure on primordial folliculogenesis. In this study, pregnant mice were orally administrated with 0.2, 2.0 and 20.0 mg/kg FEN from 16.5 to 18.5 days post-coitus (dpc). Ovaries exposed to FEN exhibited the presence of large germ-cell cysts that persist on 1 days post-parturition (1 dpp), followed by a significant reduction in the total number of oocytes in pups on 5 dpp. Moreover, the levels of m6A-RNA and its associated proteins METTL3 and YTHDF2 were significantly increased in the ovaries exposed to FEN. The increased YTHDF2 promoted the assembly of the cytoplasmic processing bodies (P-body) in the oocytes, accompanied with altered expression of transcripts. Additionally, when YTHDF2 was knocked-down in fetal ovary cultures, the primordial folliculogenesis disrupted by FEN exposure was effectively restored. Further, the female offspring exposed to FEN displayed ovarian dysfunctions reminiscent of POI in early adulthood, characterized by decreases in ovarian coefficient and female hormone levels. Therefore, the present study revealed that exposure to FEN during late pregnancy disrupted primordial folliculogenesis by YTHDF2-mediated P-body assembly, causing enduring adverse effects on female fertility.


Assuntos
Nitrilas , Reserva Ovariana , Piretrinas , Humanos , Gravidez , Animais , Feminino , Camundongos , Adulto , Animais Recém-Nascidos , Corpos de Processamento , Oócitos/metabolismo , Piretrinas/toxicidade , Piretrinas/metabolismo , Mamíferos/metabolismo , Metiltransferases , Proteínas de Ligação a RNA
12.
Food Chem Toxicol ; 186: 114520, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38369055

RESUMO

Fenpropathrin (FN), a pyrethroid has been linked to potential pulmonary toxic effects to humans via incident direct or indirect ingestion. Thus, we aimed to the investigate the underlying mechanisms of lung toxicity upon exposure to FN in the rat model, besides studying whether curcumin (CCM) and curcumin-loaded chitosan nanoformulation (CCM-Chs) can mitigate FN-induced lung damage. Six distinct groups, namely, control, CCM, CCM-Chs, FN, and CCM + FN, CCM-Chs + FN were assigned separately. The inflammatory, apoptotic, and oxidative stress states, histological, immunohistochemical, and immunofluorescence examination of different markers within the pulmonary tissue were applied. The results revealed that the FN-induced tissue damage might be caused by the oxidative stress induction and depressed antioxidant glutathione system in the lungs of rats. Furthermore, FN upregulated the expression of genes related to inflammation, and pyroptosis, and elevated the immunoreactivity of Caspase-3, tumor necrosis factor-α, vimentin, and 4-Hydroxynonenal in pulmonary tissues of FN-exposed rats compared to the control. CCM and CCM-Chs mitigated the FN-induced disturbances, while remarkably, CCM-Chs showed better potency than CCM in mitigating the FN-induced toxicity. In conclusion, this study shows the prominent preventive ability of CCM-Chs more than CCM in combatting the pulmonary toxicity induced by FN. This may be beneficial in developing therapeutic and preventive strategies against FN-induced pulmonary toxicity.


Assuntos
Curcumina , Piretrinas , Humanos , Ratos , Animais , Curcumina/farmacologia , Inflamação/induzido quimicamente , Inflamação/metabolismo , Estresse Oxidativo , Piretrinas/toxicidade , Apoptose , Corantes , Pulmão
13.
Toxicol Appl Pharmacol ; 484: 116869, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38382713

RESUMO

This study assessed the ability of formulated curcumin-loaded chitosan nanoparticles (CU-CS-NPs) to reduce the kidney damage resulting from fenpropathrin (FPN) in rats compared to curcumin (CU) in rats. Sixty male Sprague Dawley rats were separated into six groups and orally administered 1 mL/kg b.wt corn oil, 50 mg CU/kg b.wt, 50 mg CU-CS-NPs /kg b.wt., 15 mg FPN /kg b.wt, CU+ FPN or CU-CS-NPs + FPN for 60 days. Then, serum renal damage products were assessed. Total antioxidant capacity, reactive oxygen species, interleukin 1ß (IL-1ß), malondialdehyde, NF-κB P65, cleaved-Caspase-1, and Caspase-8 were estimated in kidney homogenates. The cleaved Caspase-3 and TNF-α immunoexpression and pyroptosis-related genes were determined in renal tissues. The results showed that CU-CS-NPS significantly repressed the FPN-induced increment in kidney damage products (urea, uric acid, and creatinine). Moreover, the FPN-associated hypo-proteinemia, renal oxidative stress and apoptotic reactions, and impaired renal histology were considerably repaired by CU and CU-CS-NPs. Additionally, compared to FPN-exposed rats, CU, and CU-CS-NPs-treated rats had considerably lower immunoexpression of cleaved Caspase-3 and TNF-α in renal tissue. The pyroptosis-related genes NLRP3, GSDMD, IL-18, Caspase-3, Caspase-1, IL-1ß, Caspase-8, TNF-α, and NF-κB dramatically upregulated by FPN exposure in the renal tissues. Yet, in CU and CU-CS-NPs-treated rats, the gene above expression deviations were corrected. Notably, CU-CS-NPs were superior to CU in preventing oxidative damage and inflammation and regulating pyroptosis in the renal tissues of the FPN-exposed group. The results of the present study conclusively showed the superior favorable effect of CU-CS-NPs in counteracting renal impairment linked to environmental pollutants.


Assuntos
Quitosana , Curcumina , Piretrinas , Piroptose , Animais , Masculino , Ratos , Caspase 1 , Caspase 3 , Caspase 8 , Curcumina/farmacologia , Rim , NF-kappa B , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piretrinas/toxicidade , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa
14.
BMC Pharmacol Toxicol ; 25(1): 3, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167230

RESUMO

BACKGROUND: Multiple pesticides are often used in combination for plant protection and public health. Therefore, it is important to analyze the physiological changes induced by multiple pesticides exposure. The objective of this study was to investigate the combined toxicity of the widely-used organophosphorus and pyrethroid pesticides diazinon, dimethoate, and cypermethrin. METHODS: Male Wistar rats were administrated by gavage once daily with the three pesticides individual or in combination for consecutive 28 days. The metabolic components of serum and urine samples were detected by using 1H nuclear magnetic resonance (NMR)-based metabolomics method. Histopathological examination of liver and kidneys and serum biochemical determination were also carried out. RESULTS: The results showed that after the 28-day subacute exposure, serum glutamic transaminase and albumin were significantly increased and blood urea nitrogen was significantly decreased in the rats exposed to the mixture of the pesticides compared with the control rats, suggesting that the co-exposure impaired liver and kidney function. Metabolomics analysis indicated that the indicators 14 metabolites were statistically significant altered in the rats after the exposure of the pesticides. The increase in 3-hydroxybutyric acid in urine or decrease of lactate and N-acetyl-L-cysteine in serum could be a potentially sensitive biomarker of the subchronic combined effects of the three insecticides. The reduction level of 2-oxoglutarate and creatinine in urine may be indicative of dysfunction of liver and kidneys. CONCLUSION: In summary, the exposure of rats to pesticides diazinon, dimethoate, and cypermethrin could cause disorder of lipid and amino acid metabolism, induction of oxidative stress, and dysfunction of liver and kidneys, which contributes to the understanding of combined toxic effects of the pesticides revealed by using the metabolomics analysis of the urine and serum profiles.


Assuntos
Praguicidas , Piretrinas , Ratos , Animais , Diazinon/toxicidade , Diazinon/metabolismo , Dimetoato/toxicidade , Dimetoato/metabolismo , Ratos Wistar , Piretrinas/toxicidade , Praguicidas/toxicidade , Fígado
15.
Aquat Toxicol ; 267: 106832, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38215609

RESUMO

Hepatopancreatic necrosis disease (HPND) broke out in 2015 in the Eriocheir sinensis aquaculture region of Xinghua, Jiangsu Province; however, the specific cause of HPND remains unclear. A correlation was found between HPND outbreak and the use of deltamethrin by farmers. In this study, E. sinensis specimens developed the clinical symptoms of HPND after 93 days of deltamethrin stress. The growth of E. sinensis with HPND was inhibited. Adenosine monophosphate-activated protein kinase (AMPK) is a central regulator of energy homeostasis, and its expression was up-regulated in the intestine of E. sinensis with HPND. Growth inhibitory genes (EsCabut, Es4E-BP, and EsCG6770) were also up-regulated in the intestine of E. sinensis with HPND. The expression levels of EsCabut, Es4E-BP, and EsCG6770 decreased after EsAMPK knockdown. Therefore, AMPK mediated the growth inhibition of E. sinensis with HPND. Further analysis indicated the presence of a crosstalk between the Toll and AMPK signaling pathways in E. sinensis with HPND. Multiple genes in the Toll signaling pathway were upregulated in E. sinensis under 93 days of deltamethrin stress. EsAMPK and its regulated growth inhibition genes were down-regulated after the knockdown of genes in the Toll pathway. In summary, the crosstalk between the Toll and AMPK signaling pathways mediates the growth inhibition of E. sinensis under deltamethrin stress.


Assuntos
Braquiúros , Piretrinas , Poluentes Químicos da Água , Animais , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Poluentes Químicos da Água/toxicidade , Piretrinas/toxicidade , Piretrinas/metabolismo , Nitrilas/toxicidade , Necrose , Braquiúros/metabolismo
16.
Toxicology ; 500: 153687, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38040083

RESUMO

Exposure to multiple pesticides in daily life has become an important public health concern. However, the combined effects of pesticide mixtures have not been fully elucidated by the conventional toxicological testing used for individual chemicals. Grouping of chemicals by mode of action using common key events (KEs) in the adverse outcome pathway (AOP) as endpoints could be applied for efficient risk assessment of combined exposure to multiple chemicals. The purpose of this study was to investigate whether exposure to multiple pesticides has synergistic neurotoxic effects on mammalian nervous systems. According to the AOP-based approach, we evaluated the effects of 10 current-use pesticides (4 neonicotinoids, 4 pyrethroids and 2 phenylpyrazoles) on the common KEs in AOPs for neurotoxicity, such as KEs involving mitochondrial and proteolytic functions, in a mammalian neuronal cell model. Our data showed that several pyrethroids and phenylpyrazoles partly shared the effects on several common KEs, including decreases in mitochondrial membrane potential and proteasome activity and increases in autophagy activity. Furthermore, we also found that combined exposure to a type-I pyrethroid permethrin or a type-II pyrethroid deltamethrin and the phenylpyrazole fipronil decreased the cell viability and the benchmark doses much more than either single exposure, indicating that the pair exhibited synergistic effects, since the combination indexes were less than 1. These findings revealed that novel pairs of different classes of pesticides with similar effects on common KEs exhibited synergistic neurotoxicity and provide new insights into the risk assessment of combined exposure to multiple chemicals.


Assuntos
Rotas de Resultados Adversos , Síndromes Neurotóxicas , Praguicidas , Piretrinas , Animais , Humanos , Praguicidas/toxicidade , Piretrinas/toxicidade , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/metabolismo , Medição de Risco , Mamíferos
17.
Arch Razi Inst ; 78(3): 797-805, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-38028826

RESUMO

Rosemary Leaves (Rosmarinus officinalis) gained importance as natural antioxidants which strengthen the endogenous antioxidant defenses through die. The present experience was designed to assess the protective effect of ethanolic extract of rosemary leaves on the adrenal gland and testicular toxicity in male rabbits exposed to Cypermethrin. Forty healthy male rabbits were distributed into four groups of 10 animals each; the animals were administered cypermethrin 66.5 mg/kg alone or concurrent with Rosemary extract in both dosages (100 and 200 mg/kg) for 45 days, and the blood samples were taken from all animals for estimation hormones indices, the Anaesthetized animals were euthanized and adrenal gland and testes were separated for histopathological analysis. Results revealed that the exposure to Cypermethrin induced stress and infertility as evidenced by elevation in the level of cortisol concurrently with a lowering in ACTH level. Also, recording elevation in FSH and LH levels and a significant decline in estradiol level related to a reduction in testosterone levels observed noticeable compared to healthy control. While Concurrent exposure to Cypermethrin and Rosemary extract significantly improved hormone criteria compared to rabbits exposed to Cypermethrin alone. Histological lesions in this study include: the adrenal gland appeared thick fibrous capsule surrounding the adrenal tissue, destruction of adrenal cortex and vacuolation of three layers of the cortex, while in testes marked inhibition of spermatogenesis and degeneration of Sertoli cells with few numbers of Leydig cells were shown. These alterations were brought about by cypermethrin toxicity, while the treatment of Rosemary leaves extract with Cypermethrin alleviated the deleterious effect of Cypermethrin on the adrenal gland and testes and also restored spermatogenesis. The results showed that the extract of rosemary leaves possesses anti-infertility and strong antioxidant activities and can be used as a fertility-increasing drug to control sexual hormones also spermatogenesis, preventing toxicity and its pathophysiological consequences.


Assuntos
Piretrinas , Rosmarinus , Masculino , Coelhos , Animais , Piretrinas/toxicidade , Testículo/patologia , Antioxidantes , Hormônios/farmacologia
18.
Ecotoxicol Environ Saf ; 264: 115484, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37716069

RESUMO

Fenvalerate (FEN), a typical type II pyrethroid pesticide, is widely used in agriculture. FEN has been detected in the environment and human body. However, the neurotoxicity of FEN has not been well elucidated. This study aimed to explore the mechanisms underlying FEN-induced neurotoxicity using the zebrafish (Danio rerio) model. We also investigated whether curcumin (CUR), a polyphenol antioxidant that exhibits neuroprotective properties, can prevent FEN-induced neurotoxicity. Here, zebrafish embryos were exposed to 0, 3.5, 7 and 14 µg/L of FEN from 4 to 96 h post fertilization (hpf) and neurotoxicity was assessed. Our results showed that FEN decreased the survival rate, heart rate, body length and spontaneous movement, and increased malformation rate. FEN caused neurobehavioral alterations, including decreased swimming distance and velocity, movement time and clockwise rotation times. FEN also suppressed neurogenesis in transgenic HuC:egfp zebrafish, reduced cholinesterase activity and downregulated the expression of neurodevelopment related genes (elavl3, gfap, gap43 and mbp). In addition, FEN enhanced oxidative stress via excessive reactive oxygen species and antioxidant enzyme inhibition, then triggered apoptosis by upregulation of apoptotic genes (p53, bcl-2, bax and caspase 3). These adverse outcomes were alleviated by CUR, indicating that CUR mitigated FEN-induced neurotoxicity by inhibiting oxidative stress. Overall, this study revealed that CUR ameliorated FEN-induced neurotoxicity via its antioxidant, indicating a promising protection of CUR against environmental pollutant-induced developmental anomalies.


Assuntos
Curcumina , Piretrinas , Humanos , Animais , Peixe-Zebra , Curcumina/farmacologia , Antioxidantes , Larva , Estresse Oxidativo , Piretrinas/toxicidade
19.
Artigo em Inglês | MEDLINE | ID: mdl-37532111

RESUMO

Esfenvalerate is a pyrethroid insecticide used primarily in the agriculture sector for insect management. Esfenvalerate is effective against a wide range of harmful insects, including flies, cockroaches, locusts, and many other types of bugs. It is also known that esfenvalerate has toxic effects on aquatic organisms and poses significant environmental concerns. In this study, the aim is to subchronically examine the effects of sublethal concentrations of esfenvalerate insecticide on common carp (Cyprinus carpio) by assessing changes in blood parameters and resulting gene expression. For this purpose, common carp (Cyprinus carpio) were divided into 5 groups and exposed to 0.025, 0.05, 0.1, and 0.15 µg/L concentrations of esfenvalerate for a period of 14 days. Blood and liver tissue samples were collected from the fish that underwent weight and length measurements. The effects on gene expression levels of immune, antioxidant, and stress-related genes in the liver tissue, including SOD, GST, Cortisol receptor, HSP70, H+-ATPase, Na+/K+-ATPase, Catalase, and GpX, were evaluated, as were the hematological and serum biochemical parameters. Significant decreases were observed in the levels of hematocrit, hemoglobin, erythrocytes, triglycerides and total protein and catalase, H+-ATPase, and GpX gene expression. Glucose, cholesterol, alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase (LDH) and alkaline phosphatase (ALP), SOD, Cortisol receptor, Na+/K+-ATPase gene expression levels increased. As a result, it has been revealed that esfenvalerate insecticide causes oxidative stress in carp at all dose ranges.


Assuntos
Carpas , Inseticidas , Piretrinas , Poluentes Químicos da Água , Animais , Inseticidas/toxicidade , Catalase/metabolismo , Carpas/genética , Carpas/metabolismo , Hidrocortisona/farmacologia , Piretrinas/toxicidade , Antioxidantes/metabolismo , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Adenosina Trifosfatases/metabolismo , Expressão Gênica , Poluentes Químicos da Água/toxicidade
20.
Environ Toxicol ; 38(11): 2761-2771, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37471628

RESUMO

Tralomethrin, a synthetic pyrethroid insecticide used to control a wide range of pests in agriculture and public health, is highly toxic to aquatic organisms. However, data regarding the toxicity and underlying mechanisms of tralomethrin in aquatic organisms are limited. Thus, this study aimed to investigate the toxicity of tralomethrin in zebrafish. Zebrafish embryos were exposed to tralomethrin at different concentrations (16.63, 33.25, and 49.88 µg/L). Results showed that tralomethrin exposure caused cardiovascular dysplasia and dysfunction, including developmental abnormalities (pericardial edema, delayed yolk absorption, and uninflated swim bladder), elevated heart rate, and erythrogenesis disorders. Moreover, the expression patterns of crucial genes responsible for cardiovascular development (alas2, gata1a, hbbe2, nkx2.5, myl7, and myh6) also exhibited dysregulation in response to tralomethrin exposure. Oxidative stress occurred in embryos after exposure to tralomethrin. Collectively, our data suggest that exposure to tralomethrin induces cardiovascular and developmental toxicity in zebrafish. These findings are instrumental for evaluations of the environmental risk of tralomethrin in aquatic ecosystems in the future.


Assuntos
Piretrinas , Poluentes Químicos da Água , Animais , Peixe-Zebra/metabolismo , Ecossistema , Embrião não Mamífero , Piretrinas/toxicidade , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA