Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Cell Mol Immunol ; 20(12): 1513-1526, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38008850

RESUMO

Inflammasomes are important sentinels of innate immune defense; they sense pathogens and induce the cell death of infected cells, playing key roles in inflammation, development, and cancer. Several inflammasome sensors detect and respond to specific pathogen- and damage-associated molecular patterns (PAMPs and DAMPs, respectively) by forming a multiprotein complex with the adapters ASC and caspase-1. During disease, cells are exposed to several PAMPs and DAMPs, leading to the concerted activation of multiple inflammasomes. However, the molecular mechanisms that integrate multiple inflammasome sensors to facilitate optimal host defense remain unknown. Here, we discovered that simultaneous inflammasome activation by multiple ligands triggered multiple types of programmed inflammatory cell death, and these effects could not be mimicked by treatment with a pure ligand of any single inflammasome. Furthermore, NLRP3, AIM2, NLRC4, and Pyrin were determined to be members of a large multiprotein complex, along with ASC, caspase-1, caspase-8, and RIPK3, and this complex drove PANoptosis. Furthermore, this multiprotein complex was released into the extracellular space and retained as multiple inflammasomes. Multiple extracellular inflammasome particles could induce inflammation after their engulfment by neighboring macrophages. Collectively, our findings define a previously unknown regulatory connection and molecular interaction between inflammasome sensors, which drives the assembly of a multiprotein complex that includes multiple inflammasome sensors and cell death regulators. The discovery of critical interactions among NLRP3, AIM2, NLRC4, and Pyrin represents a new paradigm in understanding the functions of these molecules in innate immunity and inflammasome biology as well as identifying new therapeutic targets for NLRP3-, AIM2-, NLRC4- and Pyrin-mediated diseases.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Pirina/metabolismo , Moléculas com Motivos Associados a Patógenos , Inflamação , Caspases/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Proteínas de Ligação a DNA/metabolismo
2.
mBio ; 14(5): e0206623, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37787552

RESUMO

IMPORTANCE: Pyrin, a unique cytosolic receptor, initiates inflammatory responses against RhoA-inactivating bacterial toxins and effectors like Yersinia's YopE and YopT. Understanding pyrin regulation is crucial due to its association with dysregulated inflammatory responses, including Familial Mediterranean Fever (FMF), linked to pyrin gene mutations. FMF mutations historically acted as a defense mechanism against plague. Negative regulation of pyrin through PKN phosphorylation is well established, with Yersinia using the YopM effector to promote pyrin phosphorylation and counteract its activity. This study highlights the importance of phosphoprotein phosphatase activity in positively regulating pyrin inflammasome assembly in phagocytic cells of humans and mice. Oligomeric murine pyrin has S205 phosphorylated before inflammasome assembly, and this study implicates the dephosphorylation of murine pyrin S205 by two catalytic subunits of PP2A in macrophages. These findings offer insights for investigating the regulation of oligomeric pyrin and the balance of kinase and phosphatase activity in pyrin-associated infectious and autoinflammatory diseases.


Assuntos
Inflamassomos , Processamento de Proteína Pós-Traducional , Humanos , Animais , Camundongos , Inflamassomos/metabolismo , Pirina/genética , Pirina/metabolismo , Macrófagos/metabolismo , Fosfoproteínas Fosfatases/genética , Mutação
3.
PLoS Biol ; 20(11): e3001351, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36342970

RESUMO

Pyrin is a cytosolic immune sensor that nucleates an inflammasome in response to inhibition of RhoA by bacterial virulence factors, triggering the release of inflammatory cytokines, including IL-1ß. Gain-of-function mutations in the MEFV gene encoding Pyrin cause autoinflammatory disorders, such as familial Mediterranean fever (FMF) and Pyrin-associated autoinflammation with neutrophilic dermatosis (PAAND). To precisely define the role of Pyrin in pathogen detection in human immune cells, we compared initiation and regulation of the Pyrin inflammasome response in monocyte-derived macrophages (hMDM). Unlike human monocytes and murine macrophages, we determined that hMDM failed to activate Pyrin in response to known Pyrin activators Clostridioides difficile (C. difficile) toxins A or B (TcdA or TcdB), as well as the bile acid analogue BAA-473. The Pyrin inflammasome response was enabled in hMDM by prolonged priming with either LPS or type I or II interferons and required an increase in Pyrin expression. Notably, FMF mutations lifted the requirement for prolonged priming for Pyrin activation in hMDM, enabling Pyrin activation in the absence of additional inflammatory signals. Unexpectedly, in the absence of a Pyrin response, we found that TcdB activated the NLRP3 inflammasome in hMDM. These data demonstrate that regulation of Pyrin activation in hMDM diverges from monocytes and highlights its dysregulation in FMF.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Febre Familiar do Mediterrâneo , Humanos , Camundongos , Animais , Pirina/genética , Pirina/metabolismo , Febre Familiar do Mediterrâneo/genética , Febre Familiar do Mediterrâneo/metabolismo , Inflamassomos/metabolismo , Mutação , Macrófagos/metabolismo
4.
Cell Rep ; 41(2): 111472, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36223753

RESUMO

The pyrin inflammasome acts as a guard of RhoA GTPases and is central to immune defenses against RhoA-manipulating pathogens. Pyrin activation proceeds in two steps. Yet, the second step is still poorly understood. Using cells constitutively activated for the pyrin step 1, a chemical screen identifies etiocholanolone and pregnanolone, two catabolites of testosterone and progesterone, acting at low concentrations as specific step 2 activators. High concentrations of these metabolites fully and rapidly activate pyrin, in a human specific, B30.2 domain-dependent manner and without inhibiting RhoA. Mutations in MEFV, encoding pyrin, cause two distinct autoinflammatory diseases pyrin-associated autoinflammation with neutrophilic dermatosis (PAAND) and familial Mediterranean fever (FMF). Monocytes from PAAND patients, and to a lower extent from FMF patients, display increased responses to these metabolites. This study identifies an unconventional pyrin activation mechanism, indicates that endogenous steroid catabolites can drive autoinflammation, through the pyrin inflammasome, and explains the "steroid fever" described in the late 1950s upon steroid injection in humans.


Assuntos
Febre Familiar do Mediterrâneo , Inflamassomos , Pirina , Etiocolanolona , Febre Familiar do Mediterrâneo/genética , Febre Familiar do Mediterrâneo/metabolismo , Humanos , Inflamassomos/metabolismo , Mutação , Pregnanolona , Progesterona , Pirina/genética , Pirina/metabolismo , Testosterona
5.
Inflammation ; 45(4): 1631-1650, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35190924

RESUMO

Inflammasomes are intracellular protein complexes whose activation results in proinflammatory cytokines. Inflammasomes are implicated in Crohn´s disease (CD) pathogenesis, yet the contribution of inflammasomes in intestinal epithelial cells (IECs) versus lamina propria (LP) macrophages is poorly understood. Whether inflammasome expression in intestinal tissue reflects the serum inflammatory protein profile of patients is also not known. We aimed to determine the intestinal cell types where inflammasome expression is increased in CD and if they correlate with the serum protein profile. RT-PCR and NanoString nCounter technology were used to characterize inflammasome gene expression in CD patients and controls. The mucosa, LP and IEC cell fractions and FACS-sorted cells were analyzed. Proximity extension assay with a 92-protein panel was used to determine the serum inflammatory protein profile. Compositional analysis was used to correlate ileum inflammasome gene expression with intestinal mononuclear phagocyte populations. We show that NLRP3 and MEFV inflammasome sensors and downstream effector expression including IL-1ß are increased in inflamed mucosa of IBD patients and correlate with disease activity. Inflammasome gene expression increased with the abundance of immature intestinal macrophages, and increased IL-1ß released by CD LP cells correlated with immature macrophage frequency. Inflammasome gene expression was also increased in circulating monocytes, the precursors of immature intestinal macrophages. Finally, the serum inflammatory profile of CD patients correlates with ileal expression of genes related to NLRP3 and MEFV inflammasomes. Overall, we show that MEFV and NLRP3 inflammasome expression in CD intestine is attributed to the accumulation of immature macrophages and correlates with serum inflammatory proteins.


Assuntos
Doença de Crohn , Inflamassomos , Macrófagos , Proteínas Sanguíneas/metabolismo , Doença de Crohn/metabolismo , Humanos , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Pirina/genética , Pirina/metabolismo
6.
PLoS One ; 16(11): e0248668, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34767572

RESUMO

BACKGROUND: The NLRP3 inflammasome is a critical component of sterile inflammation, which is involved in many diseases. However, there is currently no known proximal biomarker for measuring NLRP3 activation in pathological conditions. Protein kinase D (PKD) has emerged as an important NLRP3 kinase that catalyzes the release of a phosphorylated NLRP3 species that is competent for inflammasome complex assembly. METHODS: To explore the potential for PKD activation to serve as a selective biomarker of the NLRP3 pathway, we tested various stimulatory conditions in THP-1 and U937 cell lines, probing the inflammasome space beyond NLRP3. We analyzed the correlation between PKD activation (monitored by its auto-phosphorylation) and functional inflammasome readouts. RESULTS: PKD activation/auto-phosphorylation always preceded cleavage of caspase-1 and gasdermin D, and treatment with the PKD inhibitor CRT0066101 could block NLRP3 inflammasome assembly and interleukin-1ß production. Conversely, blocking NLRP3 either genetically or using the MCC950 inhibitor prevented PKD auto-phosphorylation, indicating a bidirectional functional crosstalk between NLRP3 and PKD. Further assessments of the pyrin and NLRC4 pathways, however, revealed that PKD auto-phosphorylation can be triggered by a broad range of stimuli unrelated to NLRP3 inflammasome assembly. CONCLUSION: Although PKD and NLRP3 become functionally interconnected during NLRP3 activation, the promiscuous reactivity of PKD challenges its potential use for tracing the NLRP3 inflammasome pathway.


Assuntos
Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína Quinase C/metabolismo , Biomarcadores/metabolismo , Caspase 1/metabolismo , Linhagem Celular Tumoral , Humanos , Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Fosforilação , Pirina/metabolismo , Células U937
7.
FASEB J ; 35(8): e21757, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34233045

RESUMO

Pyroptosis and intrinsic apoptosis are two forms of regulated cell death driven by active caspases where plasma membrane permeabilization is induced by gasdermin pores. Caspase-1 induces gasdermin D pore formation during pyroptosis, whereas caspase-3 promotes gasdermin E pore formation during apoptosis. These two types of cell death are accompanied by mitochondrial outer membrane permeabilization due to BAK/BAX pore formation in the external membrane of mitochondria, and to some extent, this complex also affects the inner mitochondrial membrane facilitating mitochondrial DNA relocalization from the matrix to the cytosol. However, the detailed mechanism responsible for this process has not been investigated. Herein, we reported that gasdermin processing is required to induce mitochondrial DNA release from cells during pyroptosis and apoptosis. Gasdermin targeted at the plasma membrane promotes a fast mitochondrial collapse along with the initial accumulation of mitochondrial DNA in the cytosol and then facilitates the DNA's release from the cell when the plasma membrane ruptures. These findings demonstrate that gasdermin action has a critical effect on the plasma membrane and facilitates the release of mitochondrial DNA as a damage-associated molecular pattern.


Assuntos
Apoptose/fisiologia , DNA Mitocondrial/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas de Ligação a Fosfato/fisiologia , Piroptose/fisiologia , Animais , Caspases/metabolismo , Membrana Celular/metabolismo , Células HEK293 , Humanos , Técnicas In Vitro , Inflamassomos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/genética , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas de Ligação a Fosfato/deficiência , Proteínas de Ligação a Fosfato/genética , Pirina/metabolismo , Receptores de Estrogênio/fisiologia
8.
Arthritis Rheumatol ; 73(11): 2116-2126, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33913256

RESUMO

OBJECTIVE: Aberrant pyrin inflammasome activity triggers familial Mediterranean fever (FMF) pathogenesis, but the exact mechanism remains elusive and an obstacle to efficient treatment. We undertook this study to identify pyrin inflammasome-specific mechanisms to improve FMF treatment and diagnostics in the future. METHODS: Pyrin-specific protein secretion was assessed by proteome analysis in U937-derived macrophages, and specific findings were confirmed in pyrin inflammasome-activated monocytes from healthy blood donors and patients with FMF, stratified according to MEFV genotype categories corresponding to a suspected increase in FMF disease severity. RESULTS: Proteome data revealed a differential secretion pattern of interleukin-1 receptor antagonist (IL-1Ra) from pyrin- and NLRP3-activated U937-derived macrophages, which was verified by enzyme-linked immunosorbent assay and quantitative polymerase chain reaction. Moreover, pyrin activation significantly reduced IL1RN messenger RNA expression (P < 0.001) and IL-1Ra secretion (P < 0.01) in healthy donor and FMF monocytes, respectively. Independent of MEFV genotype, unstimulated FMF monocytes from colchicine-treated patients secreted lower amounts of IL-1Ra compared to healthy donors (P < 0.05) and displayed decreased ratios of IL-1Ra:IL-1ß (P < 0.05), suggesting a reduced antiinflammatory capacity. CONCLUSION: Our data show an inherent lack of IL-1Ra expression specific to pyrin inflammasome activation, suggesting a new mechanism underlying FMF pathogenesis. The reduced IL-1Ra levels in FMF monocytes suggest a diminished antiinflammatory capacity that potentially leaves FMF patients sensitive to proinflammatory stimuli, regardless of receiving colchicine therapy. Thus, considering the potential clinical consequence of reduced monocyte IL-1Ra secretion in FMF patients, we suggest further investigation into IL-1Ra dynamics and its potential implications for FMF treatment in the future.


Assuntos
Febre Familiar do Mediterrâneo/metabolismo , Inflamassomos/metabolismo , Proteína Antagonista do Receptor de Interleucina 1/metabolismo , Pirina/metabolismo , Linhagem Celular , Febre Familiar do Mediterrâneo/genética , Humanos , Proteína Antagonista do Receptor de Interleucina 1/genética , Macrófagos/metabolismo , Monócitos/metabolismo , Proteoma , Pirina/genética
9.
Sci Rep ; 11(1): 927, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441763

RESUMO

High intensity focused ultrasound (HIFU) rapidly and non-invasively destroys tumor tissue. Here, we sought to assess the immunomodulatory effects of MR-guided HIFU and its combination with the innate immune agonist CpG and checkpoint inhibitor anti-PD-1. Mice with multi-focal breast cancer underwent ablation with a parameter set designed to achieve mechanical disruption with minimal thermal dose or a protocol in which tumor temperature reached 65 °C. Mice received either HIFU alone or were primed with the toll-like receptor 9 agonist CpG and the checkpoint modulator anti-PD-1. Both mechanical HIFU and thermal ablation induced a potent inflammatory response with increased expression of Nlrp3, Jun, Mefv, Il6 and Il1ß and alterations in macrophage polarization compared to control. Furthermore, HIFU upregulated multiple innate immune receptors and immune pathways, including Nod1, Nlrp3, Aim2, Ctsb, Tlr1/2/4/7/8/9, Oas2, and RhoA. The inflammatory response was largely sterile and consistent with wound-healing. Priming with CpG attenuated Il6 and Nlrp3 expression, further upregulated expression of Nod2, Oas2, RhoA, Pycard, Tlr1/2 and Il12, and enhanced T-cell number and activation while polarizing macrophages to an anti-tumor phenotype. The tumor-specific antigen, cytokines and cell debris liberated by HIFU enhance response to innate immune agonists.


Assuntos
Neoplasias da Mama/imunologia , Neoplasias da Mama/terapia , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Animais , Neoplasias da Mama/fisiopatologia , Modelos Animais de Doenças , Humanos , Imunidade , Espectroscopia de Ressonância Magnética/métodos , Camundongos , Camundongos Endogâmicos , Neoplasias/imunologia , Oligodesoxirribonucleotídeos/farmacologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Pirina/metabolismo , Ultrassonografia/métodos
10.
Ann Rheum Dis ; 80(1): 128-132, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33037005

RESUMO

BACKGROUND AND OBJECTIVE: Familial Mediterranean fever (FMF) is the most frequent hereditary autoinflammatory disease. Its diagnosis relies on a set of clinical criteria and a genetic confirmation on identification of biallelic pathogenic MEFV variants. MEFV encodes pyrin, an inflammasome sensor. Using a kinase inhibitor, UCN-01, we recently identified that dephosphorylation of FMF-associated pyrin mutants leads to inflammasome activation. The aim of this study was to assess whether quantifying UCN-01-mediated inflammasome activation could discriminate FMF patients from healthy donors (HD) and from patients with other inflammatory disorders (OID). METHODS: Real-time pyroptosis and IL-1ß secretion were monitored in response to UCN-01 in monocytes from FMF patients (n=67), HD (n=71) and OID patients (n=40). Sensitivity and specificity of the resulting diagnostic tests were determined by receiver operating characteristic curve analyses. RESULTS: Inflammasome monitoring in response to UCN-01 discriminates FMF patients from other individuals. Pyroptosis assessment leads to a fast FMF diagnosis while combining pyroptosis and IL-1ß dosage renders UCN-01-based assays highly sensitive and specific. UCN-01-triggered monocytes responses were influenced by MEFV gene dosage and MEFV mutations in a similar way as clinical phenotypes are. CONCLUSIONS: UCN-01-based inflammasome assays could be used to rapidly diagnose FMF, with high sensitivity and specificity.


Assuntos
Febre Familiar do Mediterrâneo/diagnóstico , Inflamassomos/efeitos dos fármacos , Interleucina-1beta/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Pirina/efeitos dos fármacos , Piroptose/efeitos dos fármacos , Estaurosporina/análogos & derivados , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Artrite Juvenil/diagnóstico , Síndrome de Behçet/diagnóstico , Estudos de Casos e Controles , Criança , Pré-Escolar , Síndromes Periódicas Associadas à Criopirina/diagnóstico , Febre Familiar do Mediterrâneo/genética , Febre Familiar do Mediterrâneo/imunologia , Feminino , Febre/diagnóstico , Febre de Causa Desconhecida/diagnóstico , Doenças Hereditárias Autoinflamatórias/diagnóstico , Humanos , Testes Imunológicos/métodos , Inflamassomos/imunologia , Inflamassomos/metabolismo , Interleucina-1beta/imunologia , Interleucina-1beta/metabolismo , Lúpus Eritematoso Sistêmico/diagnóstico , Masculino , Deficiência de Mevalonato Quinase/diagnóstico , Pessoa de Meia-Idade , Monócitos/imunologia , Monócitos/metabolismo , Pirina/genética , Pirina/imunologia , Pirina/metabolismo , Sensibilidade e Especificidade , Sepse/diagnóstico , Estaurosporina/farmacologia , Doença de Still de Início Tardio/diagnóstico , Adulto Jovem
11.
J Immunol ; 205(10): 2778-2785, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32989095

RESUMO

Mutations in MEFV, the gene encoding pyrin in humans, are associated with the autoinflammatory disorder familial Mediterranean fever. Pyrin is an innate sensor that assembles into an inflammasome complex in response to Rho-modifying toxins, including Clostridium difficile toxins A and B. Cell death pathways have been shown to intersect with and modulate inflammasome activation, thereby affecting host defense. Using bone marrow-derived macrophages and a murine model of peritonitis, we show in this study that receptor-interacting protein kinase (RIPK) 3 impacts pyrin inflammasome activation independent of its role in necroptosis. RIPK3 was instead required for transcriptional upregulation of Mefv through negative control of the mechanistic target of rapamycin (mTOR) pathway and independent of alterations in MAPK and NF-κB signaling. RIPK3 did not affect pyrin dephosphorylation associated with inflammasome activation. We further demonstrate that inhibition of mTOR was sufficient to promote Mefv expression and pyrin inflammasome activation, highlighting the cross-talk between the mTOR pathway and regulation of the pyrin inflammasome. Our study reveals a novel interaction between molecules involved in cell death and the mTOR pathway to regulate the pyrin inflammasome, which can be harnessed for therapeutic interventions.


Assuntos
Inflamassomos/imunologia , Peritonite/imunologia , Pirina/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Apoptose/imunologia , Proteínas de Bactérias/administração & dosagem , Proteínas de Bactérias/imunologia , Toxinas Bacterianas/administração & dosagem , Toxinas Bacterianas/imunologia , Células Cultivadas , Modelos Animais de Doenças , Enterotoxinas/administração & dosagem , Enterotoxinas/imunologia , Febre Familiar do Mediterrâneo/genética , Febre Familiar do Mediterrâneo/imunologia , Humanos , Inflamassomos/efeitos dos fármacos , Inflamassomos/metabolismo , Macrófagos , Camundongos , Camundongos Knockout , Mutação , Necroptose/imunologia , Peritonite/microbiologia , Fosforilação/imunologia , Cultura Primária de Células , Pirina/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Ativação Transcricional/imunologia , Regulação para Cima
12.
Science ; 369(6510)2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32943500

RESUMO

Inflammasomes are supramolecular complexes that play key roles in immune surveillance. This is accomplished by the activation of inflammatory caspases, which leads to the proteolytic maturation of interleukin 1ß (IL-1ß) and pyroptosis. Here, we show that nucleotide-binding domain, leucine-rich repeat, and pyrin domain-containing protein 3 (NLRP3)- and pyrin-mediated inflammasome assembly, caspase activation, and IL-1ß conversion occur at the microtubule-organizing center (MTOC). Furthermore, the dynein adapter histone deacetylase 6 (HDAC6) is indispensable for the microtubule transport and assembly of these inflammasomes both in vitro and in mice. Because HDAC6 can transport ubiquitinated pathological aggregates to the MTOC for aggresome formation and autophagosomal degradation, its role in NLRP3 and pyrin inflammasome activation also provides an inherent mechanism for the down-regulation of these inflammasomes by autophagy. This work suggests an unexpected parallel between the formation of physiological and pathological aggregates.


Assuntos
Desacetilase 6 de Histona/metabolismo , Vigilância Imunológica , Inflamassomos/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Pirina/metabolismo , Animais , Proteínas de Ligação a DNA/metabolismo , Células HEK293 , Desacetilase 6 de Histona/genética , Humanos , Inflamassomos/metabolismo , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Centro Organizador dos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Transporte Proteico
13.
Front Immunol ; 10: 2463, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31736941

RESUMO

Vibrio cholerae is a Gram-negative enteropathogen causing potentially life-threatening cholera disease outbreaks, for which the World Health Organization currently registers 2-4 million cases and ~100.000 cholera-associated deaths annually worldwide. Genomic Vibrio cholerae research revealed that the strains causing this ongoing cholera pandemic are members of the El Tor biotype, which fully replaced the Classical biotype that caused former cholera pandemics. While both of these biotypes express the characteristic Cholera Toxin (CT), the El Tor biotype additionally expresses the accessory toxins hemolysin (hlyA) and multifunctional auto-processing repeat-in-toxin (MARTX). Previous studies demonstrated that the Classical biotype of Vibrio cholerae triggers caspase-11-dependent non-canonical inflammasome activation in macrophages following CT-mediated cytosolic delivery of LPS. In contrast to the Classical biotype, we here show that El Tor Vibrio cholerae induces IL-1ß maturation and secretion in a caspase-11- and CT-independent manner. Instead, we show that El Tor Vibrio cholerae engages the canonical Nlrp3 inflammasome for IL-1ß secretion through its accessory hlyA toxin. We further reveal the capacity of this enteropathogen to engage the canonical Pyrin inflammasome as an accessory mechanism for IL-1ß secretion in conditions when the pro-inflammatory hlyA-Nlrp3 axis is blocked. Thus, we show that the V. cholerae El Tor biotype does not trigger caspase-11 activation, but instead triggers parallel Nlrp3- and Pyrin-dependent pathways toward canonical inflammasome activation to induce IL-1ß-mediated inflammatory responses. These findings further unravel the complex inflammasome activating mechanisms that can be triggered when macrophages face the full arsenal of El Tor Vibrio cholerae toxins, and as such increase our understanding of host-pathogen interactions in the context of the Vibrio cholerae biotype associated with the ongoing cholera pandemic.


Assuntos
Caspases Iniciadoras/metabolismo , Cólera/metabolismo , Cólera/microbiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Pirina/metabolismo , Vibrio cholerae/fisiologia , Animais , Caspases Iniciadoras/genética , Cólera/imunologia , Toxina da Cólera/genética , Toxina da Cólera/imunologia , Toxina da Cólera/metabolismo , Proteínas Hemolisinas , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout
14.
Bioorg Med Chem ; 27(12): 2444-2448, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-30795990

RESUMO

Autophagy ensures cellular homeostasis by the degradation of long-lived proteins, damaged organelles and pathogens. This catabolic process provides essential cellular building blocks upon nutrient deprivation. Cellular metabolism, especially mitochondrial respiration, has a significant influence on autophagic flux, and complex I function is required for maximal autophagy. In Parkinson's disease mitochondrial function is frequently impaired and autophagic flux is altered. Thus, dysfunctional organelles and protein aggregates accumulate and cause cellular damage. In order to investigate the interdependency between mitochondrial function and autophagy, novel tool compounds are required. Herein, we report the discovery of a structurally novel autophagy inhibitor (Authipyrin) using a high content screening approach. Target identification and validation led to the discovery that Authipyrin targets mitochondrial complex I directly, leading to the potent inhibition of mitochondrial respiration as well as autophagy.


Assuntos
Autofagia , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Mitocôndrias/metabolismo , Pirina/química , Autofagia/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Humanos , Células MCF-7 , Proteínas Associadas aos Microtúbulos/metabolismo , Oligomicinas/farmacologia , Pirina/metabolismo , Pirina/farmacologia
15.
Am J Clin Dermatol ; 20(3): 325-333, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30632096

RESUMO

Neutrophilic dermatoses (ND) are a group of conditions characterized by an aseptic accumulation of polymorphonuclear leukocytes in the skin. Occurrence of ND in association with myeloid malignancies, mainly myelodysplastic syndrome and myelogenous acute leukemia, is not rare and is often associated with a poor prognosis. Recent findings have improved understanding of the pathophysiology of myeloid malignancy-associated ND. We review the clinical spectrum of myeloid malignancy-associated ND with an emphasis on recently identified mechanisms. Myeloid leukemia cells retain the potential for terminal differentiation into polymorphonuclear leukocytes in the skin. Many studies suggest a clonal link between myeloid malignancies and ND. Activation of autoinflammatory pathways (NOD-like receptor family pyrin domain-containing-3, Familial Mediterranean Fever Gene) in the clonal cells of myeloid disorders may also be involved in this setting.


Assuntos
Leucemia Mieloide/complicações , Síndromes Mielodisplásicas/complicações , Neutrófilos/imunologia , Transdução de Sinais/imunologia , Dermatopatias/imunologia , Diferenciação Celular/imunologia , Diagnóstico Diferencial , Humanos , Leucemia Mieloide/imunologia , Síndromes Mielodisplásicas/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neutrófilos/metabolismo , Pirina/metabolismo , Pele/citologia , Pele/imunologia , Pele/patologia , Dermatopatias/diagnóstico , Dermatopatias/patologia
16.
Infect Immun ; 87(3)2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30602502

RESUMO

Pathogenic Yersinia species deliver Yop effector proteins through a type III secretion system into host cells. Among these effectors, YopE and YopT are Rho-modifying toxins, which function to modulate host cell physiology and evade immune responses. YopE is a GTPase-activating protein (GAP) while YopT is a protease, and they inhibit RhoA by different modes of action. Modifications to RhoA are sensed by pyrin, which, once activated, assembles a caspase-1 inflammasome, which generates cytokines such as interleukin-1ß (IL-1ß) and cell death by pyroptosis. In Yersinia-infected macrophages, YopE or YopT triggers inflammasome assembly only in the absence of another effector, YopM, which counteracts pyrin by keeping it inactive. The glucosyltransferase TcdB from Clostridium difficile, a well-studied RhoA-inactivating toxin, triggers activation of murine pyrin by dephosphorylation of Ser205 and Ser241. To determine if YopE or YopT triggers pyrin dephosphorylation, we infected lipopolysaccharide (LPS)-primed murine macrophages with ΔyopMYersinia pseudotuberculosis strains expressing wild-type (wt) or YopE mutant variants or YopT. By immunoblotting pyrin after infection, we observed that wt YopE triggered dephosphorylation of Ser205 and inflammasome activation. Pyrin dephosphorylation was reduced if a YopE variant had a defect in stability or RhoA specificity but not membrane localization. We also observed that wt YopT triggered pyrin dephosphorylation but more slowly than YopE, suggesting that YopE is dominant in this process. Our findings provide evidence that RhoA-modifying toxins trigger activation of pyrin by a conserved dephosphorylation mechanism. In addition, by characterization of YopE and YopT, we show that different features of effectors, such as RhoA specificity, affect the efficiency of pyrin dephosphorylation.


Assuntos
Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas de Bactérias/imunologia , Cisteína Endopeptidases/imunologia , Inflamassomos/metabolismo , Macrófagos/metabolismo , Pirina/metabolismo , Yersinia/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/metabolismo , Macrófagos/imunologia , Fosforilação
17.
Intern Med ; 58(7): 1017-1022, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30568124

RESUMO

We herein report a case of a 75-year-old woman who presented with a low-grade fever, repeated cold-induced urticaria, and painful leg edemas with neutrocytosis. Because her mother also had cold-induced urticaria and her skin lesions histologically showed neutrophilic dermatitis, we suspected that she had familial cold autoinflammatory syndrome, a subtype of cryopyrin-associated periodic syndromes. Sequencing of the NLRP3 and MEFV genes revealed that she carried both the p.A439V missense mutation and p.E148Q homozygous mutation, which is commonly detected in familial Mediterranean fever patients. The administration of colchicine reduced the frequency and severity of her skin rash and leg edema.


Assuntos
Síndromes Periódicas Associadas à Criopirina/diagnóstico , DNA/genética , Mutação , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Pirina/genética , Idoso , Biópsia , Síndromes Periódicas Associadas à Criopirina/genética , Análise Mutacional de DNA , Febre Familiar do Mediterrâneo/genética , Feminino , Homozigoto , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Pirina/metabolismo , Doenças Raras
18.
J Exp Med ; 215(6): 1519-1529, 2018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29793924

RESUMO

Pyroptosis is an inflammasome-induced lytic cell death mode, the physiological role of which in chronic inflammatory diseases is unknown. Familial Mediterranean Fever (FMF) is the most common monogenic autoinflammatory disease worldwide, affecting an estimated 150,000 patients. The disease is caused by missense mutations in Mefv that activate the Pyrin inflammasome, but the pathophysiologic mechanisms driving autoinflammation in FMF are incompletely understood. Here, we show that Clostridium difficile infection of FMF knock-in macrophages that express a chimeric FMF-associated MefvV726A Pyrin elicited pyroptosis and gasdermin D (GSDMD)-mediated interleukin (IL)-1ß secretion. Importantly, in vivo GSDMD deletion abolished spontaneous autoinflammatory disease. GSDMD-deficient FMF knock-in mice were fully protected from the runted growth, anemia, systemic inflammatory cytokine production, neutrophilia, and tissue damage that characterize this autoinflammatory disease model. Overall, this work identifies pyroptosis as a critical mechanism of IL-1ß-dependent autoinflammation in FMF and highlights GSDMD inhibition as a potential antiinflammatory strategy in inflammasome-driven diseases.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Febre Familiar do Mediterrâneo/metabolismo , Febre Familiar do Mediterrâneo/patologia , Inflamação/metabolismo , Inflamação/patologia , Animais , Clostridioides difficile/fisiologia , Citocinas/biossíntese , Modelos Animais de Doenças , Mediadores da Inflamação/metabolismo , Interleucina-1beta/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Neutrófilos/patologia , Proteínas de Ligação a Fosfato , Pirina/metabolismo , Pirina/farmacologia , Piroptose , Baço/patologia , Síndrome de Emaciação/patologia
19.
PLoS One ; 13(12): e0209931, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30596757

RESUMO

Although the study of pathogen sensing by host defense systems continues to uncover a role for inflammasome components specific to particular pathogens, gaps remain in our knowledge. After internalization, Francisella escapes from the phagosome in mononuclear cells and is thought to be detected by intracellular pathogen-response-receptors pyrin and Aim2 in human and murine models, respectively. However, it remains controversial as to the role of pyrin in detecting Francisella. Our current work aims to study the contribution of inflammasome sensor, Pyrin in regulating microparticulate caspase-1/GSDM-D activation by Francisella. Our findings suggest that NLRP3 is central to the activation/release of active caspase-1/GSDM-D encapsulated in microparticles (MP) by Francisella. We also provide evidence that this regulation is independent of pyrin, implicated in sensing cytosolic Francisella in NLRP3-/- conditions where endogenous Pyrin is present. Absence of NLRP3 completely abrogated Francisella mediated MP caspase-1/GSDM-D activation and release both before and after internalization of the pathogen. However, deletion of pyrin not only enhanced both LPS and Francisella mediated MP active caspase-1/GSDM-D release, but pyrin overexpression resulted in a reduction of inflammasome activation and release; suggesting an inhibitory role of pyrin in LPS and Francisella mediated MP responses. This NLRP3 dependence and inhibitory effect of pyrin correlated with cytokine release as well. These observations also correlated with MPs ability to induce cell death; as LPS and Francisella-induced MPs from pyrin-deficient cells were more potent than wild-type monocytes whereas, NLRP3-/- MPs failed to induce cell death. Taken together, we report that NLPR3 not only mediates Francisella induced cytokine responses, but is also critical for cytokine-independent microparticle-induced inflammasome activation and endothelial cell injury independent of pyrin.


Assuntos
Caspase 1/metabolismo , Francisella/química , Inflamassomos/metabolismo , Lipopolissacarídeos/farmacologia , Monócitos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas de Neoplasias/metabolismo , Pirina/metabolismo , Animais , Caspase 1/genética , Humanos , Inflamassomos/genética , Peptídeos e Proteínas de Sinalização Intracelular , Lipopolissacarídeos/química , Camundongos , Monócitos/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteínas de Neoplasias/genética , Proteínas de Ligação a Fosfato , Pirina/genética , Células THP-1
20.
Eur Cytokine Netw ; 29(4): 127-135, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30698144

RESUMO

Familial Mediterranean fever (FMF) is a recessively inherited autoinflammatory disorder. The caspase-1-dependent cytokine, IL-1ß, plays an important role in FMF pathogenesis, and RAC1 protein has been recently involved in IL-1ß secretion. This study aims to investigate RAC1 expression and role in IL-1ß and caspase-1 production and oxidative stress generation in FMF. The study included 25 FMF patients (nine during attack and remission, and 16 during remission only), and 25 controls. RAC1 expression levels were analyzed by real-time PCR. Ex vivo production of caspase-1, IL-1ß, IL-6 and markers of oxidative stress (malondialdehyde, catalase, and glutathione system) were evaluated respectively in supernatants of patients' and controls' PBMC and PMN cultures, in the presence and absence of RAC1 inhibitor. RAC1 gene expression and IL-1ß levels were increased in patients in crises compared to those in remission or controls. RAC1 expression levels were correlated with MEFV genotypes, patients carrying the M694V/M694V genotype having a two-fold increase in the expression levels compared to those carrying other genotypes. Caspase-1 levels were higher in LPS-induced PBMC of patients in remission than controls. Spontaneous and LPS-induced IL-1ß production were comparable in patients in remission and controls, whereas LPS-induced IL-6 production was enhanced in patients, compared to controls. RAC1 inhibition resulted in a decrease in caspase-1 and IL-1ß, but not IL-6, levels. Malondialdehyde levels produced by LPS-stimulated PMNs were increased in patients in remission compared to those in controls, but decreased following RAC1 inhibition. Catalase and GSH activities were reduced in unstimulated PMN culture supernatants of patients in remission compared to controls and were increased in the presence of RAC1 inhibitor. These results show the involvement of RAC1 in the inflammatory process of FMF by enhancing IL-1ß production, through caspase-1 activation, and generating oxidative stress, even during asymptomatic periods.


Assuntos
Febre Familiar do Mediterrâneo/metabolismo , Interleucina-1beta/metabolismo , Estresse Oxidativo/fisiologia , Proteínas rac1 de Ligação ao GTP/metabolismo , Adulto , Biomarcadores/metabolismo , Caspase 1/metabolismo , Feminino , Genótipo , Humanos , Inflamação/metabolismo , Interleucina-6/metabolismo , Leucócitos Mononucleares/metabolismo , Masculino , Pirina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA