Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 513
Filtrar
1.
Drug Metab Dispos ; 52(9): 939-948, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39029948

RESUMO

An open-label, single-center, phase I study was conducted to determine the absolute bioavailability and absorption, distribution, metabolism, and excretion of capivasertib-a potent, selective AKT serine/threonine kinase inhibitor-in healthy males. In part 1, six participants received a single oral dose of capivasertib (400 mg; tablets) followed by a [14C]-radiolabeled intravenous microdose of capivasertib (100 µg). After a 14-day washout, five of the participants proceeded to part 2 and received a single oral dose of [14C]capivasertib (400 mg; solution). In part 1, median time of maximum observed concentration for capivasertib was 1.7 hours, geometric mean terminal elimination half-life was 12.9 hours, and absolute bioavailability was estimated at 28.6% (90% confidence interval, 23.9 to 34.2). In part 2, a high proportion of the administered radioactivity was recovered over the 168-hour sampling period [mean recovery: 95.1% (feces, 50.4%; urine, 44.7%)]. Unchanged capivasertib in urine accounted for 7.4% of the total dose and 21.1% of the systemically available drug. Geometric mean renal clearance was 8.3 L/h, suggesting active tubular secretion. Twelve metabolites were identified in plasma. M11 (AZ14102143)-the glucuronide conjugate of capivasertib, inactive as an AKT serine/threonine kinase inhibitor-was the most abundant, accounting for a mean 78.4% of the plasma drug-related area under the curve. Of 22 metabolites identified in excreta, M11 was the most abundant (mean 28.2% of administered dose), indicating direct glucuronidation as one of the major routes of metabolism. No new safety concerns were identified. SIGNIFICANCE STATEMENT: This study provides characterization of the pharmacokinetics of capivasertib-a potent, selective AKT serine/threonine kinase (AKT) inhibitor-including absolute bioavailability, mass balance, and metabolic fate in humans; the findings are being used to inform further clinical development. Absolute bioavailability was estimated at 28.6%, and mean recovery of the administered dose in excreta over 168 hours was 95.1%. M11 (AZ14102143)-the glucuronide conjugate, inactive as an AKT inhibitor-was the most abundant identified metabolite in plasma and excreta.


Assuntos
Disponibilidade Biológica , Voluntários Saudáveis , Humanos , Masculino , Adulto , Adulto Jovem , Administração Oral , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/sangue , Distribuição Tecidual , Pirróis/farmacocinética , Pirróis/administração & dosagem , Pirróis/metabolismo , Pirróis/urina , Pirróis/sangue , Pessoa de Meia-Idade , Meia-Vida , Fezes/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Pirimidinas/farmacocinética , Pirimidinas/sangue , Pirimidinas/administração & dosagem
2.
J Hazard Mater ; 475: 134580, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38865829

RESUMO

In this research, a new material, chitosan/polypyrrole (CS/PPy), was synthesized and linked with the Cr(VI)-reducing bacterial strain YL3 to treat Cr(VI)-polluted soil. The findings demonstrated that the synergistic application of strain YL3 and CS/PPy achieved the greatest reduction (99.6 %). During the remediation process, CS/PPy served as a mass-storage and sustained release agent in the soil, which initially decreased the toxic effects of high concentrations of Cr(VI) on strain YL3, thereby enhancing the Cr(VI) reduction efficiency of strain YL3. These combined effects significantly mitigated Cr(VI) stress in the soil and restored enzyme activities. Furthermore, wheat growth in the treated soil also significantly improved. High-throughput sequencing of the microorganisms in the treated soil revealed that CS/PPy was not only effective at removing Cr(VI) but also at preserving the original microbial diversity of the soil. This suggests that the combined treatment using strain YL3 and CS/PPy could rehabilitate Cr(VI)-contaminated soil, positioning CS/PPy as a promising composite material for future bioremediation efforts in Cr(VI)-contaminated soils.


Assuntos
Biodegradação Ambiental , Quitosana , Cromo , Microbacterium , Polímeros , Pirróis , Microbiologia do Solo , Poluentes do Solo , Poluentes do Solo/metabolismo , Cromo/metabolismo , Cromo/química , Quitosana/química , Polímeros/química , Polímeros/metabolismo , Pirróis/metabolismo , Pirróis/química , Microbacterium/metabolismo , Triticum/metabolismo
3.
Ophthalmic Surg Lasers Imaging Retina ; 55(2): 109-111, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38198607

RESUMO

Futibatinib is an irreversible inhibitor of fibroblast growth factor receptors and is currently the subject of phase II clinical trials for the treatment of metastatic carcinomas. We report a case of a 59-year-old woman with metastatic malignant breast cancer who developed acute symptomatic subretinal fluid (SRF) accumulation after two weeks of futibatinib therapy. The SRF resolved within two weeks after futibatinib cessation. The medication was subsequently restarted at a lower dose, and SRF recurred within two weeks. To our knowledge, this is the first case depicting rapidly reversible SRF accumulation with the use of futibatinib in a real-world clinical setting. [Ophthalmic Surg Lasers Imaging Retina 2024;55:109-111.].


Assuntos
Neoplasias da Mama , Pirazóis , Pirimidinas , Feminino , Humanos , Pessoa de Meia-Idade , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Líquido Sub-Retiniano/metabolismo , Recidiva Local de Neoplasia/metabolismo , Pirróis/metabolismo
4.
Pharmacol Ther ; 253: 108565, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38052308

RESUMO

Pexidartinib (PLX3397) is a small molecule receptor tyrosine kinase inhibitor of colony stimulating factor 1 receptor (CSF1R) with moderate selectivity over other members of the platelet derived growth factor receptor family. It is approved for treatment of tenosynovial giant cell tumors (TGCT). CSF1R is highly expressed by microglia, which are macrophages of the central nervous system (CNS) that defend the CNS against injury and pathogens and contribute to synapse development and plasticity. Challenged by pathogens, apoptotic cells, debris, or inflammatory molecules they adopt a responsive state to propagate the inflammation and eventually return to a homeostatic state. The phenotypic switch may fail, and disease-associated microglia contribute to the pathophysiology in neurodegenerative or neuropsychiatric diseases or long-lasting detrimental brain inflammation after brain, spinal cord or nerve injury or ischemia/hemorrhage. Microglia also contribute to the growth permissive tumor microenvironment of glioblastoma (GBM). In rodents, continuous treatment for 1-2 weeks via pexidartinib food pellets leads to a depletion of microglia and subsequent repopulation from the remaining fraction, which is aided by peripheral monocytes that search empty niches for engraftment. The putative therapeutic benefit of such microglia depletion or forced renewal has been assessed in almost any rodent model of CNS disease or injury or GBM with heterogeneous outcomes, but a tendency of partial beneficial effects. So far, microglia monitoring e.g. via positron emission imaging is not standard of care for patients receiving Pexidartinib (e.g. for TGCT), so that the depletion and repopulation efficiency in humans is still largely unknown. Considering the virtuous functions of microglia, continuous depletion is likely no therapeutic option but short-lasting transient partial depletion to stimulate microglia renewal or replace microglia in genetic disease in combination with e.g. stem cell transplantation or as part of a multimodal concept in treatment of glioblastoma appears feasible. The present review provides an overview of the preclinical evidence pro and contra microglia depletion as a therapeutic approach.


Assuntos
Glioblastoma , Microglia , Humanos , Aminopiridinas/farmacologia , Pirróis/metabolismo , Pirróis/farmacologia , Microambiente Tumoral
5.
Angew Chem Int Ed Engl ; 61(43): e202205541, 2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36062554

RESUMO

Metabolic oxidation of pyrrolizidine alkaloids (PAs) from herbal and dietary supplements by cytochrome P450 produces dehydro-PAs (DHPs), which leads to toxicities. A highly reactive cation species generated from the active pyrrole ring of DHPs readily reacts with various cellular components, causing hepatotoxicity and cytotoxicity. Inspired by PA-induced hepatic damage, we developed a therapeutic approach based on a cyclization precursor that can be transformed into a synthetic DHP under physiological conditions through gold-catalyzed 5-endo-dig cyclization using a gold-based artificial metalloenzyme (ArM) instead of through metabolic oxidation by cytochrome P450. In cell-based assays, the synthesis of the DHP by a cancer-targeting glycosylated gold-based ArM substantially suppressed cell growth of the targeted cancer cells without causing cytotoxicity to untargeted cells, highlighting the potential of the strategy to be used therapeutically in vivo.


Assuntos
Metaloproteínas , Alcaloides de Pirrolizidina , Alcaloides de Pirrolizidina/toxicidade , Sistema Enzimático do Citocromo P-450 , Pirróis/metabolismo , Ouro
6.
Chembiochem ; 23(18): e202200349, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-35839379

RESUMO

Pentachloropseudilin (PClP) is a reversible and allosteric inhibitor of type 1 myosin. Here, we addressed the impact of PClP treatment of Trypanosoma cruzi and mammalian host cell on the parasite migration, cell adhesion and invasion. We observed that PClP was not toxic to either T. cruzi or host cell. Moreover, treatment of T. cruzi with PClP inhabited parasite motility, host cell adhesion and invasion. Treatment of host cell with PClP also impaired parasite invasion probably by decreasing lysosome migration to the entry site of the parasite. Therefore, PClP treatment impaired fundamental processes necessary for a successful T. cruzi infection.


Assuntos
Hidrocarbonetos Clorados , Trypanosoma cruzi , Animais , Lisossomos , Mamíferos , Miosinas/metabolismo , Pirróis/metabolismo
7.
EBioMedicine ; 81: 104095, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35671622

RESUMO

BACKGROUND: Remdesivir was the first prodrug approved to treat coronavirus disease 2019 (COVID-19) and has the potential to be used during pregnancy. However, it is not known whether remdesivir and its main metabolite, GS-441524 have the potential to cross the blood-placental barrier. We hypothesize that remdesivir and predominant metabolite GS-441524may cross the blood-placental barrier to reach the embryo tissues. METHODS: To test this hypothesis, ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) coupled with multisite microdialysis was used to monitor the levels of remdesivir and the nucleoside analogue GS-441524 in the maternal blood, fetus, placenta, and amniotic fluid of pregnant Sprague-Dawley rats. The transplacental transfer was evaluated using the pharmacokinetic parameters of AUC and mother-to-fetus transfer ratio (AUCfetus/AUCmother). FINDINGS: Our in-vivo results show that remdesivir is rapidly biotransformed into GS-441524 in the maternal blood, which then readily crossed the placenta with a mother-to-fetus transfer ratio of 0.51 ± 0.18. The Cmax and AUClast values of GS-441524 followed the order: maternal blood > amniotic fluid > fetus > placenta in rats. INTERPRETATION: While remdesivir does not directly cross into the fetus, however, its main metabolite, GS-441524 readily crosses the placenta and can reside there for at least 4 hours as shown in the pregnant Sprague-Dawley rat model. These findings suggest that careful consideration should be taken for the use of remdesivir in the treatment of COVID-19 in pregnancy. FUNDING: Ministry of Science and Technology of Taiwan.


Assuntos
Tratamento Farmacológico da COVID-19 , Complicações Infecciosas na Gravidez , Adenosina/análogos & derivados , Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Líquido Amniótico , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Biotransformação , Feminino , Feto/metabolismo , Furanos/metabolismo , Placenta/metabolismo , Gravidez , Complicações Infecciosas na Gravidez/tratamento farmacológico , Pirróis/metabolismo , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem/métodos
8.
Xenobiotica ; 52(3): 219-228, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35379057

RESUMO

1. GDC-0575 is an ATP-competitive small-molecule inhibitor of ChK1 that is being developed by Genentech for the treatment of various human malignancies.2. In a radiolabeled mass balance study of GDC-0575 in rats, two novel metabolites, named M12 (-71 Da,) and M17 (+288 Da), were detected as abundant circulating metabolites.3. Subsequent mass spectrometry and nuclear magnetic resonance analysis showed that M12 was a cyclized metabolite of GDC-0575, whereas M17 was its heterodimer to the parent. We further determined that M12 was mainly generated by cytochrome P450 (Cyp) 2d2.4. We proposed the potential mechanism was initiated by the oxidation on the pyrrole ring and subsequent cyclisation of the free primary amine onto C-3 of the pyrrole ring. This was followed by expulsion of cyclopropylcarboxamide and a loss of water to form intermediate I, which can be further oxidised to form M12, or dimerise with another molecule of GDC-0575 as nucleophile to form M17.5. To verify this hypothesis, we attempted to trap the intermediate I with glutathione (GSH) trapping assay and the GSH conjugate on the pyrrole ring was identified. This suggests the oxidation on the pyrrole led to reactive metabolite formation and supported this proposed mechanism.


Assuntos
Sistema Enzimático do Citocromo P-450 , Microssomos Hepáticos , Animais , Sistema Enzimático do Citocromo P-450/metabolismo , Glutationa/metabolismo , Microssomos Hepáticos/metabolismo , Piperidinas , Piridinas/metabolismo , Pirróis/metabolismo , Ratos
9.
Int J Mol Sci ; 22(23)2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34884931

RESUMO

Neuroblastoma is a severe childhood disease, accounting for ~10% of all infant cancers. The amplification of the MYCN gene, coding for the N-Myc transcription factor, is an essential marker correlated with tumor progression and poor prognosis. In neuroblastoma cells, the mitotic kinase Aurora-A (AURKA), also frequently overexpressed in cancer, prevents N-Myc degradation by directly binding to a highly conserved N-Myc region. As a result, elevated levels of N-Myc are observed. During recent years, it has been demonstrated that some ATP competitive inhibitors of AURKA also cause essential conformational changes in the structure of the activation loop of the kinase that prevents N-Myc binding, thus impairing the formation of the AURKA/N-Myc complex. In this study, starting from a screening of crystal structures of AURKA in complexes with known inhibitors, we identified additional compounds affecting the conformation of the kinase activation loop. We assessed the ability of such compounds to disrupt the interaction between AURKA and N-Myc in vitro, using Surface Plasmon Resonance competition assays, and in tumor cell lines overexpressing MYCN, by performing Proximity Ligation Assays. Finally, their effects on N-Myc cellular levels and cell viability were investigated. Our results identify PHA-680626 as an amphosteric inhibitor both in vitro and in MYCN overexpressing cell lines, thus expanding the repertoire of known conformational disrupting inhibitors of the AURKA/N-Myc complex and confirming that altering the conformation of the activation loop of AURKA with a small molecule is an effective strategy to destabilize the AURKA/N-Myc interaction in neuroblastoma cancer cells.


Assuntos
Aurora Quinase A/metabolismo , Proteína Proto-Oncogênica N-Myc/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Pirróis/farmacologia , Trifosfato de Adenosina/metabolismo , Antineoplásicos/farmacologia , Aurora Quinase A/antagonistas & inibidores , Aurora Quinase A/química , Azepinas/metabolismo , Azepinas/farmacologia , Benzazepinas/metabolismo , Benzazepinas/farmacologia , Sítios de Ligação , Ligação Competitiva , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Proteína Proto-Oncogênica N-Myc/química , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Conformação Proteica , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Pirazóis/metabolismo , Pirimidinas/metabolismo , Pirimidinas/farmacologia , Pirróis/metabolismo , Ressonância de Plasmônio de Superfície
10.
Amino Acids ; 53(12): 1863-1874, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34792644

RESUMO

L-Thioproline (L-thiazolidine-4-carboxylate, L-T4C) is a cyclic sulfur-containing analog of L-proline found in multiple kingdoms of life. The oxidation of L-T4C leads to L-cysteine formation in bacteria, plants, mammals, and protozoa. The conversion of L-T4C to L-Cys in bacterial cell lysates has been attributed to proline dehydrogenase and L-Δ1-pyrroline-5-carboxylate (P5C) reductase (PYCR) enzymes but detailed kinetic studies have not been conducted. Here, we characterize the dehydrogenase activity of human PYCR isozymes 1 and 2 with L-T4C using NAD(P)+ as the hydride acceptor. Both PYCRs exhibit significant L-T4C dehydrogenase activity; however, PYCR2 displays nearly tenfold higher catalytic efficiency (136 M-1 s-1) than PYCR1 (13.7 M-1 s-1). Interestingly, no activity was observed with either L-Pro or the analog DL-thiazolidine-2-carboxylate, indicating that the sulfur at the 4-position is critical for PYCRs to utilize L-T4C as a substrate. Inhibition kinetics show that L-Pro is a competitive inhibitor of PYCR1 [Formula: see text] with respect to L-T4C, consistent with these ligands occupying the same binding site. We also confirm by mass spectrometry that L-T4C oxidation by PYCRs leads to cysteine product formation. Our results suggest a new enzyme function for human PYCRs in the metabolism of L-T4C.


Assuntos
Pirrolina Carboxilato Redutases/metabolismo , Tiazolidinas/metabolismo , Sítios de Ligação/fisiologia , Cisteína/metabolismo , Humanos , Cinética , Prolina/metabolismo , Pirróis/metabolismo
11.
Int J Mol Sci ; 22(21)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34769188

RESUMO

Studies of cancer metabolism have focused on the production of energy and the interconversion of carbons between cell cycles. More recently, amino acid metabolism, especially non-essential amino acids (NEAAs), has been investigated, underlining their regulatory role. One of the important mediators in energy production and interconversion of carbons in the cell is Δ1-pyrroline-5-carboxylate (P5C)-the physiological intracellular intermediate of the interconversion of proline, ornithine, and glutamate. As a central component of these conversions, it links the tricarboxylic acid cycle (TCA), urea cycle (UC), and proline cycle (PC). P5C has a cyclic structure containing a tertiary nitrogen atom (N) and is in tautomeric equilibrium with the open-chain form of L-glutamate-γ-semialdehyde (GSAL). P5C is produced by P5C synthase (P5CS) from glutamate, and ornithine via ornithine δ-amino acid transferase (δOAT). It can also be converted to glutamate by P5C dehydrogenase (P5CDH). P5C is both a direct precursor of proline and a product of its degradation. The conversion of P5C to proline is catalyzed by P5C reductase (PYCR), while proline to P5C by proline dehydrogenase/oxidase (PRODH/POX). P5C-proline-P5C interconversion forms a functional redox couple. Their transformations are accompanied by the transfer of a reducing-oxidizing potential, that affect the NADP+/NADPH ratio and a wide variety of processes, e.g., the synthesis of phosphoribosyl pyrophosphate (PRPP), and purine ribonucleotides, which are crucial for DNA synthesis. This review focuses on the metabolism of P5C in the cell as an interconversion mediator of proline, glutamate, and ornithine and its role in the regulation of survival and death with particular emphasis on the metabolic context.


Assuntos
Apoptose , Prolina/metabolismo , Pirróis/metabolismo , Aminoácidos/metabolismo , Animais , Sobrevivência Celular , Humanos , Ornitina-Oxo-Ácido Transaminase/metabolismo
12.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34654746

RESUMO

In nature, microorganisms could sense the intensity of the incident visible light and exhibit bidirectional (positive or negative) phototaxis. However, it is still challenging to achieve the similar biomimetic phototaxis for the artificial micro/nanomotor (MNM) counterparts with the size from a few nanometers to a few micrometers. In this work, we report a fuel-free carbon nitride (C3N4)/polypyrrole nanoparticle (PPyNP)-based smart MNM operating in water, whose behavior resembles that of the phototactic microorganism. The MNM moves toward the visible light source under low illumination and away from it under high irradiation, which relies on the competitive interplay between the light-induced self-diffusiophoresis and self-thermophoresis mechanisms concurrently integrated into the MNM. Interestingly, the competition between these two mechanisms leads to a collective bidirectional phototaxis of an ensemble of MNMs under uniform illuminations and a spinning schooling behavior under a nonuniform light, both of which can be finely controllable by visible light energy. Our results provide important insights into the design of the artificial counterpart of the phototactic microorganism with sophisticated motion behaviors for diverse applications.


Assuntos
Luz , Movimento (Física) , Fototaxia , Biomimética , Polímeros/metabolismo , Pirróis/metabolismo
13.
Angew Chem Int Ed Engl ; 60(44): 23695-23704, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34460143

RESUMO

We report the first cellular application of the emerging near-quantitative photoswitch pyrrole hemithioindigo, by rationally designing photopharmaceutical PHTub inhibitors of the cytoskeletal protein tubulin. PHTubs allow simultaneous visible-light imaging and photoswitching in live cells, delivering cell-precise photomodulation of microtubule dynamics, and photocontrol over cell cycle progression and cell death. This is the first acute use of a hemithioindigo photopharmaceutical for high-spatiotemporal-resolution biological control in live cells. It additionally demonstrates the utility of near-quantitative photoswitches, by enabling a dark-active design to overcome residual background activity during cellular photopatterning. This work opens up new horizons for high-precision microtubule research using PHTubs and shows the cellular applicability of pyrrole hemithioindigo as a valuable scaffold for photocontrol of a range of other biological targets.


Assuntos
Antimitóticos/metabolismo , Índigo Carmim/análogos & derivados , Microtúbulos/metabolismo , Pirróis/metabolismo , Análise de Célula Única , Antimitóticos/química , Ciclo Celular , Morte Celular , Linhagem Celular Tumoral , Células HeLa , Humanos , Índigo Carmim/química , Índigo Carmim/metabolismo , Microtúbulos/química , Estrutura Molecular , Processos Fotoquímicos , Pirróis/química
14.
Arch Toxicol ; 95(10): 3191-3204, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34390356

RESUMO

Pyrrolizidine alkaloids (PAs) have been found in over 6000 plants worldwide and represent the most common hepatotoxic phytotoxins. Currently, a definitive diagnostic method for PA-induced liver injury (PA-ILI) is lacking. In the present study, using a newly developed analytical method, we identified four pyrrole-amino acid adducts (PAAAs), namely pyrrole-7-cysteine, pyrrole-9-cysteine, pyrrole-9-histidine, and pyrrole-7-acetylcysteine, which are generated from reactive pyrrolic metabolites of PAs, in the urine of PA-treated male Sprague Dawley rats and PA-ILI patients. The elimination profiles, abundance, and persistence of PAAAs were systematically investigated first in PA-treated rat models via oral administration of retrorsine at a single dose of 40 mg/kg and multiple doses of 5 mg/kg/day for 14 consecutive days, confirming that these urinary excreted PAAAs were derived specifically from PA exposure. Moreover, we determined that these PAAAs were detected in ~ 82% (129/158) of urine samples collected from ~ 91% (58/64) of PA-ILI patients with pyrrole-7-cysteine and pyrrole-9-histidine detectable in urine samples collected at 3 months or longer times after hospital admission, indicating adequate persistence time for use as a clinical test. As direct evidence of PA exposure, we propose that PAAAs can be used as a biomarker of PA exposure and the measurement of urinary PAAAs could be used as a non-invasive test assisting the definitive diagnosis of PA-ILI in patients.


Assuntos
Aminoácidos/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Pirróis/metabolismo , Alcaloides de Pirrolizidina/toxicidade , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Biomarcadores/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/diagnóstico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Alcaloides de Pirrolizidina/administração & dosagem , Alcaloides de Pirrolizidina/farmacocinética , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
15.
ACS Appl Mater Interfaces ; 13(33): 39112-39125, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34384220

RESUMO

Autophagy inhibition could hinder the underlying protective mechanisms in the course of tumor treatment. The advances in autophagy inhibition have driven focus on the functionalized nanoplatforms by combining the current treatment paradigms with complementary autophagy inhibition for enhanced efficacy. Furthermore, Ca2+ overload is also a promising adjuvant target for the tumor treatment by augmenting mitochondrial damage. In this view, complementary mitochondrial Ca2+ overload and autophagy inhibition were first demonstrated as a novel strategy suitable for homing in on the shortage of photodynamic therapy (PDT). We constructed biodegradable tumor-targeted inorganic/organic hybrid nanocomposites (DPGC/OI) synchronously encapsulating IR780 and Obatoclax by biomineralization of the nanofilm method, which consists of pH-triggered calcium phosphate (CP), long circulation phospholipid block copolymers 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE)-poly(ethylene glycol) (PEG)2000-glucose (DPG). In the presence of the hydrophilic PEG chain and glucose transporter 1 (Glut-1) ligands, DPGC would become an effectively tumor-oriented nanoplatform. Subsequently, IR780 as an outstanding photosensitizer could produce increased amounts of toxic reactive oxygen species (ROS) after laser irradiation. Calcium phosphate (CP) as the Ca2+ nanogenerator could generate Ca2+ at low pH to induce mitochondrial Ca2+ overload. The dysfunction of mitochondria could enhance increased amounts of ROS. Based on the premise that autophagy would degrade dysfunctional organelles to sustain metabolism and homeostasis, which might participate in resistance to PDT, Obatoclax as an autophagy inhibitor would hinder the protective mechanism from cancer cells with negligible toxicity. Such an enhanced PDT via mitochondrial Ca2+ overload and autophagy inhibition could be realized by DPGC/OI.


Assuntos
Autofagia/efeitos dos fármacos , Fosfatos de Cálcio/química , Glucose/química , Indóis/química , Nanocompostos/química , Fosfatidiletanolaminas/química , Fármacos Fotossensibilizantes/química , Polietilenoglicóis/química , Animais , Transporte Biológico , Melhoramento Biomédico , Feminino , Humanos , Indóis/metabolismo , Indóis/farmacologia , Camundongos Endogâmicos BALB C , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Fosfolipídeos/química , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Pirróis/química , Pirróis/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Propriedades de Superfície , Distribuição Tecidual
16.
Bioorg Chem ; 115: 105220, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34352709

RESUMO

Two series of 2,7-diaryl-pyrazolo[1,5-a]pyrimidines as tubulin polymerization inhibitors were designed to restrict bioactive configuration of (E,Z)-vinylogous CA-4. All of the target compounds were synthesized and then evaluated for their in vitro antiproliferative activities against three cancer cell lines (MCF-7, SGC-7901 and A549). Among them, 6d exhibited the most potent antiproliferative activity against the MCF-7 with IC50 value of 0.047 µM. Moreover, 6d significantly inhibited tubulin polymerization, disrupted microtubule networks, arrested cell cycle at G2/M phase, induced apoptosis and hindered cancer cell migration. Colchicine competition assay and molecular docking studies suggested that 6d could interact with tubulin by binding to the colchicine site.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Pirróis/farmacologia , Moduladores de Tubulina/farmacologia , Tubulina (Proteína)/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Polimerização/efeitos dos fármacos , Pirróis/química , Pirróis/metabolismo , Relação Estrutura-Atividade , Moduladores de Tubulina/síntese química , Moduladores de Tubulina/química
17.
Eur J Med Chem ; 223: 113670, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34214842

RESUMO

Focal adhesion kinase (FAK) is a ubiquitous intracellular non-receptor tyrosine kinase, which is involved in multiple cellular functions, including cell adhesion, migration, invasion, survival, and angiogenesis. In this study, a series of 7H-pyrrolo[2,3-d]pyrimidines were designed and synthesized according to the E-pharmacophores generated by docking a library of 667 fragments into the ATP pocket of the co-crystal complex of FAK and PF-562271 (PDB ID: 3BZ3). The 5-fluoro-7H-pyrrolo[2,3-d]pyrimidine derivatives demonstrated excellent activity against FAK and the cell lines SMMC7721 and YY8103. 2-((2-((3-(Acetamidomethyl)phenyl)amino)-5-fluoro-7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)-N-methylbenzamide (16c) was selected for further bioactivity evaluations in vivo, including preliminary pharmacokinetic profiling in rats and toxicity assays in mice, and tumor growth inhibition studies in a xenograft tumor model. The results showed that 16c did not affect the body weight gain of the animals up to a dose of 200 mg/kg, and significantly inhibited tumor growth with a tumor growth inhibition rate of 78.6% compared with the negative control group. Furthermore, phosphoantibody array analyses of a sample of the tumor suggested that 16c inhibited the malignant proliferation of hepatocellular carcinoma (HCC) cells through decreasing the phosphorylation in the FAK cascade.


Assuntos
Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Inibidores de Proteínas Quinases/síntese química , Pirimidinas/química , Pirróis/química , Animais , Sítios de Ligação , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Domínio Catalítico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Meia-Vida , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Nus , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/metabolismo , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Pirróis/metabolismo , Pirróis/farmacologia , Pirróis/uso terapêutico , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/uso terapêutico , Relação Estrutura-Atividade , Transplante Heterólogo
18.
Eur J Med Chem ; 223: 113627, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34171657

RESUMO

The tropomyosin receptor kinases TRKs are responsible for different tumor types which caused by NTRK gene fusion, and have been identified as a successful target for anticancer therapeutics. Herein, we report a potent and selectivity TRKs inhibitor 19m through rational drug design strategy from a micromolar potency hit 17a. Compound 19m significantly inhibits the proliferation of TRK-dependent cell lines (Km-12), while it has no inhibitory effect on TRK-independent cell lines (A549 and THLE-2). Furthermore, kinases selectivity profiling showed that in addition to TRKs, compound 19m only displayed relatively strong inhibitory activity on ALK. These data may indicate that compound 19m has a good drug safety. Partial ADME properties were evaluated in vitro and in vivo. Compound 19m exhibited a good AUC values and volume of distribution and low clearance in the pharmacokinetics experiment of rats. Finally, a pharmacophore model guided by experimental results is proposed. We hope this theoretical model can help researchers find type I TRK inhibitors more efficiently.


Assuntos
Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Pirróis/farmacologia , Receptor trkA/antagonistas & inibidores , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Estabilidade de Medicamentos , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Humanos , Microssomos Hepáticos/metabolismo , Simulação de Acoplamento Molecular , Ligação Proteica , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacocinética , Pirazóis/síntese química , Pirazóis/metabolismo , Pirazóis/farmacocinética , Pirróis/síntese química , Pirróis/metabolismo , Pirróis/farmacocinética , Ratos Sprague-Dawley , Receptor trkA/metabolismo
19.
J Pharm Pharm Sci ; 24: 227-236, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34048668

RESUMO

PURPOSE: Remdesivir and its active metabolite are predominantly eliminated via renal route; however, information regarding renal uptake transporters is limited. In the present study, the interaction of remdesivir and its nucleoside analog GS-441524 with OATP4C1 was evaluated to provide the detailed information about its renal handling. METHODS: We used HK-2 cells, a proximal tubular cell line derived from normal kidney, to confirm the transport of remdesivir and GS-441524. To assess the involvement of OATP4C1 in handling remdesivir and GS-441524, the uptake study of remdesivir and GS-441524 was performed by using OATP4C1-overexpressing Madin-Darby canine kidney II (MDCKII) cells. Moreover, we also evaluated the IC50 and Ki value of remdesivir. RESULTS: The time-dependent remdesivir uptake in HK-2 cells was observed. The results of inhibition study using OATs and OCT2 inhibitors and OATP4C1 knockdown suggested the involvement of renal drug transporter OATP4C1. Remdesivir was taken up by OATP4C1/MDCKII cells. OATP4C1-mediated uptake of remdesivir increased linearly up to 10 min and reached a steady state at 30 min. Remdesivir inhibited OATP4C1-mediated transport in a concentration-dependent manner with the IC50 and apparent Ki values of 42 ± 7.8 µM and 37 ± 6.9 µM, respectively. CONCLUSIONS: We have provided novel information about renal handling of remdesivir. Furthermore, we evaluated the potential drug interaction via OATP4C1 by calculating the Ki value of remdesivir. OATP4C1 may play a pivotal role in remdesivir therapy for COVID-19, particularly in patients with kidney injury.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Antivirais/metabolismo , Tratamento Farmacológico da COVID-19 , Furanos/metabolismo , Túbulos Renais Proximais/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Pirróis/metabolismo , Triazinas/metabolismo , Adenosina/análogos & derivados , Monofosfato de Adenosina/metabolismo , Monofosfato de Adenosina/uso terapêutico , Alanina/metabolismo , Alanina/uso terapêutico , Animais , Antivirais/uso terapêutico , COVID-19/metabolismo , Linhagem Celular , Cães , Relação Dose-Resposta a Droga , Aprovação de Drogas , Furanos/uso terapêutico , Humanos , Rim/efeitos dos fármacos , Rim/metabolismo , Túbulos Renais Proximais/efeitos dos fármacos , Células Madin Darby de Rim Canino , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Pirróis/uso terapêutico , Triazinas/uso terapêutico
20.
J Ind Microbiol Biotechnol ; 48(3-4)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-33982054

RESUMO

The ammosamides (AMMs) are a family of pyrroloquinoline alkaloids that exhibits a wide variety of bioactivities. A biosynthetic gene cluster (BGC) that is highly homologous in both gene content and genetic organization to the amm BGC was identified by mining the Streptomyces uncialis DCA2648 genome, leading to the discovery of a sub-family of new AMM congeners, named ammosesters (AMEs). The AMEs feature a C-4a methyl ester, differing from the C-4a amide functional group characteristic to AMMs, and exhibit modest cytotoxicity against a broad spectrum of human cancer cell lines, expanding the structure-activity relationship for the pyrroloquinoline family of natural products. Comparative analysis of the ame and amm BGCs supports the use of a scaffold peptide as an emerging paradigm for the biosynthesis of the pyrroloquinoline family of natural products. AME and AMM biosynthesis diverges from a common intermediate by evolving the pathway-specific Ame24 O-methyltransferase and Amm20 amide synthetase, respectively. These findings will surely inspire future efforts to mimic Nature's combinatorial biosynthetic strategies for natural product structural diversity.


Assuntos
Genoma Bacteriano , Pirróis/metabolismo , Quinolinas/metabolismo , Streptomyces/metabolismo , Amidas/química , Amidas/metabolismo , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Humanos , Família Multigênica , Pirróis/química , Quinolinas/química , Streptomyces/química , Streptomyces/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA