Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Pharm Biol ; 59(1): 232-241, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33632062

RESUMO

CONTEXT: Andrographolide (Andro) has a neuroprotective effect and a potential for treating Alzheimer's disease (AD), but the mechanism has not been elucidated. OBJECTIVE: The efficacy of Andro on p62-mediated Kelch-like ECH-associated protein 1(Keap1)-Nuclear factor E2 related factor 2 (Nrf2) pathways in the aluminium maltolate (Al(mal)3)-induced neurotoxicity in PC12 cell was explored. MATERIALS AND METHODS: PC12 cells were induced by Al(mal)3 (700 µM) to establish a neurotoxicity model. Following Andro (1.25, 2.5, 5, 10, 20, 40 µM) co-treatment with Al(Mal)3, cell viability was detected with MTT, protein expression levels of ß-amyloid precursor protein (APP), ß-site APP cleaving enzyme 1 (BACE1), Tau, Nrf2, Keap1, p62 and LC3 were measured via western blotting or immunofluorescence analyses. Nrf2, Keap1, p62 and LC3 mRNA, were detected by reverse transcription-quantitative PCR. RESULTS: Compared with the 700 µM Al(mal)3 group, Andro (5, 10 µM) significantly increased Al(mal)3-induced cell viability from 67.4% to 91.9% and 91.2%, respectively, and decreased the expression of APP, BACE1 and Keap1 proteins and the ratio of P-Tau to Tau (from 2.75- fold to 1.94- and 1.70-fold, 2.12-fold to 1.77- and 1.56-fold, 0.68-fold to 0.51- and 0.55-fold, 1.45-fold to 0.82- and 0.91-fold, respectively), increased the protein expression of Nrf2, p62 and the ratio of LC3-II/LC3-I (from 0.67-fold to 0.93- and 0.94-fold, 0.64-fold to 0.88- and 0.87-fold, 0.51-fold to 0.63- and 0.79-fold, respectively), as well as the mRNA expression of Nrf2, p62 and LC3 (from 0.48-fold to 0.92-fold, 0.49-fold to 0.92-fold, 0.25-fold to 0.38-fold). Furthermore, Nrf2 and p62 nuclear translocation were increased and keap1 in the cytoplasm was decreased in the presence of Andro. Silencing p62 or Nrf2 can significantly reduce the protein and mRNA expression of Nrf2 and p62 under co-treatment with Andro and Al(mal)3. DISCUSSION AND CONCLUSIONS: Our results suggested that Andro could be a promising therapeutic lead against Al-induced neurotoxicity by regulating p62-mediated keap1-Nrf2 pathways.


Assuntos
Diterpenos/farmacologia , Fármacos Neuroprotetores/farmacologia , Compostos Organometálicos/toxicidade , Pironas/toxicidade , Animais , Diterpenos/administração & dosagem , Relação Dose-Resposta a Droga , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fármacos Neuroprotetores/administração & dosagem , Células PC12 , RNA Mensageiro/metabolismo , Ratos , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo
2.
Ecotoxicol Environ Saf ; 208: 111613, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396133

RESUMO

The environmental effects of additives have attracted increasing attention. Sodium dehydroacetate (DHA-S), as an approved preservative, is widely added in processed foods, cosmetics and personal care products. However, DHA-S has been recently reported to induce hemorrhage and coagulation aberration in rats. Yet little is known about the ecotoxicological effect and underlying mechanisms of DHA-S. Here, we utilized the advantage of zebrafish model to evaluate such effects. DHA-S induced cerebral hemorrhage, mandibular dysplasia and pericardial edema in zebrafish after 24 h exposure (48-72 hpf) at 50 mg/L. We also observed the defective heart looping and apoptosis in DHA-S-treated zebrafish through o-dianisidine and acridine orange staining. Meanwhile, DHA-S induced the deficiency of Ca2+ and vitamin D3 in zebrafish. We further demonstrated that DHA-S stimulated Ca2+ influx resulting in Ca2+-dependent mitochondrial damage in cardiomyocytes. Additionally, DHA-S inhibited glucose uptake and repressed the biosynthesis of amino acids. Finally, we identified that sodium bicarbonate could rescue zebrafish from DHA-S induced cardiovascular toxicity. Altogether, our results suggest that DHA-S is a potential risk for cardiovascular system.


Assuntos
Cálcio/metabolismo , Embrião não Mamífero/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Coração/efeitos dos fármacos , Pironas/toxicidade , Peixe-Zebra , Animais , Apoptose/efeitos dos fármacos , Cardiotoxicidade , Linhagem Celular , Hemorragia Cerebral/induzido quimicamente , Relação Dose-Resposta a Droga , Edema Cardíaco/induzido quimicamente , Coração/embriologia , Miocárdio/metabolismo , Miocárdio/patologia , Pericárdio/efeitos dos fármacos , Pericárdio/patologia , Ratos , Peixe-Zebra/crescimento & desenvolvimento
3.
Toxicol Mech Methods ; 31(1): 33-42, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32900247

RESUMO

Aluminum (Al), a neurotoxic element, can induce Alzheimer's disease (AD) via triggering neuronal death. Ferroptosis is a new type of programmed cell death related to neurological diseases. Unfortunately, its role in aluminum-induced neuronal death remains completely unclear. This study aimed to investigate whether ferroptosis is involved in neuronal death in response to aluminum exposure as well as its underlying mechanism. In this study, rat adrenal pheochromocytoma (PC12) cells were treated with 200 µM aluminum maltolate (Al(mal)3) for 24 h, and related biochemical indicators were assessed to determine whether ferroptosis was induced by aluminum in neurons. Then, the potential mechanism was explored by detecting of these genes and proteins associated with ferroptosis after adding ferroptosis-specific agonist Erastin (5 µM) and antagonist Ferrostatin-1 (Fer-1) (5 µM). The experimental results demonstrated that aluminum exposure significantly increased the death of PC12 cells and caused specific mitochondrial pathological changes of ferroptosis in PC12 cells. Further research confirmed that ferroptosis was triggered by aluminum in PC12 cells by means of activating the oxidative damage signaling pathway, which was displayed as inhibition of the cysteine/glutamate antiporter system (system Xc-), causing the depletion of cellular glutathione (GSH) and inactivation of glutathione peroxidase (GSH-PX) eventually lead to accumulation of reactive oxygen species (ROS). Taken together, ferroptosis was a means of neuronal death induced by aluminum and oxidative damage may be its underlying mechanism, which also provided some new clues to potential target for the intervention and therapy of AD.


Assuntos
Ferroptose/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Compostos Organometálicos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Pironas/toxicidade , Animais , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Neurônios/metabolismo , Neurônios/ultraestrutura , Células PC12 , Ratos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
4.
Toxicol Appl Pharmacol ; 410: 115354, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271249

RESUMO

Ethyl maltol (EM) is a flavoring agent commonly used in foods that falls under the generally recognized as safe category. It is added to many commercial e-cigarette vaping fluids and has been detected in the aerosols. Considering that EM facilitates heavy metal transport across plasma membranes, and that heavy metals have been detected in aerosols generated from e-cigarettes, this study examines whether EM enhances heavy metal mediated toxicity. A decrease in viability was observed in the Calu-6 and A549 lung epithelial cell lines co-exposed to EM and copper (Cu) but no decrease was observed after co-exposure to EM with iron (Fe). Interestingly, co-exposure to EM and Fe decreased viability of the HEK293 and IMR-90 fibroblast cell lines but co-exposure to EM and Cu did not. Increases in the apoptotic markers Annexin V staining and fragmented nuclei were observed in Calu-6 cells co-exposed to EM and Cu. Co-exposure to EM and Cu in Calu-6 cells resulted in DNA damage as indicated by activation of ATM and expression of γH2A.x foci. Finally, co-exposure to EM and Cu caused oxidative stress as indicated by increases in the generation of reactive oxygen species and the expression of ferritin light chain mRNA and hemeoxygenase-1 mRNA and protein. These data show that co-exposure to EM and Cu, at concentrations that are not toxic for either chemical individually, induce apoptosis and evoke oxidative stress and DNA damage in lung epithelial cells. We suggest that there is a greater risk of lung damage in users of c-cigarette who vape with vaping fluid containing EM.


Assuntos
Cobre/toxicidade , Citotoxinas/toxicidade , Pulmão/efeitos dos fármacos , Pironas/toxicidade , Mucosa Respiratória/efeitos dos fármacos , Células A549 , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Células HEK293 , Humanos , Pulmão/patologia , Mucosa Respiratória/patologia
5.
Eur J Med Chem ; 201: 112480, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32652434

RESUMO

As part of our effort to develop potential tyrosinase inhibitors, we have conjugated the well-known tyrosinase inhibitor kojic acid (KA) with several phenolic natural products such as umbelliferone, sesamol, thymol, carvacrol, eugenol, isoeugenol, vanillin, isovanillin, and apocynin that some reports have shown their activity on tyrosinase enzyme. The designed compounds were synthesized using click reaction and 1,2,3-triazole formation. All compound showed potent anti-tyrosinase activity significantly higher than KA. The best activities were observed with apocynin and 4-coumarinol analogs (10c and 16c) displaying IC50 values of 0.03 and 0.02 µM, respectively. The potency of 16c was >460-times more than that of KA. Cell-based assays against B16F10 and HFF cells revealed that the representative compounds can efficiently suppress the melanogenesis without significant toxicity on cells.


Assuntos
Produtos Biológicos/farmacologia , Inibidores Enzimáticos/farmacologia , Monofenol Mono-Oxigenase/antagonistas & inibidores , Pironas/farmacologia , Agaricales/enzimologia , Animais , Produtos Biológicos/síntese química , Produtos Biológicos/metabolismo , Produtos Biológicos/toxicidade , Domínio Catalítico , Linhagem Celular Tumoral , Cobre/química , Ensaios Enzimáticos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/toxicidade , Humanos , Cinética , Melaninas/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Monofenol Mono-Oxigenase/química , Monofenol Mono-Oxigenase/metabolismo , Ligação Proteica , Pironas/síntese química , Pironas/metabolismo , Pironas/toxicidade , Relação Estrutura-Atividade
6.
Food Chem Toxicol ; 135: 110900, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31654710

RESUMO

We aimed to study the effect of vanadium(V) exposure on cell viability, nuclear DNA (nDNA) and mitochondrial DNA (mtDNA) and to elucidate if these effects can be reverted by co-exposure to V and manganese (Mn). HepG2 cells were incubated with various concentrations of bis(maltolato)oxovanadium(IV) or MnCl2 for 32 h for viability study. The higher concentrations (59   µM V, 54 nM Mn and 59   µM V+54 nM Mn) were used to study DNA damage and uptake of V and Mn. Comet assay was used for the study of nDNA damage; mtDNA damage was studied by determining deletions and number of copies of the ND1/ND4 mtDNA region. Cellular content of V and Mn was determined using ICPMS. Cellular exposure to 59   µM V decreased viability (14%) and damaged nDNA and mtDNA. This effect was partially prevented by the co-exposure to V + Mn. Exposure to V increased the cellular content of V and Mn (812.3% and 153.5%, respectively). Exposure to Mn decreased the content of V and Mn (62% and 56%, respectively). Exposure to V + Mn increased V (261%) and decreased Mn (56%) content. The positive effects on cell viability and DNA damage when incubated with V + Mn could be due to the Mn-mediated inhibition of V uptake.


Assuntos
Núcleo Celular/efeitos dos fármacos , Cloretos/farmacologia , Dano ao DNA/efeitos dos fármacos , Compostos de Manganês/farmacologia , Mitocôndrias/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Pironas/toxicidade , Vanadatos/toxicidade , Sobrevivência Celular/efeitos dos fármacos , DNA Mitocondrial/metabolismo , Células Hep G2 , Humanos
7.
Environ Sci Pollut Res Int ; 26(12): 12071-12079, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30827024

RESUMO

Highly bioavailable plant phospholipid complex that can reverse aluminum maltolate (AlM)-induced toxicity is not yet reported. Hence, the present study was planned to investigate the impact of oxidative stress and apoptotic changes provoked by Al and ameliorative role of Bacopa phospholipid complex (BPC) in albino rats. The levels of antioxidant enzymes such as superoxide dismutase (SOD), catalase activity (CAT), glutathione peroxidase (GPx), and thiobarbituric acid-reactive substance (TBA-RS) were measured and immunohistochemistry analysis of apoptotic markers, Bax and Bcl-2, was done from the four brain regions such as the hippocampus, cerebral cortex, cerebellum, and medulla oblongata. The levels of antioxidant enzymes and apoptotic markers that were decreased on AlM induction showed a significant increase in their levels, almost as observed in the control, when treated with BPC and Bm. Our results indicate that both BPC and Bm showed a therapeutic effect against AlM toxicity; however, it was found that the therapeutic potential of BPC was more pronounced than Bm against AlM-induced neurotoxicity.


Assuntos
Antioxidantes/farmacologia , Encéfalo/fisiologia , Compostos Organometálicos/toxicidade , Extratos Vegetais/farmacologia , Pironas/toxicidade , Animais , Bacopa/química , Encéfalo/efeitos dos fármacos , Catalase/metabolismo , Cerebelo/efeitos dos fármacos , Glutationa Peroxidase/metabolismo , Hipocampo/efeitos dos fármacos , Masculino , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Fosfolipídeos , Ratos , Superóxido Dismutase/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico
8.
Sci Rep ; 9(1): 2468, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30792477

RESUMO

We characterized the flavor chemicals in a broad sample of commercially available electronic cigarette (EC) refill fluids that were purchased in four different countries. Flavor chemicals in 277 refill fluids were identified and quantified by gas chromatography-mass spectrometry, and two commonly used flavor chemicals were tested for cytotoxicity with the MTT assay using human lung fibroblasts and epithelial cells. About 85% of the refill fluids had total flavor concentrations >1 mg/ml, and 37% were >10 mg/ml (1% by weight). Of the 155 flavor chemicals identified in the 277 refill fluids, 50 were present at ≥1 mg/ml in at least one sample and 11 were ≥10 mg/ml in 54 of the refill fluids. Sixty-one% (170 out of 277) of the samples contained nicotine, and of these, 56% had a total flavor chemical/nicotine ratio >2. Four chemicals were present in 50% (menthol, triacetin, and cinnamaldehyde) to 80% (ethyl maltol) of the samples. Some products had concentrations of menthol ("Menthol Arctic") and ethyl maltol ("No. 64") that were 30 times (menthol) and 100 times (ethyl maltol) their cytotoxic concentration. One refill fluid contained cinnamaldehyde at ~34% (343 mg/ml), more than 100,000 times its cytotoxic level. High concentrations of some flavor chemicals in EC refill fluids are potentially harmful to users, and continued absence of any regulations regarding flavor chemicals in EC fluids will likely be detrimental to human health.


Assuntos
Aromatizantes/análise , Pulmão/citologia , Mentol/toxicidade , Pironas/toxicidade , Acroleína/análogos & derivados , Acroleína/toxicidade , Células Cultivadas , Sistemas Eletrônicos de Liberação de Nicotina , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Aromatizantes/toxicidade , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Pulmão/efeitos dos fármacos , Nicotina/toxicidade
9.
Neurotox Res ; 35(4): 931-944, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30649678

RESUMO

To investigate the effect of aluminum-maltolate [Al(mal)3] on the expression of ApoER2, VLDLRs, and LRP1 in PC12-ApoE4 cells. The lentiviral vector carrying human ApoE4 gene was transfected into PC12 cells; after screening with puromycin, PC12 cells carrying ApoE4 gene (PC12-ApoE4 cells) were established. After 24-h treatment with Al(mal)3, the cell survival rate was measured by CCK-8 assay. The expression of Aß40 and Aß42 was detected by ELISA assay; the expression of the APP, ApoER2, LRP1, and VLDLRs genes was detected by RT-PCR, and Western blot assay was used to detect the expression of the APP, ApoER2, LRP1, and VLDLRs proteins. Factorial experiment design was performed to analyze interaction between cell type and Al dose. Al(mal)3 treatment induced dose-dependent decreases of survival rate in the two cell groups and dose-dependent increases of Aß42 content(P < 0.05). The expressions of ApoER2, LRP1, and VLDLR proteins and their mRNA transcription decreased gradually with the increase of Al(mal)3 doses (P < 0.05), while the expression of APP protein and mRNA transcription gradually increased with the increase of Al(mal)3 doses (P < 0.05). As regard to the interaction of cell type and Al dose, the decrease of cell survival rate and the increase of the Aß42 were both statistically significant (P < 0.05). And the decrease of ApoER2 and LRP1 proteins was both statistically significant too (P < 0.05). The effect of Al(mal)3 and ApoE4 gene on the survival rate and the increase of Aß content in PC12 cells. That is to say, there is interaction between ApoE4 gene and aluminum on the Aß content, especially the change of the Aß42 content, which may be related to the down-regulation of the expression of ApoER2 and LRP1 proteins.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Apolipoproteínas E/metabolismo , Proteínas Relacionadas a Receptor de LDL/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Compostos Organometálicos/toxicidade , Pironas/toxicidade , Receptores de LDL/metabolismo , Animais , Apolipoproteínas E/genética , Sobrevivência Celular/efeitos dos fármacos , Vetores Genéticos , Humanos , Células PC12 , Ratos
10.
Chem Biol Interact ; 299: 15-26, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30481499

RESUMO

Many reports demonstrated that aluminum maltolate (Almal) has potential toxicity to human and animal. Our study has demonstrated that Almal can induce oxidative damage and apoptosis in PC12 cells and SH-SY5Y Cells, two in vitro models of neuronal cells. Hyperforin (HF) is a well-known antioxidant, anti-inflammatory, anti-amyloid and anti-depressant compound extracted from Hypericum perforatum extract. Here, we investigated the neuroprotective effect of HF against Almal-induced neurotoxicity in cultured PC12 cells and SH-SY5Y cells, mainly caused by oxidative stress. In the present study, HF significantly inhibited the formation of reactive oxygen species (ROS), decreased the level of lipid peroxide and enhanced the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) compared with Almal group in PC12 cells and SH-SY5Y cells. Additionally, HF suppressed the reduction of the mitochondrial membrane potential (MMP), cytochrome c (Cyt-c) release, activation of caspase-3, and the down-regulation of Bcl-2 expression and up-regulation of Bax expression induced by Almal in PC12 cells and SH-SY5Y cells. In summary, HF protects PC12 cells and SH-SY5Y cells from damage induced by Almal through reducing oxidative stress and preventing of mitochondrial-mediated apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Floroglucinol/análogos & derivados , Terpenos/farmacologia , Animais , Caspase 3/metabolismo , Linhagem Celular Tumoral , Citocromos c/metabolismo , Glutationa Peroxidase/metabolismo , Humanos , Malondialdeído/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Compostos Organometálicos/toxicidade , Células PC12 , Floroglucinol/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Pironas/toxicidade , Ratos , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
11.
Neurotox Res ; 35(3): 584-593, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30317430

RESUMO

Glycyrrhizic acid (GA) is the most effective ingredient in the root of licorice, with important pharmacological effects. We investigate the effects of GA on mitochondrial function and biogenesis in the aluminum toxicity in PC12 cell line. After pretreatment of PC12 cells with different concentrations of GA (5-100 µM), and specific concentration of aluminum maltolate (Almal,1000 µM) for 48 h, cell viability, reactive oxygen species (ROS), mitochondrial membrane potential (MMP), mitochondria mass, cytochrome c oxidase enzyme activity, and the ATP level of the cells were measured. The expression mRNA level of PGC-1α, NRF1, NRF2, and TFAM was confirmed by the real-time PCR quantitative method. The results showed that low concentrations of GA protected Almal-induced cell death in 48 h. It was also observed that GA reduced the ROS production and increased the ATP level. The activity of cytochrome c oxidase enzyme and also decrease of MMP were improved. In addition, GA significantly increased the expression of mitochondrial genes and mass against aluminum toxicity. GA can exert its protective effect against the toxicity of Almal through maintaining mitochondrial function and subsequently increasing energy metabolism and mitochondrial biogenesis. GA as a natural product can be considered as a supplement in neurodegenerative disease.


Assuntos
Ácido Glicirrízico/farmacologia , Mitocôndrias/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Compostos Organometálicos/toxicidade , Pironas/toxicidade , Trifosfato de Adenosina/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/fisiologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Células PC12 , RNA Mensageiro/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/metabolismo
12.
Neurotox Res ; 35(2): 318-330, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30242626

RESUMO

The neuroprotective role of tannoid principles of Emblica officinalis (EoT), an Indian and Chinese traditional medicinal plant against memory loss in aluminum chloride-induced in vivo model of Alzheimer's disease through attenuating AChE activity, oxidative stress, amyloid and tau toxicity, and apoptosis, was recently reported in our lab. However, to further elucidate the mechanism of neuroprotective effect of EoT, the current study was designed to evaluate endoplasmic reticulum stress-suppressing and anti-inflammatory role of EoT in PC 12 and SH-SY 5Y cells. These cells were divided into four groups: control (aluminum maltolate (Al(mal)3), EoT + Al(mal)3, and EoT alone based on 3-(4, 5-dimethyl 2-yl)-2, and 5-diphenyltetrazolium bromide (MTT) assay. EoT significantly reduced Al(mal)3-induced cell death and attenuated ROS, mitochondrial membrane dysfunction, and apoptosis (protein expressions of Bax; Bcl-2; cleaved caspases 3, 6, 9, 12; and cytochrome c) by regulating endoplasmic reticulum stress (PKR-like ER kinase (PERK), α subunit of eukaryotic initiation factor 2 (EIF2-α), C/EBP-homologous protein (CHOP), and high-mobility group box 1 protein (HMGB1)). Moreover, inflammatory response (NF-κB, IL-1ß, IL-6, and TNF-α) and Aß toxicity (Aß1-42) triggered by Al(mal)3 was significantly normalized by EoT. Our results suggested that EoT could be a possible/promising and novel therapeutic lead against Al-induced neurotoxicity. However, further extensive research is needed to prove its efficacy in clinical studies.


Assuntos
Apoptose/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Compostos Organometálicos/toxicidade , Phyllanthus emblica , Extratos Vegetais/farmacologia , Pironas/toxicidade , Alumínio/toxicidade , Animais , Apoptose/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Estresse do Retículo Endoplasmático/fisiologia , Humanos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Neurônios/metabolismo , Células PC12 , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/uso terapêutico , Ratos
13.
Bioorg Chem ; 82: 414-422, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30428420

RESUMO

A series of kojic acid-derived compounds 6a-p bearing aryloxymethyl-1H-1,2,3-triazol-1-yl moiety were designed by modifying primary alcoholic group of kojic acid as tyrosinase inhibitors. The target compounds 6a-p were synthesized via click reaction. All compounds showed very potent anti-tyrosinase activity (IC50s = 0.06-6.80 µM), being superior to reference drug, kojic acid. In particular, the naphthyloxy analogs 6o and 6p were found to be 31-155 times more potent than kojic acid. The metal-binding study of selected compound 6o revealed that the prototype compound possesses metal-chelating ability, particularly with Cu2+ ions. The promising compounds 6o and 6p had acceptable safety profile as demonstrated by cytotoxicity assay against melanoma (B16) cell line and Human Foreskin Fibroblast (HFF) cells.


Assuntos
Inibidores Enzimáticos/farmacologia , Monofenol Mono-Oxigenase/antagonistas & inibidores , Pironas/farmacologia , Triazóis/farmacologia , Animais , Domínio Catalítico , Linhagem Celular Tumoral , Quelantes/síntese química , Quelantes/química , Quelantes/farmacologia , Quelantes/toxicidade , Química Click , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/toxicidade , Humanos , Metais/química , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Monofenol Mono-Oxigenase/química , Pironas/síntese química , Pironas/química , Pironas/toxicidade , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/química , Triazóis/toxicidade
14.
Int J Nanomedicine ; 13: 6465-6479, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30410332

RESUMO

INTRODUCTION: Kojic monooleate (KMO) is an ester derived from a fungal metabolite of kojic acid with monounsaturated fatty acid, oleic acid, which contains tyrosinase inhibitor to treat skin disorders such as hyperpigmentation. In this study, KMO was formulated in an oil-in-water nanoemulsion as a carrier for better penetration into the skin. METHODS: The nanoemulsion was prepared by using high and low energy emulsification technique. D-optimal mixture experimental design was generated as a tool for optimizing the composition of nanoemulsions suitable for topical delivery systems. Effects of formulation variables including KMO (2.0%-10.0% w/w), mixture of castor oil (CO):lemon essential oil (LO; 9:1) (1.0%-5.0% w/w), Tween 80 (1.0%-4.0% w/w), xanthan gum (0.5%-1.5% w/w), and deionized water (78.8%-94.8% w/w), on droplet size as a response were determined. RESULTS: Analysis of variance showed that the fitness of the quadratic polynomial fits the experimental data with F-value (2,479.87), a low P-value (P<0.0001), and a nonsignificant lack of fit. The optimized formulation of KMO-enriched nanoemulsion with desirable criteria was KMO (10.0% w/w), Tween 80 (3.19% w/w), CO:LO (3.74% w/w), xanthan gum (0.70% w/w), and deionized water (81.68% w/w). This optimum formulation showed good agreement between the actual droplet size (110.01 nm) and the predicted droplet size (111.73 nm) with a residual standard error <2.0%. The optimized formulation with pH values (6.28) showed high conductivity (1,492.00 µScm-1) and remained stable under accelerated stability study during storage at 4°C, 25°C, and 45°C for 90 days, centrifugal force as well as freeze-thaw cycles. Rheology measurement justified that the optimized formulation was more elastic (shear thinning and pseudo-plastic properties) rather than demonstrating viscous characteristics. In vitro cytotoxicity of the optimized KMO formulation and KMO oil showed that IC50 (50% inhibition of cell viability) value was >100 µg/mL. CONCLUSION: The survival rate of 3T3 cell on KMO formulation (54.76%) was found to be higher compared to KMO oil (53.37%) without any toxicity sign. This proved that the KMO formulation was less toxic and can be applied for cosmeceutical applications.


Assuntos
Emulsões/química , Hiperpigmentação/tratamento farmacológico , Nanopartículas/ultraestrutura , Óleos/química , Ácido Oleico/uso terapêutico , Pironas/uso terapêutico , Água/química , Células 3T3 , Análise de Variância , Animais , Morte Celular/efeitos dos fármacos , Camundongos , Nanopartículas/química , Tamanho da Partícula , Pironas/toxicidade , Reprodutibilidade dos Testes , Solubilidade , Fatores de Tempo
15.
Ecotoxicol Environ Saf ; 157: 201-206, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29625393

RESUMO

Al contamination becomes a growing problem in human society. Accumulation of Al in blood could destroy the structure and disorder function of erythrocyte, and finally cause blood diseases. In the present study, AlCl3 and Al(malt)3 are respectively used in the erythrocyte system, in order to investigate the comparative toxic effect on erythrocyte fragility, the influence on cellular biochemical components and lipid peroxidation level. We find that the osmotic fragility, the number of Heinz bodies, the content of MDA and advanced oxidation protein product of the AlCl3 treated erythrocytes were higher than the Al(malt)3 treated erythrocytes at the same concentrations of Al(Ⅲ). The morphological and membrane protein changes of the AlCl3 treated group show superior to the Al(malt)3 treated group. In summary, we conclude that the comparative effect on the erythrocyte between organic aluminum and inorganic aluminum is significantly different, and the prime comparative difference between the toxic effects of both the compounds is oxidative stress. Further research should focus on in vivo experiments to confirm the differential toxicity and to elucidate the molecular mechanisms underlying Al-induced erythrocyte toxicity in order to prevent hematological disorders.


Assuntos
Alumínio/toxicidade , Eritrócitos/efeitos dos fármacos , Cloreto de Alumínio , Compostos de Alumínio/toxicidade , Animais , Antioxidantes/metabolismo , Cloretos/toxicidade , Eritrócitos/citologia , Eritrócitos/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Compostos Organometálicos/toxicidade , Estresse Oxidativo , Pironas/toxicidade , Ratos
16.
Arch Toxicol ; 92(1): 371-381, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28940058

RESUMO

There is a large demand of a human relevant in vitro test system suitable for assessing the cardiotoxic potential of cosmetic ingredients and other chemicals. Using human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), we have already established an in vitro cardiotoxicity assay and identified genomic biomarkers of anthracycline-induced cardiotoxicity in our previous work. Here, five cosmetic ingredients were studied by the new hiPSC-CMs test; kojic acid (KJA), triclosan (TS), triclocarban (TCC), 2,7-naphthalenediol (NPT), and basic red 51 (BR51) based on cytotoxicity as well as ATP assays, beating rate, and genomic biomarkers to determine the lowest observed effect concentration (LOEC) and no observed effect concentration (NOEC). The LOEC for beating rate were 400, 10, 3, >400, and 3 µM for KJA, TS, TCC, NPT, and BR51, respectively. The corresponding concentrations for cytotoxicity or ATP depletion were similar, with the exception of TS and TCC, where the cardiomyocyte-beating assay showed positive results at non-cytotoxic concentrations. Functional analysis also showed that the individual compounds caused different effects on hiPSC-CMs. While exposure to KJA, TS, TCC, and BR51 induced significant arrhythmic beating, NPT slightly decreased cell viability, but did not influence beating. Gene expression studies showed that TS and NPT caused down-regulation of cytoskeletal and cardiac ion homeostasis genes. Moreover, TS and NPT deregulated genomic biomarkers known to be affected also by anthracyclines. The present study demonstrates that hiPSC-CMs can be used to determine LOECs and NOECs in vitro, which can be compared to human blood concentrations to determine margins of exposure. Our in vitro assay, which so far has been tested with several anthracyclines and cosmetics, still requires validation by larger numbers of positive and negative controls, before it can be recommended for routine analysis.


Assuntos
Cardiotoxicidade/etiologia , Cosméticos/toxicidade , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/efeitos dos fármacos , Testes de Toxicidade/métodos , Trifosfato de Adenosina/metabolismo , Compostos Azo/toxicidade , Carbanilidas/toxicidade , Cardiotoxicidade/patologia , Células Cultivadas , Meios de Cultura/química , Meios de Cultura/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Naftóis/toxicidade , Pironas/toxicidade , Triclosan/toxicidade
17.
Bioorg Med Chem Lett ; 27(16): 3723-3725, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28697923

RESUMO

Four new α-pyrone derivatives phomones C-F (1-4) together with four known compounds (5-8) were isolated from the endophytic fungus Phoma sp. YN02-P-3. Compound 1 is the first example of 6-α,ß-unsaturated ester-2-pyrone dimers via intermolecular symmetrical [2+2] cycloaddition. The chemical structures of these compounds were determined from spectroscopic data (1D/2D NMR, MS and IR). The acetylated product (9) of 1 along with compounds 1-8 were then tested for their cytotoxicity against HL-60, PC-3 and HCT-116 cell lines. Compounds 2, 3, 5 and 9 with acetyl groups showed significant inhibitory activities against the three cell lines with IC50 values in the range 0.52-9.85µM. while compounds 1, 4 and 6-8 that possess no acetyl group showed no inhibitory activity (IC50>50µM), indicating that the acetyl group at 10- or 12- are essential for their cytotoxic activities. The structure-activity relationships of these phomones were also reported.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Pironas/química , Pironas/farmacologia , Antineoplásicos/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Reação de Cicloadição , Fungos/química , Células HCT116 , Células HL-60 , Humanos , Espectroscopia de Ressonância Magnética , Conformação Molecular , Pironas/toxicidade , Relação Estrutura-Atividade
18.
ChemMedChem ; 12(7): 520-528, 2017 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-28261964

RESUMO

Pironetin is a natural product with potent antiproliferative activity that forms a covalent adduct with α-tubulin via conjugate addition into the natural product's α,ß-unsaturated lactone. Although pironetin's α,ß-unsaturated lactone is involved in its binding to tubulin, the structure-activity relationship at different positions of the lactone have not been thoroughly evaluated. For a systematic evaluation of the structure-activity relationships at the C4 and C5 positions of the α,ß-unsaturated lactone of pironetin, twelve analogues of the natural product were prepared by total synthesis. Modifying the stereochemistry at the C4 and/or C5 positions of the α,ß-unsaturated lactone of pironetin resulted in loss of antiproliferative activity in OVCAR5 ovarian cancer cells. While changing the C4 ethyl substituent with groups such as methyl, propyl, cyclopropyl, and isobutyl were tolerated, groups with larger steric properties such as an isopropyl and benzyl groups were not.


Assuntos
Antineoplásicos/química , Antineoplásicos/síntese química , Lactonas/química , Pironas/química , Antineoplásicos/metabolismo , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Ligação Proteica , Pironas/síntese química , Pironas/metabolismo , Pironas/toxicidade , Relação Estrutura-Atividade , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/síntese química , Moduladores de Tubulina/química , Moduladores de Tubulina/metabolismo , Moduladores de Tubulina/toxicidade
19.
Biomed Res Int ; 2017: 2640619, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28197411

RESUMO

Ethyl maltol and iron complexes are products of ethyl maltol and the iron found in the cooking pots used to prepare the Chinese dish, hot-pot. Because their safety is undocumented, the toxicity study of ethyl maltol and iron complexes was conducted in male and female Kunming (KM) mice. The animal study was designed based on the preliminary study conducted to determine the median lethal dose (LD50). The doses used in the study were 0, 1/81, 1/27, 1/9, and 1/3 of the LD50 (mg kg body weight (BW)-1 day-1) dissolved in the water. The oral LD50 of the ethyl maltol and iron complexes was determined to be 743.88 mg kg BW-1 in mice. The ethyl maltol and iron complexes targeted the endocrine organs including the liver and kidneys following the 90 D oral exposure. Based on the haematological data, the lowest-observed-adverse-effect level (LOAEL) of the ethyl maltol and iron complexes was determined to be 1/81 LD50 (9.18 mg kg BW-1 day-1) in both male and female mice. Therefore, we suggest that alternative strategies for preparing the hot-pot, including the use of non-Fe-based cookware, need to be developed and encouraged to avoid the formation of the potentially toxic complexes.


Assuntos
Compostos de Ferro/toxicidade , Ferro/toxicidade , Pironas/toxicidade , Animais , Culinária , Feminino , Humanos , Absorção Intestinal/efeitos dos fármacos , Ferro/administração & dosagem , Ferro/sangue , Compostos de Ferro/administração & dosagem , Compostos de Ferro/sangue , Dose Letal Mediana , Masculino , Camundongos , Pironas/administração & dosagem , Pironas/sangue
20.
Bioorg Med Chem ; 25(22): 6115-6125, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28214230

RESUMO

Substituted goniothalamins containing cyclopropane-groups were efficiently prepared in high yields and good selectivity. Antiproliferative activity was measured on three human cancer cell lines (A549, MCF-7, HBL-100), to show which of the structural elements of goniothalamins is mandatory for cytotoxicity. We found that the configuration of the stereogenic centre of the δ-lactone plays an important role for cytotoxicity. In our studies only (R)-configured goniothalamins showed antiproliferative activity, whereby (R)-configuration accords to natural goniothalamin (R)-1. Additionally, the δ-lactone needs to be unsaturated whereas our results show that the vinylic double bond is not mandatory for cytotoxicity. Furthermore, with a two-fold in vitro and in vivo strategy, we determined the inhibitory effect of the compounds to the yeast protein Pdr5. Here, we clearly demonstrate that the configuration seems to be of minor influence, only, while the nature of the substituent of the phenyl ring is of prime importance.


Assuntos
Antineoplásicos/síntese química , Pironas/química , Pironas/farmacologia , Células A549 , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Lactonas/química , Células MCF-7 , Pironas/síntese química , Pironas/toxicidade , Estereoisomerismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA