Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 25(22)2020 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-33202696

RESUMO

Trichomoniasis, is the most prevalent non-viral sexually transmitted disease worldwide. Although metronidazole (MDZ) is the recommended treatment, several strains of the parasite are resistant to MDZ, and new treatments are required. Curcumin (CUR) is a polyphenol with anti-inflammatory, antioxidant and antiparasitic properties. In this study, we evaluated the effects of CUR on two biochemical targets: on proteolytic activity and hydrogenosomal metabolism in Trichomonas vaginalis. We also investigated the role of CUR on pro-inflammatory responses induced in RAW 264.7 phagocytic cells by parasite proteinases on pro-inflammatory mediators such as the nitric oxide (NO), tumor necrosis factor α (TNFα), interleukin-1beta (IL-1ß), chaperone heat shock protein 70 (Hsp70) and glucocorticoid receptor (mGR). CUR inhibited the growth of T. vaginalis trophozoites, with an IC50 value between 117 ± 7 µM and 173 ± 15 µM, depending on the culture phase. CUR increased pyruvate:ferredoxin oxidoreductase (PfoD), hydrogenosomal enzyme expression and inhibited the proteolytic activity of parasite proteinases. CUR also inhibited NO production and decreased the expression of pro-inflammatory mediators in macrophages. The findings demonstrate the potential usefulness of CUR as an antiparasitic and anti-inflammatory treatment for trichomoniasis. It could be used to control the disease and mitigate the associated immunopathogenic effects.


Assuntos
Anti-Inflamatórios/uso terapêutico , Antiparasitários/uso terapêutico , Curcumina/uso terapêutico , Terapia de Alvo Molecular , Compostos Fitoquímicos/uso terapêutico , Tricomoníase/tratamento farmacológico , Animais , Anti-Inflamatórios/farmacologia , Antiparasitários/farmacologia , Curcumina/farmacologia , Citocinas/genética , Citocinas/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Óxido Nítrico/biossíntese , Parasitos/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Proteólise/efeitos dos fármacos , Piruvato Sintase/genética , Piruvato Sintase/metabolismo , Células RAW 264.7 , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Tricomoníase/parasitologia , Trichomonas vaginalis/efeitos dos fármacos , Trichomonas vaginalis/enzimologia , Trichomonas vaginalis/genética
2.
PLoS Comput Biol ; 14(9): e1006492, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30248096

RESUMO

Constraint-based modeling techniques have become a standard tool for the in silico analysis of metabolic networks. To further improve their accuracy, recent methodological developments focused on integration of thermodynamic information in metabolic models to assess the feasibility of flux distributions by thermodynamic driving forces. Here we present OptMDFpathway, a method that extends the recently proposed framework of Max-min Driving Force (MDF) for thermodynamic pathway analysis. Given a metabolic network model, OptMDFpathway identifies both the optimal MDF for a desired phenotypic behavior as well as the respective pathway itself that supports the optimal driving force. OptMDFpathway is formulated as a mixed-integer linear program and is applicable to genome-scale metabolic networks. As an important theoretical result, we also show that there exists always at least one elementary mode in the network that reaches the maximal MDF. We employed our new approach to systematically identify all substrate-product combinations in Escherichia coli where product synthesis allows for concomitant net CO2 assimilation via thermodynamically feasible pathways. Although biomass synthesis cannot be coupled to net CO2 fixation in E. coli we found that as many as 145 of the 949 cytosolic carbon metabolites contained in the genome-scale model iJO1366 enable net CO2 incorporation along thermodynamically feasible pathways with glycerol as substrate and 34 with glucose. The most promising products in terms of carbon assimilation yield and thermodynamic driving forces are orotate, aspartate and the C4-metabolites of the tricarboxylic acid cycle. We also identified thermodynamic bottlenecks frequently limiting the maximal driving force of the CO2-fixing pathways. Our results indicate that heterotrophic organisms like E. coli hold a possibly underestimated potential for CO2 assimilation which may complement existing biotechnological approaches for capturing CO2. Furthermore, we envision that the developed OptMDFpathway approach can be used for many other applications within the framework of constrained-based modeling and for rational design of metabolic networks.


Assuntos
Dióxido de Carbono/metabolismo , Carbono/metabolismo , Ciclo do Ácido Cítrico , Escherichia coli/metabolismo , Redes e Vias Metabólicas , Trifosfato de Adenosina/metabolismo , Algoritmos , Biomassa , Genoma Bacteriano , Glucose/metabolismo , Glicerol/metabolismo , Concentração de Íons de Hidrogênio , Modelos Lineares , Modelos Biológicos , Piruvato Sintase/metabolismo , Termodinâmica
3.
Exp Parasitol ; 182: 34-36, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28935536

RESUMO

Metronidazole is administered in an inactive form then activated to its cytotoxic form within the hydrogenosome of trichomonads. Two hydrogenosomal proteins, pyruvate ferredoxin oxidoreductase (PFOR) and ferredoxin, play a critical role in the reductive activation of metronidazole. The expression of these proteins and other hydrogenosomal proteins are likewise positively regulated by iron. In the present study, the effect of iron on minimal lethal concentration (MLC) of metronidazole on in vitro cultured Trichomonas vaginalis(T. vaginalis) isolates was investigated. Interestingly, Addition of Ferrous ammonium sulphate (FAS) to T. vaginalis culture led to decrease in the MLC of metronidazole. On using aerobic assay, MLC of metronidazole on untreated T. vaginalis of both isolates was 12.5 µg/ml that decreased to 0.38 µg/ml on FAS treated trichomonads. Also anaerobic assay revealed that MLC on untreated parasites was 3.12 µg/ml that decreased to 0.097 µg/ml and 0.19 µg/ml for isolate 1 and isolate 2 respectively after iron addition. It was concluded that, addition of iron to in vitro cultured T. vaginalis decreases metronidazole MLC that was detected by both aerobic and anaerobic assays.


Assuntos
Antiprotozoários/farmacologia , Ferro/farmacologia , Metronidazol/farmacologia , Vaginite por Trichomonas/parasitologia , Trichomonas vaginalis/efeitos dos fármacos , Descarga Vaginal/parasitologia , Adulto , Aerobiose , Anaerobiose , Antiprotozoários/metabolismo , Interações Medicamentosas , Feminino , Ferredoxinas/metabolismo , Compostos Ferrosos/farmacologia , Humanos , Dose Letal Mediana , Metronidazol/metabolismo , Oxirredução , Piruvato Sintase/metabolismo , Compostos de Amônio Quaternário/farmacologia
4.
Sci Rep ; 7(1): 10474, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28874750

RESUMO

The oral microflora is composed of both health-promoting as well as disease-initiating bacteria. Many of the disease-initiating bacteria are anaerobic and include organisms such as Porphyromonas gingivalis, Prevotella intermedia, Fusobacterium nucleatum, and Tannerella forsythia. Here we investigated a novel therapeutic, amixicile, that targets pyruvate:ferredoxin oxidoreductase (PFOR), a major metabolic enzyme involved in energy generation through oxidative decarboxylation of pyruvate. PFOR is present in these anaerobic pathogenic bacteria and thus we hypothesized that amixicile would effectively inhibit their growth. In general, PFOR is present in all obligate anaerobic bacteria, while oral commensal aerobes, including aerotolerant ones, such as Streptococcus gordonii, use pyruvate dehydrogenase to decarboxylate pyruvate. Accordingly, we observed that growth of the PFOR-containing anaerobic periodontal pathogens, grown in both monospecies as well as multispecies broth cultures was inhibited in a dose-dependent manner while that of S. gordonii was unaffected. Furthermore, we also show that amixicile is effective against these pathogens grown as monospecies and multispecies biofilms. Finally, amixicile is the first selective therapeutic agent active against bacteria internalized by host cells. Together, the results show that amixicile is an effective inhibitor of oral anaerobic bacteria and as such, is a good candidate for treatment of periodontal diseases.


Assuntos
Antibacterianos/farmacologia , Bactérias Anaeróbias/efeitos dos fármacos , Bactérias Anaeróbias/fisiologia , Benzamidas/farmacologia , Tiazóis/farmacologia , Biofilmes/efeitos dos fármacos , Biologia Computacional/métodos , Humanos , Redes e Vias Metabólicas , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Porphyromonas gingivalis/efeitos dos fármacos , Porphyromonas gingivalis/crescimento & desenvolvimento , Conformação Proteica , Piruvato Sintase/química , Piruvato Sintase/metabolismo , Estomatite/tratamento farmacológico , Estomatite/microbiologia , Relação Estrutura-Atividade
5.
Microb Cell Fact ; 16(1): 64, 2017 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-28424096

RESUMO

BACKGROUND: Clostridium pasteurianum as an emerging new microbial cell factory can produce both n-butanol (BuOH) and 1,3-propanediol (1,3-PDO), and the pattern of product formation changes significantly with the composition of the culture medium. Among others iron content in the medium was shown to strongly affect the products selectivity. However, the mechanism behind this metabolic regulation is still unclear. For a better understanding of such metabolic regulation and for process optimization, we carried out fermentation experiments under either iron excess or iron limitation conditions, and performed metabolic, stoichiometric and proteomic analyses. RESULTS: 1,3-PDO is most effectively produced under iron limited condition (Fe-), whereas 1,3-PDO and BuOH were both produced under iron rich condition (Fe+). With increased iron availability the BuOH/1,3-PDO ratio increased significantly from 0.27 mol/mol (at Fe-) to 1.4 mol/mol (at Fe+). Additionally, hydrogen production was enhanced significantly under Fe+ condition. Proteomic analysis revealed differentiated expression of many proteins including several ones of the central carbon metabolic pathway. Among others, pyruvate: ferredoxin oxidoreductase, hydrogenases, and several electron transfer flavoproteins was found to be strongly up-regulated under Fe+ condition, pointing to their strong involvement in the regeneration of the oxidized form of ferredoxin, and consequently their influences on the product selectivity in C. pasteurianum. Of particular significance is the finding that H2 formation in C. pasteurianum is coupled to the ferredoxin-dependent butyryl-CoA dehydrogenase catalyzed reaction, which significantly affects the redox balance and thus the product selectivity. CONCLUSIONS: The metabolic, stoichiometric and proteomic results clearly show the key roles of hydrogenases and ferredoxins dependent reactions in determining the internal redox balance and hence product selectivity. Not only the NADH pool but also the regulation of the ferredoxin pool could explain such product variation under different iron conditions.


Assuntos
Clostridium/efeitos dos fármacos , Clostridium/metabolismo , Glicerol/metabolismo , Ferro/farmacologia , 1-Butanol/metabolismo , Clostridium/genética , Clostridium/crescimento & desenvolvimento , Meios de Cultura/química , Fermentação , Ferredoxinas/genética , Ferredoxinas/metabolismo , Flavoproteínas/genética , Hidrogênio/metabolismo , Hidrogenase/genética , Redes e Vias Metabólicas , Metabolômica/métodos , Oxirredução , Propilenoglicóis/metabolismo , Proteômica/métodos , Piruvato Sintase/genética
6.
Korean J Parasitol ; 54(1): 71-4, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26951982

RESUMO

Trichomonas vaginalis is a flagellate protozoan parasite and commonly infected the lower genital tract in women and men. Iron is a known nutrient for growth of various pathogens, and also reported to be involved in establishment of trichomoniasis. However, the exact mechanism was not clarified. In this study, the author investigated whether the 120 kDa protein of T. vaginalis may be involved in pathogenicity of trichomonads. Antibodies against 120 kDa protein of T. vaginalis, which was identified as pyruvate:ferredoxin oxidoreductase (PFOR) by peptide analysis of MALDI-TOF-MS, were prepared in rabbits. Pretreatment of T. vaginalis with anti-120 kDa Ab decreased the proliferation and adherence to vaginal epithelial cells (MS74) of T. vaginalis. Subcutaneous tissue abscess in anti-120 kDa Ab-treated T. vaginalis-injected mice was smaller in size than that of untreated T. vaginalis-infected mice. Collectively, the 120 kDa protein expressed by iron may be involved in proliferation, adhesion to host cells, and abscess formation, thereby may influence on the pathogenicity of T. vaginalis.


Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Piruvato Sintase/metabolismo , Tricomoníase/parasitologia , Trichomonas vaginalis/patogenicidade , Animais , Anticorpos/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Epiteliais/parasitologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Ferro/farmacologia , Camundongos , Coelhos , Oligoelementos/farmacologia , Trichomonas vaginalis/efeitos dos fármacos , Trichomonas vaginalis/genética , Trichomonas vaginalis/metabolismo
7.
mBio ; 6(6): e01453-15, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26578675

RESUMO

UNLABELLED: The aim of this study was to investigate the effect of iron (Fe) availability on butyrate production in the complex bacterial ecosystem of the human gut. Hence, different Fe availabilities were mimicked in an in vitro colonic fermentation model (the polyfermenter intestinal model called PolyFermS) inoculated with immobilized gut microbiota from a child and in batch cultures of the butyrate producer Roseburia intestinalis. Shifts in the microbial community (16S rRNA sequencing and quantitative PCR), metabolic activity (high-performance liquid chromatography), and expression of genes involved in butyrate production were assessed. In the PolyFermS, moderate Fe deficiency resulted in a 1.4-fold increase in butyrate production and a 5-fold increase in butyryl-coenzyme A (CoA):acetate CoA-transferase gene expression, while very strong Fe deficiency significantly decreased butyrate concentrations and butyrate-producing bacteria compared with the results under normal Fe conditions. Batch cultures of R. intestinalis grown in a low-Fe environment preferentially produced lactate and had reduced butyrate and hydrogen production, in parallel with upregulation of the lactate dehydrogenase gene and downregulation of the pyruvate:ferredoxin-oxidoreductase gene. In contrast, under high-Fe conditions, R. intestinalis cultures showed enhanced butyrate and hydrogen production, along with increased expression of the corresponding genes, compared with the results under normal-Fe conditions. Our data reveal the strong regulatory effect of Fe on gut microbiota butyrate producers and on the concentrations of butyrate, which contributes to the maintenance of host gut health. IMPORTANCE: Fe deficiency is one of the most common nutritional deficiencies worldwide and can be corrected by Fe supplementation. In this in vitro study, we show that environmental Fe concentrations in a continuous gut fermentation model closely mimicking a child's gut microbiota strongly affect the composition of the gut microbiome and its metabolic activity, particularly butyrate production. The differential expression of genes involved in the butyrate production pathway under different Fe conditions and the enzyme cofactor role of Fe explain the observed modulation of butyrate production. Our data reveal that the level of dietary Fe reaching the colon affects the microbiome, and its essential function of providing the host with beneficial butyrate.


Assuntos
Butiratos/metabolismo , Microbioma Gastrointestinal/fisiologia , Ferro/metabolismo , Butiratos/química , Criança , Cromatografia Líquida de Alta Pressão , Coenzima A-Transferases/genética , Coenzima A-Transferases/metabolismo , Fermentação , Microbioma Gastrointestinal/genética , Bactérias Gram-Positivas/metabolismo , Humanos , Hidrogênio/metabolismo , Ferro/química , L-Lactato Desidrogenase/genética , Piruvato Sintase/genética , RNA Ribossômico 16S/genética
8.
Exp Parasitol ; 157: 170-6, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26297676

RESUMO

Acanthamoeba is an opportunistic protist pathogen that is responsible for serious human and animal infection. Being one of the most frequently isolated protists from the environment, it is likely that it readily encounters microaerophilic environments. For respiration under anaerobic or low oxygen conditions in several amitochondriate protists, decarboxylation of pyruvate is catalyzed by pyruvate ferredoxin oxidoreductase instead of pyruvate dehydrogenase. In support, Nitazoxanide, an inhibitor of pyruvate ferredoxin oxidoreductase, is effective and non-mutagenic clinically against a range of amitochondriate protists, Giardia intestinalis, Entamoeba histolytica and Trichomonas vaginalis. The overall aim of the present study was to determine in vitro efficacy of Nitazoxanide against Acanthamoeba castellanii. At micromolar concentrations, the findings revealed that Nitazoxanide neither affected A. castellanii growth or viability nor amoeba-mediated host cell monolayer damage in vitro or extracellular proteolytic activities. Similarly, microaerophilic conditions alone had no significant effects. In contrast, microaerophilic conditions together with Nitazoxanide showed amoebicidal effects and inhibited A. castellanii-mediated host cell monolayer damage as well as extracellular proteases. Using encystation assays, it was observed that Nitazoxanide inhibited trophozoite transformation into cysts both under aerophilic and microaerophilic conditions. Furthermore, pre-treatment of cysts with Nitazoxanide inhibited A. castellanii excystation. These findings are important in the identification of potential targets that could be useful against parasite-specific respiration as well as to understand the basic biology of the life cycle of Acanthamoeba.


Assuntos
Acanthamoeba castellanii/efeitos dos fármacos , Antiparasitários/farmacologia , Tiazóis/farmacologia , Ceratite por Acanthamoeba/parasitologia , Acanthamoeba castellanii/classificação , Acanthamoeba castellanii/genética , Acanthamoeba castellanii/fisiologia , Anaerobiose , Encéfalo/irrigação sanguínea , Células Cultivadas , Relação Dose-Resposta a Droga , Genótipo , Humanos , Microvasos/citologia , Nitrocompostos , Peptídeo Hidrolases/efeitos dos fármacos , Peptídeo Hidrolases/metabolismo , Proteólise/efeitos dos fármacos , Piruvato Sintase/metabolismo
9.
J Infect Dev Ctries ; 9(5): 519-23, 2015 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-25989172

RESUMO

INTRODUCTION: Giardia intestinalis is the most important and common diarrhea-causing parasitic protozoa worldwide with growing clinical relevance in public health. There are many documented cases of G. intestinalis resistance to metronidazole (MZ). Pyruvate: ferredoxin oxidoreductase (PFOR), the membrane-localized enzyme, plays a key role in the development of resistance to drugs. The aim of the present study was to evaluate the difference in the levels of PFOR gene expression between MZ-resistant and MZ-susceptible strains of G. intestinatlis. METHODOLOGY: From 159 samples with G. intestinalis cysts, 48 strains were successfully cultivated. Using specific pair primers, PFOR gene expressions were estimated in different groups of Giardia. The polymerase chain reaction (PCR) data were analyzed with Bayesian analysis of qRT-PCR data using MCMC.qpcr package, with relative expression software tool (REST) and quantitative PCR CopyCount web source. RESULTS: In the group of Giardia with minimum inhibitory concentration (MIC) of 6.3 µM, the level of PFOR gene expression was downregulated and compared with controls, differed by 1.5 to 2.8 times. At the same time, there was no significant difference in PFOR gene expression between the control (susceptible) group and the group with MIC of 3.2 µM. CONCLUSIONS: Though there is association between PFOR gene expression and metronidazole resistance of Giardia intestinalis, the level of PFOR gene expression cannot be a strong genetic marker to predict level of resistance to metronidazole based on MICs.


Assuntos
Antiprotozoários/farmacologia , Resistência a Medicamentos , Perfilação da Expressão Gênica , Giardia lamblia/efeitos dos fármacos , Giardia lamblia/enzimologia , Metronidazol/farmacologia , Piruvato Sintase/biossíntese , Giardia lamblia/genética , Humanos , Testes de Sensibilidade Microbiana , Piruvato Sintase/genética , Reação em Cadeia da Polimerase em Tempo Real
10.
Biochem Cell Biol ; 93(3): 236-40, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25707819

RESUMO

Phosphoenolpyruvate synthase (PEPs) catalyzes the conversion of pyruvate to phosphoenolpyruvate (PEP) using a two-step mechanism invoking a phosphorylated-His intermediate. Formation of PEP is an initial step in gluconeogenesis, and PEPs is essential for growth of Escherichia coli on 3-carbon sources such as pyruvate. The production of PEPs has also been linked to bacterial virulence and antibiotic resistance. As such, PEPs is of interest as a target for antibiotic development, and initial investigations of PEPs have indicated inhibition by sodium fluoride. Similar inhibition has been observed in a variety of phospho-transfer enzymes through the formation of metal fluoride complexes within the active site. Herein we quantify the inhibitory capacity of sodium fluoride through a coupled spectrophotometric assay. The observed inhibition provides indirect evidence for the formation of a MgF3(-) complex within the enzyme active site and insight into the phospho-transfer mechanism of PEPs. The effect of AlCl3 on PEPs enzyme activity was also assessed and found to decrease substrate binding and turnover.


Assuntos
Inibidores Enzimáticos/farmacologia , Fluoretos/farmacologia , Compostos de Magnésio/farmacologia , Fosfotransferases (Aceptores Pareados)/antagonistas & inibidores , Fosfotransferases (Aceptores Pareados)/metabolismo , Fluoreto de Sódio/farmacologia , Cloreto de Alumínio , Compostos de Alumínio/farmacologia , Cloretos/farmacologia , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Cinética , Fosfotransferases (Aceptores Pareados)/genética , Piruvato Sintase/antagonistas & inibidores , Piruvato Sintase/genética , Piruvato Sintase/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
11.
Antimicrob Agents Chemother ; 58(8): 4703-12, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24890599

RESUMO

Amixicile shows efficacy in the treatment of Clostridium difficile infections (CDI) in a mouse model, with no recurrence of CDI. Since amixicile selectively inhibits the action of a B vitamin (thiamine pyrophosphate) cofactor of pyruvate:ferredoxin oxidoreductase (PFOR), it may both escape mutation-based drug resistance and spare beneficial probiotic gut bacteria that do not express this enzyme. Amixicile is a water-soluble derivative of nitazoxanide (NTZ), an antiparasitic therapeutic that also shows efficacy against CDI in humans. In comparative studies, amixicile showed no toxicity to hepatocytes at 200 µM (NTZ was toxic above 10 µM); was not metabolized by human, dog, or rat liver microsomes; showed equivalence or superiority to NTZ in cytochrome P450 assays; and did not activate efflux pumps (breast cancer resistance protein, P glycoprotein). A maximum dose (300 mg/kg) of amixicile given by the oral or intraperitoneal route was well tolerated by mice and rats. Plasma exposure (rats) based on the area under the plasma concentration-time curve was 79.3 h · µg/ml (30 mg/kg dose) to 328 h · µg/ml (100 mg/kg dose), the maximum concentration of the drug in serum was 20 µg/ml, the time to the maximum concentration of the drug in serum was 0.5 to 1 h, and the half-life was 5.6 h. Amixicile did not concentrate in mouse feces or adversely affect gut populations of Bacteroides species, Firmicutes, segmented filamentous bacteria, or Lactobacillus species. Systemic bioavailability was demonstrated through eradication of Helicobacter pylori in a mouse infection model. In summary, the efficacy of amixicile in treating CDI and other infections, together with low toxicity, an absence of mutation-based drug resistance, and excellent drug metabolism and pharmacokinetic metrics, suggests a potential for broad application in the treatment of infections caused by PFOR-expressing microbial pathogens in addition to CDI.


Assuntos
Antibacterianos/farmacocinética , Benzamidas/farmacocinética , Infecções por Helicobacter/tratamento farmacológico , Helicobacter pylori/efeitos dos fármacos , Tiazóis/farmacocinética , Animais , Antibacterianos/sangue , Antibacterianos/farmacologia , Área Sob a Curva , Benzamidas/sangue , Benzamidas/farmacologia , Disponibilidade Biológica , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cães , Avaliação Pré-Clínica de Medicamentos , Meia-Vida , Infecções por Helicobacter/sangue , Infecções por Helicobacter/microbiologia , Helicobacter pylori/crescimento & desenvolvimento , Helicobacter pylori/metabolismo , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Masculino , Testes de Sensibilidade Microbiana , Microbiota/efeitos dos fármacos , Microbiota/fisiologia , Microssomos Hepáticos/efeitos dos fármacos , Piruvato Sintase/metabolismo , Ratos , Tiamina Pirofosfato/metabolismo , Tiazóis/sangue , Tiazóis/farmacologia
12.
Antimicrob Agents Chemother ; 57(6): 2476-84, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23478970

RESUMO

Metronidazole (MDZ) and related 5-nitroimidazoles are the recommended drugs for treatment of trichomoniasis, a sexually transmitted disease caused by the protozoan parasite Trichomonas vaginalis. However, novel treatment options are needed, as recent reports have claimed resistance to these drugs in T. vaginalis isolates. In this study, we analyzed for the first time the in vitro effects of the natural polyphenol resveratrol (RESV) on T. vaginalis. At concentrations of between 25 and 100 µM, RESV inhibited the in vitro growth of T. vaginalis trophozoites; doses of 25 µM exerted a cytostatic effect, and higher doses exerted a cytotoxic effect. At these concentrations, RESV caused inhibition of the specific activity of a 120-kDa [Fe]-hydrogenase (Tvhyd). RESV did not affect Tvhyd gene expression and upregulated pyruvate-ferredoxin oxidoreductase (a hydrogenosomal enzyme) gene expression only at a high dose (100 µM). At doses of 50 to 100 µM, RESV also caused overexpression of heat shock protein 70 (Hsp70), a protective protein found in the hydrogenosome of T. vaginalis. The results demonstrate the potential of RESV as an antiparasitic treatment for trichomoniasis and suggest that the mechanism of action involves induction of hydrogenosomal dysfunction. In view of the results, we propose hydrogenosomal metabolism as a key target in the design of novel antiparasitic drugs.


Assuntos
Antitricômonas/farmacologia , Hidrogenase/antagonistas & inibidores , Proteínas Ferro-Enxofre/antagonistas & inibidores , Organelas/efeitos dos fármacos , Piruvato Sintase/efeitos dos fármacos , Estilbenos/farmacologia , Trichomonas vaginalis/efeitos dos fármacos , Animais , Feminino , Humanos , Hidrogênio/metabolismo , Organelas/enzimologia , Testes de Sensibilidade Parasitária , Piruvato Sintase/metabolismo , Resveratrol , Vaginite por Trichomonas/parasitologia , Trichomonas vaginalis/crescimento & desenvolvimento , Trichomonas vaginalis/isolamento & purificação , Trichomonas vaginalis/ultraestrutura , Regulação para Cima
13.
Microbiology (Reading) ; 157(Pt 12): 3469-3482, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22130740

RESUMO

The Trichomonas vaginalis 120 kDa protein adhesin (AP120) is induced under iron-rich conditions and has sequence homology with pyruvate:ferredoxin oxidoreductase A (PFO A), a hydrogenosomal enzyme that is absent in humans. This homology raises the possibility that, like AP120, PFO might be localized to the parasite surface and participate in cytoadherence. Here, the cellular localization and function of PFO that was expressed under various iron concentrations was investigated using a polyclonal antibody generated against the 50 kDa recombinant C-terminal region of PFO A (anti-PFO50). In Western blot assays, this antibody recognized a 120 kDa protein band in total protein extracts, and proteins with affinity to the surface of HeLa cells from parasites grown under iron-rich conditions. In addition to localization that is typical of hydrogenosomal proteins, PFOs that were expressed under iron-rich conditions were found to localize at the surface. This localization was demonstrated using immunofluorescence and co-localization assays, as well as immunogold transmission electron microscopy. In addition to describing its enzyme activity, we describe a novel function in trichomonal host interaction for the PFO localized on the parasite surface. The anti-PFO50 antibody reduced the levels of T. vaginalis adherence to HeLa cell monolayers in a concentration-dependent manner. Thus, T. vaginalis PFO is an example of a surface-associated cell-binding protein that lacks enzyme activity and that is involved in cytoadherence. Additionally, PFO behaves like AP120 in parasites grown under iron-rich conditions. Therefore, these data suggest that AP120 and PFO A are encoded by the same gene, namely pfo a.


Assuntos
Proteínas de Membrana/metabolismo , Piruvato Sintase/metabolismo , Trichomonas vaginalis/enzimologia , Trichomonas vaginalis/patogenicidade , Animais , Adesão Celular , Células Epiteliais/parasitologia , Feminino , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microscopia de Fluorescência , Microscopia Imunoeletrônica , Dados de Sequência Molecular , Coelhos , Análise de Sequência de DNA
14.
Biomedica ; 30(1): 32-8, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20890547

RESUMO

INTRODUCTION: Giardia intestinalis is a unicellular parasite of worldwide distribution. It causes an intestinal illness known as giardiasis, and it is probably the earliest diverging eukaryotic microorganism. Previously, changes have been reported in the expression of mRNAs at several stages of the life cycle; however specific enzymatic activity changes have not been explored. OBJECTIVE: The expression of pyruvate ferredoxin oxidoreductase (PFOR) and alcohol dehydrogenase E (ADHE) enzymes was measured in cyst and trophozoite stages, and during the excystation process. MATERIALS AND METHODS: Recombinant proteins were generated for PFOR and ADHE to be used as antigens in the production of polyclonal antibodies for the detection of native proteins by Western Blot. The enzymatic activity of ADHE and glutamate dehydrogenase (GDH) was evaluated by spectrophotometric assays. RESULTS: PFOR (139 kDa) and ADHE (97 kDa) proteins were detected in trophozoites, but not in cysts. During excystation, ADHE protein was detected after the first phase of induction, but the PFOR protein appeared only after the second phase. This indicated that both proteins were synthesized during excystation, although at different times. ADHE enzymatic activity was present only in trophozoites and not in cysts whereas GDH activity was detected in both stages. CONCLUSION: These results conclusively showed that PFOR and ADHE enzymes were translated during the excystation process and is strong evidence that active protein synthesis was occurring during excystation.


Assuntos
Álcool Desidrogenase/biossíntese , Giardia lamblia/enzimologia , Giardia lamblia/crescimento & desenvolvimento , Piruvato Sintase/biossíntese
15.
Int J Parasitol ; 39(6): 693-702, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19073188

RESUMO

Entamoeba histolytica virulence has been attributed to several amoebic molecules such as adhesins, amoebapores and cysteine proteinases, but supporting evidence is either partial or indirect. In this work we compared several in vitro and in vivo features of both virulent E. histolytica (vEh) and non-virulent E. histolytica (nvEh) axenic HM-1 IMSS strains, such as complement resistance, proteinase activity, haemolytic, phagocytic and cytotoxic capacities, survival in mice caecum, and susceptibility to O(2). The only difference observed was a higher in vitro susceptibility of nvEh to O(2). The molecular mechanism of that difference was analyzed in both groups of amoebae after high O(2) exposure. vEh O(2) resistance correlated with: (i) higher O(2) reduction (O(2)(-) and H(2)O(2) production); (ii) increased H(2)O(2) resistance and thiol peroxidase activity, and (iii) reversible pyruvate: ferredoxin oxidoreductase (PFOR) inhibition. Despite the high level of carbonylated proteins in nvEh after O(2) exposure, membrane oxidation by reactive oxygen species was not observed. These results suggest that the virulent phenotype of E. histolytica is related to the greater ability to reduce O(2) and H(2)O(2) as well as PFOR reactivation, whereas nvEh undergoes irreversible PFOR inhibition resulting in metabolic failure and amoebic death.


Assuntos
Entamoeba histolytica/fisiologia , Entamoeba histolytica/patogenicidade , Oxigênio/metabolismo , Oxigênio/toxicidade , Estresse Fisiológico , Animais , Peróxido de Hidrogênio/metabolismo , Camundongos , Oxirredução , Peroxidase/metabolismo , Piruvato Sintase/antagonistas & inibidores , Superóxidos/metabolismo , Virulência
16.
Biochemistry ; 47(3): 957-64, 2008 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-18161989

RESUMO

Oxidative decarboxylation of pyruvate forming acetyl-coenzyme A is a crucial step in many metabolic pathways. In most anaerobes, this reaction is carried out by pyruvate-ferredoxin oxidoreductase (PFOR), an enzyme normally oxygen sensitive except in Desulfovibrio africanus (Da), where it shows an abnormally high oxygen stability. Using site-directed mutagenesis, we have specified a disulfide bond-dependent protective mechanism against oxidative conditions in Da PFOR. Our data demonstrated that the two cysteine residues forming the only disulfide bond in the as-isolated PFOR are crucial for the stability of the enzyme in oxidative conditions. A methionine residue located in the environment of the proximal [4Fe-4S] cluster was also found to be essential for this protective mechanism. In vivo analysis demonstrated unambiguously that PFOR in Da cells as well as two other Desulfovibrio species was efficiently protected against oxidative stress. Importantly, a less active but stable Da PFOR in oxidized cells rapidly reactivated when returned to anaerobic medium. Our work demonstrates the existence of an elegant disulfide bond-dependent reversible mechanism, found in the Desulfovibrio species to protect one of the key enzymes implicated in the central metabolism of these strict anaerobes. This new mechanism could be considered as an adaptation strategy used by sulfate-reducing bacteria to cope with temporary oxidative conditions and to maintain an active dormancy.


Assuntos
Desulfovibrio/enzimologia , Dissulfetos/metabolismo , Estresse Oxidativo/fisiologia , Piruvato Sintase/metabolismo , Adaptação Fisiológica , Sequência de Aminoácidos , Substituição de Aminoácidos , Anaerobiose , Catálise/efeitos dos fármacos , Clostridium acetobutylicum/efeitos dos fármacos , Clostridium acetobutylicum/enzimologia , Meios de Cultivo Condicionados/química , Cisteína/genética , Cisteína/metabolismo , Cistina/metabolismo , Desulfovibrio/efeitos dos fármacos , Desulfovibrio/genética , Desulfovibrio africanus/efeitos dos fármacos , Desulfovibrio africanus/enzimologia , Desulfovibrio africanus/genética , Desulfovibrio desulfuricans/efeitos dos fármacos , Desulfovibrio desulfuricans/enzimologia , Desulfovibrio vulgaris/efeitos dos fármacos , Desulfovibrio vulgaris/enzimologia , Ditioeritritol/farmacologia , Ativação Enzimática/efeitos dos fármacos , Estabilidade Enzimática , Peróxido de Hidrogênio/farmacologia , Dados de Sequência Molecular , Oxirredução/efeitos dos fármacos , Oxigênio/análise , Oxigênio/farmacologia , Piruvato Sintase/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos
17.
Oral Microbiol Immunol ; 22(6): 381-3, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17949340

RESUMO

BACKGROUND/AIMS: Microorganisms of Peptostreptococcus micros are asaccharolytic, anaerobic gram-positive cocci that are frequently isolated from human oral sites such as periodontal pockets. Preliminary study showed that several amino acids, including serine, enhanced slightly the growth of P. micros. Therefore, we investigated the degradation of serine and serine-containing oligopeptides. METHODS: Metabolic end products were determined with high-performance liquid chromatography. The related enzymatic activities in cell-free extract were also assayed. RESULTS: Washed P. micros degraded serine-tripeptides (Ser-Ser-Ser), and produced formate, pyruvate, acetate, and ammonia. They also degraded serinyl-tyrosine (Ser-Tyr) to the same products. Related enzymatic activities, such as serine dehydratase, pyruvate formate-lyase, formate dehydrogenase, pyruvate oxidoreductase, phosphate acetyltransferase, and acetate kinase, were detected in the cell-free extract, indicating that the organisms produced ATP in the serine metabolism. CONCLUSION: P. micros utilized serine-containing oligopeptides as exogenous metabolic substrates rather than serine itself, and degraded Ser-Ser-Ser and Ser-Tyr to formate, pyruvate, acetate, and ammonia with ATP generation.


Assuntos
Oligopeptídeos/metabolismo , Peptostreptococcus/metabolismo , Serina/metabolismo , Acetato Quinase , Acetatos/metabolismo , Acetiltransferases , Trifosfato de Adenosina/biossíntese , Amônia/metabolismo , Formiato Desidrogenases , Formiatos/metabolismo , Humanos , L-Serina Desidratase/metabolismo , Peptostreptococcus/enzimologia , Fosfato Acetiltransferase , Piruvato Sintase , Ácido Pirúvico/metabolismo , Tirosina/metabolismo
18.
Korean J Parasitol ; 44(4): 373-8, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17170580

RESUMO

To evaluate whether iron concentration in TYM medium influence on hydrogenosomal enzyme gene expression and hydrogenosomal membrane potential of Trichomonas vaginalis, trophozoites were cultivated in irondepleted, normal and iron-supplemented TYM media. The mRNA of hydrogenosomal enzymes, such as pyruvate ferredoxin oxidoreductase (PFOR), hydrogenase, ferredoxin and malic enzyme, was increased with iron concentrations in T. vaginalis culture media, measured by RT-PCR. Hydrogenosomal membrane potentials measured with DiOC6 also showed similar tendency, e.g. T. vaginalis cultivated in iron-depleted and iron-supplemented media for 3 days showed a significantly reduced and enhanced hydrogenosomal membrane potential compared with that of normal TYM media, respectively. Therefore, it is suggested that iron may regulate hydrogenosomal activity through hydrogenosomal enzyme expression and hydrogenosomal membrane potential.


Assuntos
Regulação da Expressão Gênica , Hidrogênio/metabolismo , Ferro/metabolismo , Organelas/enzimologia , Organelas/fisiologia , Trichomonas vaginalis/crescimento & desenvolvimento , Animais , Meios de Cultura , Ferredoxinas/genética , Ferredoxinas/metabolismo , Regulação Enzimológica da Expressão Gênica , Humanos , Hidrogenase/genética , Hidrogenase/metabolismo , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo , Potenciais da Membrana , Organelas/metabolismo , Piruvato Sintase/genética , Piruvato Sintase/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
Annu Rev Microbiol ; 60: 27-49, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16704345

RESUMO

This review describes enzymes that contain radicals and/or catalyze reactions with radical intermediates. Because radicals irreversibly react with dioxygen, most of these enzymes occur in anaerobic bacteria and archaea. Exceptions are the families of coenzyme B(12)- and S-adenosylmethionine (SAM)-dependent radical enzymes, of which some members also occur in aerobes. Especially oxygen-sensitive radical enzymes are the glycyl radical enzymes and 2-hydroxyacyl-CoA dehydratases. The latter are activated by an ATP-dependent one-electron transfer and act via a ketyl radical anion mechanism. Related enzymes are the ATP-dependent benzoyl-CoA reductase and the ATP-independent 4-hydroxybenzoyl-CoA reductase. Ketyl radical anions may also be generated by one-electron oxidation as shown by the flavin-adenine-dinucleotide (FAD)- and [4Fe-4S]-containing 4-hydroxybutyryl-CoA dehydratase. Finally, two radical enzymes are discussed, pyruvate:ferredoxin oxidoreductase and methane-forming methyl-CoM reductase, which catalyze their main reaction in two-electron steps, but subsequent electron transfers proceed via radicals.


Assuntos
Bactérias Anaeróbias/enzimologia , Cobamidas/fisiologia , Radicais Livres/metabolismo , Glicina/metabolismo , S-Adenosilmetionina/metabolismo , Aminoácidos/metabolismo , Flavinas/metabolismo , Hidroliases/fisiologia , Metano/biossíntese , Piruvato Sintase/fisiologia
20.
Tumori ; 92(2): 163-9, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16724697

RESUMO

The radioprotective effects of naturally occurring sulfur compounds and isothiocyanates such as diallyl sulfide (DAS), diallyl disulfide (DADS), allyl methyl sulfide (AMS), allyl isothiocyanate (AITC) and phenyl isothiocyanate (PITC) have been investigated in whole body irradiated Swiss albino mice. Administration of these sulfur compounds could reduce the serum content of alkaline phosphatase (ALP), which was elevated after irradiation (23.9 +/- 1.82 KA units). The elevated liver content of glutamate pyruvate transaminase (GPT) in control animals (76.2 +/- 2.2 U/mL) after irradiation was significantly reduced in DAS (58.93 +/- 4 U/mL) and AMS (55.7 +/- 2.2 U/mL) treated animals. Elevated levels of lipid peroxides in serum and liver of irradiated control animals were also significantly reduced by treatment with these sulfur compounds. The glutathione (GSH) content in liver and intestinal mucosa was drastically reduced after irradiation. All the sulfur compounds and isothiocyanates could effectively enhance the GSH content of intestinal mucosa and liver. Findings at histopathological analysis of the intestine proved to be correlated with the above results.


Assuntos
Isotiocianatos/farmacologia , Protetores contra Radiação/farmacologia , Sulfetos/farmacologia , Compostos Alílicos/farmacologia , Animais , Dissulfetos/farmacologia , Glutamato Sintase/metabolismo , Glutationa/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Peróxidos Lipídicos/sangue , Peróxidos Lipídicos/metabolismo , Fígado/enzimologia , Fígado/metabolismo , Camundongos , Piruvato Sintase/metabolismo , Tiocianatos/farmacologia , Transaminases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA