Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(51): 32806-32815, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33288721

RESUMO

The yeast Saccharomyces cerevisiae is a powerful model system for systems-wide biology screens and large-scale proteomics methods. Nearly complete proteomics coverage has been achieved owing to advances in mass spectrometry. However, it remains challenging to scale this technology for rapid and high-throughput analysis of the yeast proteome to investigate biological pathways on a global scale. Here we describe a systems biology workflow employing plate-based sample preparation and rapid, single-run, data-independent mass spectrometry analysis (DIA). Our approach is straightforward, easy to implement, and enables quantitative profiling and comparisons of hundreds of nearly complete yeast proteomes in only a few days. We evaluate its capability by characterizing changes in the yeast proteome in response to environmental perturbations, identifying distinct responses to each of them and providing a comprehensive resource of these responses. Apart from rapidly recapitulating previously observed responses, we characterized carbon source-dependent regulation of the GID E3 ligase, an important regulator of cellular metabolism during the switch between gluconeogenic and glycolytic growth conditions. This unveiled regulatory targets of the GID ligase during a metabolic switch. Our comprehensive yeast system readout pinpointed effects of a single deletion or point mutation in the GID complex on the global proteome, allowing the identification and validation of targets of the GID E3 ligase. Moreover, this approach allowed the identification of targets from multiple cellular pathways that display distinct patterns of regulation. Although developed in yeast, rapid whole-proteome-based readouts can serve as comprehensive systems-level assays in all cellular systems.


Assuntos
Espectrometria de Massas/métodos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Carbono/metabolismo , Meios de Cultura , Frutose-Bifosfatase/metabolismo , Glucose/metabolismo , Malato Desidrogenase/metabolismo , Mutação Puntual , Piruvato Descarboxilase/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Estresse Fisiológico , Biologia de Sistemas/métodos , Ubiquitina-Proteína Ligases/genética , Fluxo de Trabalho
2.
Microbiologyopen ; 9(5): e1010, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32053746

RESUMO

Metabolosomes, catabolic bacterial microcompartments (BMCs), are proteinaceous organelles that are associated with the breakdown of metabolites such as propanediol and ethanolamine. They are composed of an outer multicomponent protein shell that encases a specific metabolic pathway. Protein cargo found within BMCs is directed by the presence of an encapsulation peptide that appears to trigger aggregation before the formation of the outer shell. We investigated the effect of three distinct encapsulation peptides on foreign cargo in a recombinant BMC system. Our data demonstrate that these peptides cause variations in enzyme activity and protein aggregation. We observed that the level of protein aggregation generally correlates with the size of metabolosomes, while in the absence of cargo BMCs self-assemble into smaller compartments. The results agree with a flexible model for BMC formation based around the ability of the BMC shell to associate with an aggregate formed due to the interaction of encapsulation peptides.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Metalotioneína/metabolismo , Organelas/enzimologia , Peptídeos/metabolismo , Bactérias/genética , Bactérias/ultraestrutura , Proteínas de Bactérias/genética , Genes Bacterianos , Redes e Vias Metabólicas , Organelas/ultraestrutura , Peptídeos/genética , Transporte Proteico , Piruvato Descarboxilase/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
3.
Nat Prod Rep ; 37(1): 100-135, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31074473

RESUMO

Covering: up to 2019Metabolic production of CO2 is natural product chemistry on a mammoth scale. Just counting humans, among all other respiring organisms, the seven billion people on the planet exhale about 3 billion tons of CO2 per year. Essentially all of the biogenic CO2 arises by action of discrete families of decarboxylases. The mechanistic routes to CO2 release from carboxylic acid metabolites vary with the electronic demands and structures of specific substrates and illustrate the breadth of chemistry employed for C-COO (C-C bond) disconnections. Most commonly decarboxylated are α-keto acid and ß-keto acid substrates, the former requiring thiamin-PP as cofactor, the latter typically cofactor-free. The extensive decarboxylation of amino acids, e.g. to neurotransmitter amines, is synonymous with the coenzyme form of vitamin B6, pyridoxal-phosphate, although covalent N-terminal pyruvamide residues serve in some amino acid decarboxylases. All told, five B vitamins (B1, B2, B3, B6, B7), ATP, S-adenosylmethionine, manganese and zinc ions are pressed into service for specific decarboxylase catalyses. There are additional cofactor-independent decarboxylases that operate by distinct chemical routes. Finally, while most decarboxylases use heterolytic ionic mechanisms, a small number of decarboxylases carry out radical pathways.


Assuntos
Dióxido de Carbono/metabolismo , Carbono/metabolismo , Carboxiliases/metabolismo , Animais , Biotina/metabolismo , Carboxiliases/química , Ácidos Carboxílicos/metabolismo , Catálise , Coenzimas/química , Coenzimas/metabolismo , Humanos , Redes e Vias Metabólicas , NAD/metabolismo , Neurotransmissores/metabolismo , Niacinamida/metabolismo , Piruvato Descarboxilase/metabolismo , Zinco/metabolismo
4.
PLoS Pathog ; 15(10): e1008092, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31648290

RESUMO

The viral replication proteins of plus-stranded RNA viruses orchestrate the biogenesis of the large viral replication compartments, including the numerous viral replicase complexes, which represent the sites of viral RNA replication. The formation and operation of these virus-driven structures require subversion of numerous cellular proteins, membrane deformation, membrane proliferation, changes in lipid composition of the hijacked cellular membranes and intensive viral RNA synthesis. These virus-driven processes require plentiful ATP and molecular building blocks produced at the sites of replication or delivered there. To obtain the necessary resources from the infected cells, tomato bushy stunt virus (TBSV) rewires cellular metabolic pathways by co-opting aerobic glycolytic enzymes to produce ATP molecules within the replication compartment and enhance virus production. However, aerobic glycolysis requires the replenishing of the NAD+ pool. In this paper, we demonstrate the efficient recruitment of pyruvate decarboxylase (Pdc1) and alcohol dehydrogenase (Adh1) fermentation enzymes into the viral replication compartment. Depletion of Pdc1 in combination with deletion of the homologous PDC5 in yeast or knockdown of Pdc1 and Adh1 in plants reduced the efficiency of tombusvirus replication. Complementation approach revealed that the enzymatically functional Pdc1 is required to support tombusvirus replication. Measurements with an ATP biosensor revealed that both Pdc1 and Adh1 enzymes are required for efficient generation of ATP within the viral replication compartment. In vitro reconstitution experiments with the viral replicase show the pro-viral function of Pdc1 during the assembly of the viral replicase and the activation of the viral p92 RdRp, both of which require the co-opted ATP-driven Hsp70 protein chaperone. We propose that compartmentalization of the co-opted fermentation pathway in the tombusviral replication compartment benefits the virus by allowing for the rapid production of ATP locally, including replenishing of the regulatory NAD+ pool by the fermentation pathway. The compartmentalized production of NAD+ and ATP facilitates their efficient use by the co-opted ATP-dependent host factors to support robust tombusvirus replication. We propose that compartmentalization of the fermentation pathway gives an evolutionary advantage for tombusviruses to replicate rapidly to speed ahead of antiviral responses of the hosts and to outcompete other pathogenic viruses. We also show the dependence of turnip crinkle virus, bamboo mosaic virus, tobacco mosaic virus and the insect-infecting Flock House virus on the fermentation pathway, suggesting that a broad range of viruses might induce this pathway to support rapid replication.


Assuntos
Álcool Desidrogenase/metabolismo , Piruvato Descarboxilase/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/virologia , Tombusvirus/crescimento & desenvolvimento , Replicação Viral/fisiologia , Trifosfato de Adenosina/biossíntese , Fermentação/fisiologia , Glicólise/fisiologia , Proteínas de Choque Térmico HSP70/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , NAD/metabolismo , RNA Viral/biossíntese , Saccharomyces cerevisiae/metabolismo , Nicotiana/virologia , Tombusvirus/genética , Replicação Viral/genética
5.
Int J Mol Sci ; 20(5)2019 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-30857203

RESUMO

APETALA2/ethylene-responsive factor superfamily (AP2/ERF) is a transcription factor involved in abiotic stresses, for instance, cold, drought, and low oxygen. In this study, a novel ethylene-responsive transcription factor named AdRAP2.3 was isolated from Actinidia deliciosa 'Jinkui'. AdRAP2.3 transcription levels in other reproductive organs except for the pistil were higher than those in the vegetative organs (root, stem, and leaf) in kiwi fruit. Plant hormones (Salicylic acid (SA), Methyl-jasmonate acid (MeJA), 1-Aminocyclopropanecarboxylic Acid (ACC), Abscisic acid (ABA)), abiotic stresses (waterlogging, heat, 4 °C and NaCl) and biotic stress (Pseudomonas Syringae pv. Actinidiae, Psa) could induce the expression of AdRAP2.3 gene in kiwi fruit. Overexpression of the AdRAP2.3 gene conferred waterlogging stress tolerance in transgenic tobacco plants. When completely submerged, the survival rate, fresh weight, and dry weight of transgenic tobacco lines were significantly higher than those of wile type (WT). Upon the roots being submerged, transgenic tobacco lines grew aerial roots earlier. Overexpression of AdRAP2.3 in transgenic tobacco improved the pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH) enzyme activities, and improved the expression levels of waterlogging mark genes NtPDC, NtADH, NtHB1, NtHB2, NtPCO1, and NtPCO2 in roots under waterlogging treatment. Overall, these results demonstrated that AdRAP2.3 might play an important role in resistance to waterlogging through regulation of PDC and ADH genes in kiwi fruit.


Assuntos
Actinidia/fisiologia , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Nicotiana/fisiologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/fisiologia , Estresse Fisiológico , Fatores de Transcrição/metabolismo , Actinidia/genética , Álcool Desidrogenase/genética , Álcool Desidrogenase/metabolismo , Genes de Plantas , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Piruvato Descarboxilase/genética , Piruvato Descarboxilase/metabolismo , Nicotiana/genética , Fatores de Transcrição/genética
6.
PLoS One ; 14(2): e0212059, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30730995

RESUMO

Formation of adventitious roots in plants is a common response to hypoxia caused by flooding. In tobacco, after one week of root hypoxia treatment, plants produced twice as many adventitious roots as the aerated plants, but their maximum length was reduced. Hypoxia severely reduced net photosynthesis, transpiration rates, and photosynthetic light responses. Relative transcript abundance of the examined aquaporins in lateral roots was reduced by hypoxia, but in adventitious roots it remained unchanged. This apparent lack of an effect of root hypoxia on the aquaporin expression likely contributed to maintenance of high hydraulic conductance in adventitious roots. Lateral roots had lower porosity compared with adventitious roots and the expression of the ACS (1-aminocyclopropane-1-carboxylate synthase) gene was induced in hypoxic lateral roots, but not in adventitious roots, providing additional evidence that lateral roots were more affected by hypoxia compared with adventitious roots. ATP concentrations were markedly lower in both hypoxic lateral and adventitious roots compared with aerated roots, while the expression of fermentation-related genes, ADH1 (alcohol dehydrogenase 1) and PDC1 (pyruvate decarboxylase 1), was higher in lateral roots compared with adventitious roots. Since root porosity was greater in adventitious compared with lateral roots, the results suggest that the improved O2 delivery and stable root aquaporin expression in adventitious roots were likely the key factors helping flooded tobacco plants maintain high rates of root hydraulic conductance and, consequently, shoot gas exchange.


Assuntos
Aquaporinas/metabolismo , Hipóxia , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Trifosfato de Adenosina/metabolismo , Álcool Desidrogenase/genética , Álcool Desidrogenase/metabolismo , Aquaporinas/genética , Liases/genética , Liases/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Piruvato Descarboxilase/genética , Piruvato Descarboxilase/metabolismo , Água/metabolismo
7.
FEMS Yeast Res ; 19(2)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30277518

RESUMO

3-(methylthio)-1-propanol (methionol), produced by yeast as an end-product of L-methionine (L-Met) catabolism, imparts off-odours reminiscent of cauliflower and potato to wine. Saccharomyces cerevisiae ARO genes, including transaminases Aro8p and Aro9p, and decarboxylase Aro10p, catalyse two key steps forming methionol via the Ehrlich pathway. We compared methionol concentrations in wines fermented by single Δaro8, Δaro9 and Δaro10 deletants in lab strain BY4743 versus wine strain Zymaflore F15, and F15 double- and triple-aro deletants versus single-aro deletants, using headspace-solid phase microextraction coupled with gas chromatography-mass spectrometry.Deletion of two or more aro genes increased growth lag phase, with the greatest delay exhibited by F15 Δaro8 Δaro9. The single Δaro8 deletion decreased methionol by 44% in BY4743 and 92% in F15, while the Δaro9 deletion increased methionol by 46% in F15 but not BY4743. Single deletion of Δaro10 had no effect on methionol.Unexpectedly, F15 Δaro8 Δaro9 and F15 Δaro8 Δaro9 Δaro10 produced more methionol than F15 Δaro8. In the absence of Aro8p and Aro9p, other transaminases may compensate or an alternative pathway may convert methanethiol to methionol. Our results confirm that Ehrlich pathway genes differ greatly between lab and wine yeast strains, impacting downstream products such as methionol.


Assuntos
Metionina/metabolismo , Propanóis/metabolismo , Piruvato Descarboxilase/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Sulfetos/metabolismo , Transaminases/metabolismo , Vinho/microbiologia , Vias Biossintéticas/genética , Fermentação , Cromatografia Gasosa-Espectrometria de Massas , Deleção de Genes , Piruvato Descarboxilase/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Transaminases/genética
8.
J Biosci Bioeng ; 126(3): 317-321, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29636254

RESUMO

Metabolic engineering of Saccharomyces cerevisiae often requires a restriction on the ethanol biosynthesis pathway. The non-ethanol-producing strains, however, are slow growers. In this study, a cDNA library constructed from S. cerevisiae was used to improve the slow growth of non-ethanol-producing S. cerevisiae strains lacking all pyruvate decarboxylase enzymes (Pdc-, YSM021). Among the obtained 120 constructs expressing cDNAs, 34 transformants showed a stable phenotype with quicker growth. Sequence analysis showed that the open reading frames of PDC1, DUG1 (Cys-Gly metallo-di-peptidase in the glutathione degradation pathway), and TEF1 (translational elongation factor EF-1 alpha) genes were inserted into the plasmids of 32, 1, and 1 engineered strains, respectively. DUG1 function was confirmed by the construction of YSM021 pGK416-DUG1 strain because the specific growth rate of YSM021 pGK416-DUG1 (0.032 ± 0.0005 h-1) was significantly higher than that of the control strains (0.029 ± 0.0008 h-1). This suggested that cysteine supplied from glutathione was probably used for cell growth and for construction of Fe-S clusters. The results showed that the overexpression of cDNAs is a promising approach to engineer S. cerevisiae metabolism.


Assuntos
Dipeptidases/genética , Etanol/metabolismo , Engenharia Metabólica/métodos , Piruvato Descarboxilase/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae , Cisteína/metabolismo , DNA Complementar/genética , DNA Complementar/metabolismo , Dipeptidases/metabolismo , Regulação Fúngica da Expressão Gênica , Glutationa/metabolismo , Redes e Vias Metabólicas/genética , Organismos Geneticamente Modificados , Plasmídeos , Piruvato Descarboxilase/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
Nat Cell Biol ; 16(12): 1227-37, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25344756

RESUMO

The heat-shock response is a complex cellular program that induces major changes in protein translation, folding and degradation to alleviate toxicity caused by protein misfolding. Although heat shock has been widely used to study proteostasis, it remained unclear how misfolded proteins are targeted for proteolysis in these conditions. We found that Rsp5 and its mammalian homologue Nedd4 are important E3 ligases responsible for the increased ubiquitylation induced by heat stress. We determined that Rsp5 ubiquitylates mainly cytosolic misfolded proteins upon heat shock for proteasome degradation. We found that ubiquitylation of heat-induced substrates requires the Hsp40 co-chaperone Ydj1 that is further associated with Rsp5 upon heat shock. In addition, ubiquitylation is also promoted by PY Rsp5-binding motifs found primarily in the structured regions of stress-induced substrates, which can act as heat-induced degrons. Our results support a bipartite recognition mechanism combining direct and chaperone-dependent ubiquitylation of misfolded cytosolic proteins by Rsp5.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Resposta ao Choque Térmico/fisiologia , Dobramento de Proteína , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Complexos Ubiquitina-Proteína Ligase/genética , Ubiquitina-Proteína Ligases/metabolismo , Animais , Linhagem Celular Tumoral , Cristalografia por Raios X , Células HeLa , Temperatura Alta , Humanos , Camundongos , Ubiquitina-Proteína Ligases Nedd4 , Fatores de Terminação de Peptídeos/metabolismo , Estrutura Terciária de Proteína , Piruvato Descarboxilase/metabolismo , Piruvato Quinase/genética , Piruvato Quinase/metabolismo , Saccharomyces cerevisiae/genética , Ubiquitina/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
10.
ACS Synth Biol ; 3(7): 454-465, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-24933391

RESUMO

Targeting of proteins to bacterial microcompartments (BMCs) is mediated by an 18-amino-acid peptide sequence. Herein, we report the solution structure of the N-terminal targeting peptide (P18) of PduP, the aldehyde dehydrogenase associated with the 1,2-propanediol utilization metabolosome from Citrobacter freundii. The solution structure reveals the peptide to have a well-defined helical conformation along its whole length. Saturation transfer difference and transferred NOE NMR has highlighted the observed interaction surface on the peptide with its main interacting shell protein, PduK. By tagging both a pyruvate decarboxylase and an alcohol dehydrogenase with targeting peptides, it has been possible to direct these enzymes to empty BMCs in vivo and to generate an ethanol bioreactor. Not only are the purified, redesigned BMCs able to transform pyruvate into ethanol efficiently, but the strains containing the modified BMCs produce elevated levels of alcohol.


Assuntos
Reatores Biológicos , Etanol/metabolismo , Peptídeos/química , Aldeído Oxirredutases/química , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Citrobacter freundii/enzimologia , Espectroscopia de Ressonância Magnética , Engenharia Metabólica , Dados de Sequência Molecular , Peptídeos/genética , Peptídeos/metabolismo , Estrutura Terciária de Proteína , Piruvato Descarboxilase/química , Piruvato Descarboxilase/genética , Piruvato Descarboxilase/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação
11.
Microbiology (Reading) ; 159(Pt 12): 2674-2689, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24085837

RESUMO

Zymomonas mobilis, an ethanol-producing bacterium, possesses the Entner-Doudoroff (E-D) pathway, pyruvate decarboxylase and two alcohol dehydrogenase isoenzymes for the fermentative production of ethanol and carbon dioxide from glucose. Using available kinetic parameters, we have developed a kinetic model that incorporates the enzymic reactions of the E-D pathway, both alcohol dehydrogenases, transport reactions and reactions related to ATP metabolism. After optimizing the reaction parameters within likely physiological limits, the resulting kinetic model was capable of simulating glycolysis in vivo and in cell-free extracts with good agreement with the fluxes and steady-state intermediate concentrations reported in previous experimental studies. In addition, the model is shown to be consistent with experimental results for the coupled response of ATP concentration and glycolytic flux to ATPase inhibition. Metabolic control analysis of the model revealed that the majority of flux control resides not inside, but outside the E-D pathway itself, predominantly in ATP consumption, demonstrating why past attempts to increase the glycolytic flux through overexpression of glycolytic enzymes have been unsuccessful. Co-response analysis indicates how homeostasis of ATP concentrations starts to deteriorate markedly at the highest glycolytic rates. This kinetic model has potential for application in Z. mobilis metabolic engineering and, since there are currently no E-D pathway models available in public databases, it can serve as a basis for the development of models for other micro-organisms possessing this type of glycolytic pathway.


Assuntos
Regulação Bacteriana da Expressão Gênica , Redes e Vias Metabólicas/genética , Zymomonas/genética , Zymomonas/metabolismo , Trifosfato de Adenosina/metabolismo , Álcool Desidrogenase/genética , Álcool Desidrogenase/metabolismo , Dióxido de Carbono/metabolismo , Simulação por Computador , Etanol/metabolismo , Glucose/metabolismo , Modelos Biológicos , Piruvato Descarboxilase/genética , Piruvato Descarboxilase/metabolismo , Zymomonas/enzimologia
12.
Enzyme Microb Technol ; 53(4): 229-34, 2013 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-23931687

RESUMO

The aim of this research was to study how the cell immobilization technique of forming foamed alginate gels influences the growth, vitality and metabolic activity of different yeasts. Two distinct strains were used, namely conventional yeast (exemplified by Saccharomyces cerevisiae) and a non-conventional strain (exemplified by Debaryomyces occidentalis). The encapsulation of the yeast cells was performed by the traditional process of droplet formation, but from a foamed alginate solution. The activities of two key enzymes, succinate dehydrogenase and pyruvate decarboxylase, together with the ATP content were measured in both the free and immobilized cells. This novel method of yeast cell entrapment had some notable effects. The number of living immobilized cells reached the level of 10(6)-10(7) per single bead, and was stable during the fermentation process. Reductions in both enzyme activity and ATP content were observed in all immobilized yeasts. However, S. cerevisiae showed higher levels of ATP and enzymatic activity than D. occidentalis. Fermentation trials with immobilized repitching cells showed that the tested yeasts adapted to the specific conditions. Nevertheless, the mechanical endurance of the carriers and the internal structure of the gel need to be improved to enable broad applications of alginate gels in industrial fermentation processes, especially with conventional yeasts. This is one of the few papers and patents that describe the technique of cell immobilization in foamed alginate and shows the fermentative capacities and activities of key enzymes in immobilized yeast cells.


Assuntos
Debaryomyces/crescimento & desenvolvimento , Debaryomyces/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo , Alginatos , Células Imobilizadas/metabolismo , Fermentação , Proteínas Fúngicas/metabolismo , Géis , Ácido Glucurônico , Ácidos Hexurônicos , Piruvato Descarboxilase/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Succinato Desidrogenase/metabolismo
13.
Mol Biol Rep ; 40(7): 4581-90, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23645034

RESUMO

The role of ethylene in induction of aerenchyma formation and ethanolic fermentation in waterlogged roots of Dendranthema zawadskii and D. nankingense, two species that differ with respect to waterlogging tolerance, was examined. In the more tolerant D. zawadskii, but not in D. nankingense, ethylene accelerated programmed cell death and promoted formation of lysigenous aerenchyma, both of which were inhibited by treatment with the ethylene inhibitor 1-methylcyclopropene. Waterlogged D. zawadskii roots generated a higher quantity of endogenous ethylene than did those of D. nankingense. In waterlogged D. zawadskii roots, transcription of the genes encoding alcohol dehydrogenase (EC 1.1.1.1) and pyruvate decarboxylase (EC 4.1.1.1) increased rapidly but transiently, whereas expression of these genes in D. nankingense increased gradually and over a longer period. In D. nankingense, waterlogging elevated both alcohol dehydrogenase and pyruvate decarboxylase activity, and the production of ethanol and acetaldehyde was increased in the presence of exogenous ethylene and inhibited by 1-methylcyclopropene. In D. zawadskii, in contrast, after a prolonged episode of waterlogging stress, exogenous supply of ethylene suppressed the production of ethanol and acetaldehyde, whereas exogenous 1-methylcyclopropene enhanced their production. In the more tolerant Dendranthema species, ethylene appeared to signal an acceleration of both waterlogging-induced programmed cell death and aerenchyma formation and to alleviate ethanolic fermentation, whereas in the more sensitive species ethylene activated fermentation and increased the release of ethanol and acetaldehyde, which are by-products probably responsible for the collapse of the waterlogging-damaged root.


Assuntos
Chrysanthemum/efeitos dos fármacos , Chrysanthemum/metabolismo , Etanol/metabolismo , Etilenos/farmacologia , Fermentação , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Álcool Desidrogenase/genética , Álcool Desidrogenase/metabolismo , Morte Celular/efeitos dos fármacos , Chrysanthemum/genética , Etilenos/biossíntese , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Piruvato Descarboxilase/genética , Piruvato Descarboxilase/metabolismo , Estresse Fisiológico
14.
Mol Oral Microbiol ; 28(4): 281-91, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23445445

RESUMO

UNLABELLED: Acetaldehyde is a carcinogenic product of alcohol fermentation and metabolism in microbes associated with cancers of the upper digestive tract. In yeast acetaldehyde is a by-product of the pyruvate bypass that converts pyruvate into acetyl-Coenzyme A (CoA) during fermentation. THE AIMS OF OUR STUDY WERE: (i) to determine the levels of acetaldehyde produced by Candida albicans in the presence of glucose in low oxygen tension in vitro; (ii) to analyse the expression levels of genes involved in the pyruvate-bypass and acetaldehyde production; and (iii) to analyse whether any correlations exist between acetaldehyde levels, alcohol dehydrogenase enzyme activity or expression of the genes involved in the pyruvate-bypass. Candida albicans strains were isolated from patients with oral squamous cell carcinoma (n = 5), autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) patients with chronic oral candidosis (n = 5), and control patients (n = 5). The acetaldehyde and ethanol production by these isolates grown under low oxygen tension in the presence of glucose was determined, and the expression of alcohol dehydrogenase (ADH1 and ADH2), pyruvate decarboxylase (PDC11), aldehyde dehydrogenase (ALD6) and acetyl-CoA synthetase (ACS1 and ACS2) and Adh enzyme activity were analysed. The C. albicans isolates produced high levels of acetaldehyde from glucose under low oxygen tension. The acetaldehyde levels did not correlate with the expression of ADH1, ADH2 or PDC11 but correlated with the expression of down-stream genes ALD6 and ACS1. Significant differences in the gene expressions were measured between strains isolated from different patient groups. Under low oxygen tension ALD6 and ACS1, instead of ADH1 or ADH2, appear the most reliable indicators of candidal acetaldehyde production from glucose.


Assuntos
Acetaldeído/metabolismo , Candida albicans/metabolismo , Carbono/metabolismo , Cariogênicos/metabolismo , Fermentação/fisiologia , Acetaldeído/análise , Acetato-CoA Ligase/genética , Acetato-CoA Ligase/metabolismo , Acetilcoenzima A/metabolismo , Álcool Desidrogenase/genética , Álcool Desidrogenase/metabolismo , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , Candida albicans/genética , Candidíase Mucocutânea Crônica/microbiologia , Candidíase Bucal/microbiologia , Carcinoma de Células Escamosas/microbiologia , Etanol/análise , Etanol/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Enzimológica da Expressão Gênica/genética , Regulação Fúngica da Expressão Gênica/genética , Glucose/metabolismo , Humanos , Neoplasias Bucais/microbiologia , Oxigênio/química , Poliendocrinopatias Autoimunes/microbiologia , Piruvato Descarboxilase/genética , Piruvato Descarboxilase/metabolismo , Ácido Pirúvico/metabolismo
15.
J Exp Bot ; 63(18): 6393-405, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23095993

RESUMO

The persimmon fruit is a particularly good model for studying fruit response to hypoxia, in particular, the hypoxia-response ERF (HRE) genes. An anaerobic environment reduces fruit astringency by converting soluble condensed tannins (SCTs) into an insoluble form. Although the physiology of de-astringency has been widely studied, its molecular control is poorly understood. Both CO(2) and ethylene treatments efficiently removed the astringency from 'Mopan' persimmon fruit, as indicated by a decrease in SCTs. Acetaldehyde, the putative agent for causing de-astringency, accumulated during these treatments, as did activities of the key enzymes of acetaldehyde synthesis, alcohol dehydrogenase (ADH), and pyruvate decarboxylase (PDC). Eight DkADH and DkPDC genes were isolated, and three candidates for a role in de-astringency, DkADH1, DkPDC1, and DkPDC2, were characterized by transcriptional analysis in different tissues. The significance of these specific isoforms was confirmed by principal component analysis. Transient expression in leaf tissue showed that DkPDC2 decreased SCTs. Interactions of six hypoxia-responsive ERF genes and target promoters were tested in transient assays. The results indicated that two hypoxia-responsive ERF genes, DkERF9 and DkERF10, were involved in separately regulating the DkPDC2 and DkADH1 promoters. It is proposed that a DkERF-DkADH/DkPDC cascade is involved in regulating persimmon de-astringency.


Assuntos
Álcool Desidrogenase/genética , Adstringentes/metabolismo , Diospyros/genética , Diospyros/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Piruvato Descarboxilase/genética , Álcool Desidrogenase/metabolismo , Anaerobiose , Dióxido de Carbono/metabolismo , Etilenos/metabolismo , Etiquetas de Sequências Expressas , Frutas/genética , Frutas/metabolismo , Filogenia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Análise de Componente Principal , Proantocianidinas/metabolismo , Regiões Promotoras Genéticas , Piruvato Descarboxilase/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de Proteína , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Indian J Biochem Biophys ; 48(5): 346-52, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22165294

RESUMO

The present investigation was undertaken to identify the possible mode of mechanism that could provide tolerance to maize (Zea mays L.) seedlings under waterlogging. Using cup method, a number of maize genotypes were screened on the basis of survival of the seedlings kept under waterlogging. Two tolerant (LM5 and Parkash) and three susceptible (PMH2, JH3459 and LM14) genotypes were selected for the present study. Activities of antioxidant and ethanolic fermentation enzymes and content of hydrogen peroxide (H2O2), glutathione and ascorbic acid were determined in roots of these genotypes after 72 h of waterlogging. Waterlogging treatment caused decline in activities of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) in all the genotypes. However, only susceptible genotypes showed slight increase in glutathione reductase (GR) activity. Significant reduction in APX/GR ratio in susceptible genotypes might be the cause of their susceptibility to waterlogging. The tolerant seedlings had higher GR activity than susceptible genotypes under unstressed conditions. Stress led to decrease in H202 and increase in glutathione content of both tolerant and susceptible genotypes, but only tolerant genotypes exhibited increase in ascorbic acid under waterlogging conditions. In the tolerant genotypes, all the enzymes of anaerobic metabolism viz. alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH) and pyruvate decarboxylase (PDC) were upregulated under waterlogging, whereas in susceptible genotypes, only ADH was upregulated, suggesting that efficient upregulation of entire anaerobic metabolic machinery is essential for providing tolerance against waterlogging. The study provides a possible mechanism for waterlogging tolerance in maize.


Assuntos
Álcool Desidrogenase/metabolismo , Aldeído Desidrogenase/metabolismo , Antioxidantes/metabolismo , Doenças das Plantas/prevenção & controle , Piruvato Descarboxilase/metabolismo , Plântula/enzimologia , Zea mays/enzimologia , Ascorbato Peroxidases/metabolismo , Ácido Ascórbico/metabolismo , Catalase/metabolismo , Genótipo , Glutationa/metabolismo , Glutationa Redutase/metabolismo , Peróxido de Hidrogênio/metabolismo , Raízes de Plantas/enzimologia , Raízes de Plantas/metabolismo , Plântula/metabolismo , Superóxido Dismutase/metabolismo , Água , Zea mays/metabolismo
17.
Plant Cell Physiol ; 52(6): 1107-16, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21551160

RESUMO

The effect of a hypoxic pre-treatment (HPT) on improving tolerance to prolonged anoxia conditions in two contrasting Vitis species (V. riparia, anoxia tolerant; V. rupestris, anoxia sensitive) was evaluated. The energy economy of root cells was studied by measuring heat production, the activity of pyruvate decarboxylase (PDC) and alcohol dehdrogenase (ADH), ethanol and ATP production, and K(+) fluxes. The results showed that HPT is an effective tool in order to maintain a sustainable metabolic performance in both the species under anoxia conditions, especially in sensitive species such as V. rupestris. Our results showed that the improved tolerance was mainly driven by: (i) an enhanced activity of key enzymes in alcohol fermentation (ADC and PDC); (ii) the capability to maintain a higher level of respiration, evidenced by a lesser decrease in heat development and ATP production; and (iii) the maintenance of a better ion homeostasis (highlighted by measurement of K(+) fluxes) and K(+) channel functionality.


Assuntos
Aclimatação , Oxigênio/metabolismo , Potássio/metabolismo , Vitis/fisiologia , Trifosfato de Adenosina/análise , Trifosfato de Adenosina/biossíntese , Álcool Desidrogenase/metabolismo , Biotransformação , Hipóxia Celular , Cicloeximida/farmacologia , Etanol/análise , Etanol/metabolismo , Fermentação , Homeostase , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Canais de Potássio/metabolismo , Canais de Potássio/fisiologia , Piruvato Descarboxilase/metabolismo , Vitis/efeitos dos fármacos , Vitis/metabolismo
18.
Biotechnol Bioeng ; 106(5): 721-30, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20564611

RESUMO

Ethanol toxicity and its effect on ethanol production by the recombinant ethanologenic Escherichia coli strain KO11 were investigated in batch and continuous fermentation. During batch growth, ethanol produced by KO11 reduced both the specific cell growth rate (micro) and the cell yield (Y(X/S)). The extent of inhibition increased with the production of both acetate and lactate. Subsequent accumulation of these metabolites and ethanol resulted in cessation of cell growth, redirection of metabolism to reduce ethanol production, and increased requirements for cell maintenance. These effects were found to depend on both the glycolytic flux and the flux from pyruvate to ethanol. Pyruvate decarboxylase (Pdc) and alcohol dehydrogenase (Adh) activities measured during the batch fermentation suggested that decreased ethanol production resulted from enzyme inhibition rather than down-regulation of genes in the ethanol-producing pathway. Ethanol was added in continuous fermentation to provide an ethanol concentration of either 17 or 27 g/L, triggering sustained oscillations in the cell growth rate. Cell concentrations oscillated in-phase with ethanol and acetate concentrations. The amplitude of oscillations depended on the concentration of ethanol in the fermentor. Through multiple oscillatory cycles, the yield (Y(P/S)) and concentration of ethanol decreased, while production of acetate increased. These results suggest that KO11 favorably adapted to improve growth by synthesizing more ATP though acetate production, and recycling NADH by producing more lactate and less ethanol. Implications of these results for strategies to improve ethanol production are described.


Assuntos
Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Etanol/metabolismo , Etanol/toxicidade , Solventes/toxicidade , Ácido Acético/metabolismo , Ácido Acético/toxicidade , Trifosfato de Adenosina/metabolismo , Álcool Desidrogenase/metabolismo , Biomassa , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/metabolismo , Ácido Láctico/metabolismo , Ácido Láctico/toxicidade , Piruvato Descarboxilase/metabolismo , Ácido Pirúvico/metabolismo
19.
Plant J ; 62(2): 302-15, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20113439

RESUMO

Plants often experience challenging hypoxic conditions imposed by soil waterlogging or complete flooding. In rice, Sub1A, a flooding-induced ethylene responsive factor (ERF) plays a crucial role in submergence tolerance. In this study, we examined two Arabidopsis Hypoxia Responsive ERF genes (HRE1 and HRE2), belonging to the same ERF group as Sub1A. Transgenic Arabidopsis plants, which over-expressed HRE1, showed an improved tolerance of anoxia, whereas a double-knockout mutant hre1hre2 was more susceptible than the wild type. HRE1 over-expressing plants showed an increased activity in the fermentative enzymes pyruvate decarboxylase and alcohol dehydrogenase together with increased ethanol production under hypoxia, but not in normoxia. Whole-genome microarray analyses suggested that an over-expression of HRE1, but not HRE2, increased the induction of most anaerobic genes under hypoxia. Real-time quantitative (q)PCR analyses confirmed a positive effect of HRE1 over-expression on several anaerobic genes, whereas the double-knockout mutant hre1hre2 showed a decreased expression in the same genes after 4 h of hypoxia. Single-knockout mutants did not show significant differences from the wild type. We found that the regulation of HRE1 and HRE2 by low oxygen relies on different mechanisms, since HRE1 requires protein synthesis to be induced while HRE2 does not. HRE2 is likely to be regulated post-transcriptionally by mRNA stabilization. We propose that HRE1 and HRE2 play a partially redundant role in low oxygen signalling in Arabidopsis thaliana, thus improving the tolerance of the plant to the stress by enhancing anaerobic gene expression and ethanolic fermentation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Etilenos/metabolismo , Álcool Desidrogenase/metabolismo , Sequência de Aminoácidos , Arabidopsis/enzimologia , Proteínas de Arabidopsis/genética , Hipóxia Celular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Genes de Plantas , Dados de Sequência Molecular , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Oxigênio/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Piruvato Descarboxilase/metabolismo , RNA de Plantas/genética , Alinhamento de Sequência
20.
Eukaryot Cell ; 8(7): 977-89, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19411618

RESUMO

Proteins of the 14-3-3 and Rho-GTPase families are functionally conserved eukaryotic proteins that participate in many important cellular processes such as signal transduction, cell cycle regulation, malignant transformation, stress response, and apoptosis. However, the exact role(s) of these proteins in these processes is not entirely understood. Using the fungal maize pathogen, Ustilago maydis, we were able to demonstrate a functional connection between Pdc1 and Rho1, the U. maydis homologues of 14-3-3epsilon and Rho1, respectively. Our experiments suggest that Pdc1 regulates viability, cytokinesis, chromosome condensation, and vacuole formation. Similarly, U. maydis Rho1 is also involved in these three essential processes and exerts an additional function during mating and filamentation. Intriguingly, yeast two-hybrid and epistasis experiments suggest that both Pdc1 and Rho1 could be constituents of the same regulatory cascade(s) controlling cell growth and filamentation in U. maydis. Overexpression of rho1 ameliorated the defects of cells depleted for Pdc1. Furthermore, we found that another small G protein, Rac1, was a suppressor of lethality for both Pdc1 and Rho1. In addition, deletion of cla4, encoding a Rac1 effector kinase, could also rescue cells with Pdc1 depleted. Inferring from these data, we propose a model for Rho1 and Pdc1 functions in U. maydis.


Assuntos
Proteínas 14-3-3/metabolismo , Divisão Celular/fisiologia , Polaridade Celular/fisiologia , Proteínas Fúngicas/metabolismo , Ustilago/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Proteínas 14-3-3/genética , Diferenciação Celular/fisiologia , Crescimento Celular , Sobrevivência Celular/fisiologia , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Piruvato Descarboxilase/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/fisiologia , Ustilago/citologia , Ustilago/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA