Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 372
Filtrar
1.
Environ Monit Assess ; 196(6): 565, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773047

RESUMO

The aim of this review is to assess the impact of cell phone radiation effects on green plants. Rapid progress in networking and communication systems has introduced frequency- and amplitude-modulated technologies to the world with higher allowed bands and greater speed by using high-powered radio generators, which facilitate high definition connectivity, rapid transfer of larger data files, and quick multiple accesses. These cause frequent exposure of cellular radiation to the biological world from a number of sources. Key factors like a range of frequencies, time durations, power densities, and electric fields were found to have differential impacts on the growth and development of green plants. As far as the effects on green plants are concerned in this review, alterations in their morphological characteristics like overall growth, canopy density, and pigmentation to physiological variations like chlorophyll fluorescence and change in membrane potential etc. have been found to be affected by cellular radiation. On the other hand, elevated oxidative status of the cell, macromolecular damage, and lipid peroxidation have been found frequently. On the chromosomal level, micronuclei formation, spindle detachments, and increased mitotic indexes etc. have been noticed. Transcription factors were found to be overexpressed in many cases due to the cellular radiation impact, which shows effects at the molecular level.


Assuntos
Telefone Celular , Plantas/efeitos da radiação , Ondas de Rádio
2.
Glob Chang Biol ; 30(5): e17346, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38798167

RESUMO

Photosynthetically active radiation (PAR) is typically defined as light with a wavelength within 400-700 nm. However, ultra-violet (UV) radiation within 280-400 nm and far-red (FR) radiation within 700-750 nm can also excite photosystems, though not as efficiently as PAR. Vegetation and land surface models (LSMs) typically do not explicitly account for UV's contribution to energy budgets or photosynthesis, nor FR's contribution to photosynthesis. However, whether neglecting UV and FR has significant impacts remains unknown. We explored how canopy radiative transfer (RT) and photosynthesis are impacted when explicitly implementing UV in the canopy RT model and accounting for UV and FR in the photosynthesis models within a next-generation LSM that can simulate hyperspectral canopy RT. We validated our improvements using photosynthesis measurements from plants under different light sources and intensities and surface reflection from an eddy-covariance tower. Our model simulations suggested that at the whole plant level, after accounting for UV and FR explicitly, chlorophyll content, leaf area index (LAI), clumping index, and solar radiation all impact the modeling of gross primary productivity (GPP). At the global scale, mean annual GPP within a grid would increase by up to 7.3% and the increase is proportional to LAI; globally integrated GPP increases by 4.6 PgC year-1 (3.8% of the GPP without accounting for UV + FR). Further, using PAR to proxy UV could overestimate surface albedo by more than 0.1, particularly in the boreal forests. Our results highlight the importance of improving UV and FR in canopy RT and photosynthesis modeling and the necessity to implement hyperspectral or multispectral canopy RT schemes in future vegetation and LSMs.


Assuntos
Fotossíntese , Raios Ultravioleta , Folhas de Planta/efeitos da radiação , Modelos Teóricos , Clorofila/metabolismo , Modelos Biológicos , Plantas/efeitos da radiação , Plantas/metabolismo
3.
Plant Cell Environ ; 47(2): 387-407, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38058262

RESUMO

The escalating impact of climate change and ultraviolet (UV) radiation is subjecting plants to unique combinations of UV-B and drought stress. These combined stressors could have additive, synergistic, or antagonistic effects, but the precise nature of these impacts remains uncertain, hampering our ability to predict plant adaptations approach towards stressors. Our analysis of various studies shows that UV-B or drought conditions detrimentally influence plant growth and health metrics by the enhanced generation of reactive oxygen species causing damage to lipids, proteins, carbohydrates and DNA. Further reducing biomass accumulation, plant height, photosynthetic efficiency, leaf area, and water transpiration, while enhancing stress-related symptoms. In response to UV-B radiation and drought stress, plants exhibit a notable up-regulation of specific acclimation-associated metabolites, including proline, flavonoids, anthocyanins, unsaturated fatty acids, and antioxidants. These metabolites play a pivotal role in conferring protection against environmental stresses. Their biosynthesis and functional roles are potentially modulated by signalling molecules such as hydrogen peroxide, abscisic acid, jasmonic acid, salicylic acid, and ethylene, all of which have associated genetic markers that further elucidate their involvement in stress response pathways. In comparison to single stress, the combination of UV-B and drought induces the plant defence responses and growth retardation which are less-than-additive. This sub-additive response, consistent across different study environments, suggests the possibility of a cross-resistance mechanism. Our outlines imply that the adverse effects of increased drought and UV-B could potentially be mitigated by cross-talk between UV-B and drought regimes utilizing a multidimensional approach. This crucial insight could contribute significantly to refining our understanding of stress tolerance in the face of ongoing global climate change.


Assuntos
Antocianinas , Resiliência Psicológica , Secas , Plantas/efeitos da radiação , Estresse Fisiológico/genética
4.
Sci Rep ; 13(1): 3985, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36894683

RESUMO

The effects of increased UV-B radiation on macroalgae have been widely studied, but knowledge concerning the response of communities of algal epiphytic bacteria to increased UV-B radiation and differences between male and female algae is still lacking. Via 16S rDNA high-throughput sequencing technology, changes in the epiphytic bacterial communities on male and female S. thunbergii under increased UV-B radiation were studied in the lab. Under different UV-B radiation intensities, although the α diversity and community composition of epiphytic bacteria changed little, the ß diversity indicated that the community structure of bacteria on S. thunbergii was obviously clustered, and the relative abundance of dominant bacteria and indicator species changed considerably. There were unique bacteria in each experimental group, and the bacteria whose abundance obviously changed were members of groups related to environmental resistance or adaptability. The variation in the abundance of epiphytic bacteria was different in male and female S. thunbergii, and the bacteria whose abundance greatly changed were mainly related to algal growth and metabolism. The abundance of genes with predicted functions related to metabolism, genetic information processing, environmental adaptation and infectious diseases changed with increased UV-B radiation, and those variations differed between epiphytic bacteria on male and female S. thunbergii. This study found that the algal epiphytic bacteria were influenced by the increase in UV-B radiation and underwent certain adaptations through adjustments to community structure and function, and this response was also affected by the sex of the macroalgae. These results are expected to serve as experimental basis and provide reference for further understanding of the response of algae epiphytic bacteria to enhanced UV-B radiation caused by the thinning of the ozone layer and the resulting changes in the relationship between algae and bacteria, which may change the community of the marine ecosystem and affect important marine ecological process.


Assuntos
Sargassum , Alga Marinha , Ecossistema , Bactérias , Alga Marinha/microbiologia , Plantas/efeitos da radiação
5.
Plant Sci ; 325: 111488, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36206962

RESUMO

Among abiotic stressors, drought and enhanced ultraviolet radiation (UV) received a lot of attention, because of their potential to impair plant growth. Since drought and UV induce partially similar protective mechanisms, we tested the hypothesis that UV ameliorates the effect of reduced water availability (WA) in selected grass (Holcus mollis and Agrostis capillaris) and forb species (Hypericum maculatum and Rumex acetosa). During 2011-2014, an outdoor manipulation experiment was conducted on a mountain grassland ecosystem (Beskydy Mts; Czech Republic). Lamellar shelters were used to pass (WAamb) or exclude (WA-) incident precipitation in order to simulate reduced water availability (WA). In addition, the lamellas were made from acrylics either transmitting (UVamb) or blocking (UV-) incident UV. Generally, both UV exposure and reduced WA enhanced epidermal UV-screening, while exposure to both factors resulted in less than additive interactions. Although UV radiation increased epidermal UV-screening rather in the grass (up to 29 % in A. capillaris) than forb (up to 12 % in H. maculatum) species and rather in well-watered than reduced WA plants, such acclimation response did not result in significant alleviation of reduced WA effects on gas exchange and morphological parameters. The study contributes to a better understanding of plant responses to complex environmental conditions and will help for successful modelling forecasts of future climate change impacts.


Assuntos
Secas , Poaceae , Poaceae/fisiologia , Raios Ultravioleta , Pradaria , Ecossistema , Água/fisiologia , Plantas/efeitos da radiação
6.
Nature ; 596(7872): 384-388, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34408332

RESUMO

The control of the production of ozone-depleting substances through the Montreal Protocol means that the stratospheric ozone layer is recovering1 and that consequent increases in harmful surface ultraviolet radiation are being avoided2,3. The Montreal Protocol has co-benefits for climate change mitigation, because ozone-depleting substances are potent greenhouse gases4-7. The avoided ultraviolet radiation and climate change also have co-benefits for plants and their capacity to store carbon through photosynthesis8, but this has not previously been investigated. Here, using a modelling framework that couples ozone depletion, climate change, damage to plants by ultraviolet radiation and the carbon cycle, we explore the benefits of avoided increases in ultraviolet radiation and changes in climate on the terrestrial biosphere and its capacity as a carbon sink. Considering a range of strengths for the effect of ultraviolet radiation on plant growth8-12, we estimate that there could have been 325-690 billion tonnes less carbon held in plants and soils by the end of this century (2080-2099) without the Montreal Protocol (as compared to climate projections with controls on ozone-depleting substances). This change could have resulted in an additional 115-235 parts per million of atmospheric carbon dioxide, which might have led to additional warming of global-mean surface temperature by 0.50-1.0 degrees. Our findings suggest that the Montreal Protocol may also be helping to mitigate climate change through avoided decreases in the land carbon sink.


Assuntos
Sequestro de Carbono , Perda de Ozônio/prevenção & controle , Ozônio Estratosférico/análise , Dióxido de Carbono/análise , Sequestro de Carbono/efeitos da radiação , Aquecimento Global/prevenção & controle , Aquecimento Global/estatística & dados numéricos , História do Século XXI , Fotossíntese/efeitos da radiação , Plantas/metabolismo , Plantas/efeitos da radiação , Temperatura , Raios Ultravioleta
7.
J Agric Food Chem ; 68(40): 11054-11067, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32936625

RESUMO

Due to the growing demand in society for healthier foods, scientific communities are searching and developing new ingredients. In this context, agro-industrial residues, which can have a negative impact on the environment, represent a natural source for bioactive compounds and their recovery can contribute to economic and environmental sustainability. Ionizing radiation is a clean and eco-friendly technology that can be used to improve the extraction of bioactive compounds. The aim of this review, after presenting general aspects about bioactive compounds in agro-industrial residues and radiation technologies, is to focus on the effects of ionizing radiation on the extraction of bioactive compounds from these residues and related bioactive properties. Irradiated residues were demonstrated to have enhanced bioactive characteristics that turn the prepared extracts suitable for applications in food industry, resulting in high-added-value products as well as reducing adverse impacts on the environment.


Assuntos
Produtos Agrícolas/química , Manipulação de Alimentos/métodos , Extratos Vegetais/isolamento & purificação , Resíduos/análise , Produtos Agrícolas/efeitos da radiação , Alimentos/efeitos da radiação , Manipulação de Alimentos/instrumentação , Plantas/química , Plantas/efeitos da radiação , Radiação Ionizante
8.
BMC Plant Biol ; 20(1): 253, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32493218

RESUMO

BACKGROUND: Plant absorption of ultraviolet (UV) radiation can result in multiple deleterious effects to plant tissues. As a result, plants have evolved an array of strategies to protect themselves from UV radiation, particularly in the UV-B range (280-320 nm). A common plant response to UV exposure is investment in phenolic compounds that absorb damaging wavelengths of light. However, the inverse phenomenon - plant reflectance of UV to protect plant tissues - has not previously been explored. In a paired experiment, we expose half of our sample (N = 108) of insect-pollinated plants of the cultivar Zinnia Profusion Series to UV radiation, and protect the other half from all light < 400 nm for 42 days, and measure leaf and flower reflectance using spectroscopy. We compare UV-B reflectance in leaves and flowers at the beginning of the experiment or flowering, and after treatment. RESULTS: We find that plants protected from UV exposure downregulate UV-B reflectance, and that plants exposed to increased levels of UV show trends of increased UV-B reflectance. CONCLUSIONS: Our results indicate that upregulation of UV-B reflecting pigments or structures may be a strategy to protect leaves against highly energetic UV-B radiation.


Assuntos
Flores/efeitos da radiação , Plantas/efeitos da radiação , Raios Ultravioleta , Asteraceae/efeitos da radiação , Cor , Folhas de Planta/efeitos da radiação , Fenômenos Fisiológicos Vegetais/efeitos da radiação
9.
Commun Biol ; 2: 379, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31633070

RESUMO

Intense efforts have been devoted to describe the biochemical pathway of plant sulphur (S) assimilation from sulphate. However, essential information on metabolic regulation of S assimilation is still lacking, such as possible interactions between S assimilation, photosynthesis and photorespiration. In particular, does S assimilation scale with photosynthesis thus ensuring sufficient S provision for amino acids synthesis? This lack of knowledge is problematic because optimization of photosynthesis is a common target of crop breeding and furthermore, photosynthesis is stimulated by the inexorable increase in atmospheric CO2. Here, we used high-resolution 33S and 13C tracing technology with NMR and LC-MS to access direct measurement of metabolic fluxes in S assimilation, when photosynthesis and photorespiration are varied via the gaseous composition of the atmosphere (CO2, O2). We show that S assimilation is stimulated by photorespiratory metabolism and therefore, large photosynthetic fluxes appear to be detrimental to plant cell sulphur nutrition.


Assuntos
Plantas/metabolismo , Enxofre/metabolismo , Isótopos de Carbono/metabolismo , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Cisteína/metabolismo , Helianthus/metabolismo , Helianthus/efeitos da radiação , Redes e Vias Metabólicas/efeitos da radiação , Metionina/metabolismo , Fotossíntese , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Plantas/efeitos da radiação , Sulfatos/metabolismo , Isótopos de Enxofre/metabolismo
10.
Environ Sci Pollut Res Int ; 26(13): 13592-13601, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30919184

RESUMO

Climate changes and anthropogenic factors are the main factors contributing to the destruction of natural ecosystems. The aim of this study was to investigate the extent to which wild plants adapt to UV, gamma background, and gross beta activity, as well as the possible damage that can be recorded in plants growing at different altitudes in Rila Mountain. We used physicochemical, cytogenetic, and molecular methods. Our investigations were done on the nine plant species characteristic of the ecosystems in Rila Mountain at three altitudes: 1500 m, 1782 m, and 2925 m. The registered beta activity in the plants did not depend on the altitude of the habitats. Our results showed that wild plant species differ in their tolerance to the combined effect of UV and IR radiation as well as climate factors. The genotype plays a more important role than the difference in the habitat altitude. The comet assay adapted by us for these plant species showed that the DNA of Epilobium angustifolium L. (Onagraceae) growing at 1500 m was more susceptible to damage than that of Dactylis glomerata L. (Poaceae). Both these species growing at 1782 m did not show any increase in DNA damage evaluated as the level of DNA migration. The level of DNA damage in Pedicularis orthantha Griseb. (Orobanchaceae) at 2925 m was comparable to that at a lower altitude. Regarding the formation of micronuclei, grass species were more sensitive to UV- and IR-induced DNA damage than cereals. Our data imply the existence of specific protective mechanisms developed by plants to overcome DNA damage induced by stress factors.


Assuntos
Dano ao DNA/efeitos da radiação , Magnoliopsida/química , Plantas/efeitos da radiação , Altitude , Radiação de Fundo , Bulgária , Mudança Climática , Ecossistema , Plantas/química , Poaceae
11.
J Environ Radioact ; 202: 8-24, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30772632

RESUMO

The study of effects of ionizing radiation (IR) on plants is important in relation to several problems: (I) the existence of zones where background radiation - either natural or technogenic - is increased; (II) the problems of space biology; (III) the use of IR in agricultural selection; (IV) general biological problems related to the fundamental patterns and specifics of the effects of IR on various living organisms. By now, researchers have accumulated and systematized a large body of data on the effects of IR on the growth and reproduction of plants, as well as on the changes induced by IR at the genetic level. At the same time, there is a large gap in understanding the mechanisms of IR influence on the biochemical and physiological processes - despite the fact that these processes form the basis determining the manifestation of IR effects at the level of the whole organism. On the one hand, the activity of physiological processes determines the growth of plants; on the other, it is determined by changes at the genetic level. Thus, it is the study of IR effects at the physiological and biochemical levels that can give the most detailed and complex picture of IR action in plants. The review focuses on the effects of radiation on the essential physiological processes, including photosynthesis, respiration, long-distance transport, the functioning of the hormonal system, and various biosynthetic processes. On the basis of a large body of experimental data, we analyze dose and time dependences of the IR-induced effects - which are qualitatively similar - on various physiological and biochemical processes. We also consider the sequence of stages in the development of those effects and discuss their mechanisms, as well as the cause-effect relationships between them. The primary IR-induced physicochemical reactions include the formation of various forms of reactive oxygen species (ROS) and are the cause of the observed changes in the functional activity of plants. The review emphasizes the role of hydrogen peroxide, a long-lived ROS, not only as a damaging agent, but also as a mediator - a universal intracellular messenger, which provides for the mechanism of long-distance signaling. A supposition is made that IR affects physiological processes mainly by violating the regulation of their activity. The violation seems to become possible due to the fact that there exists a crosstalk between different signaling systems of plants, such as ROS, calcium, hormonal and electrical systems. As a result of both acute and chronic irradiation, an increase in the level of ROS can influence the activity of a wide range of physiological processes - by regulating them both at the genetic and physiological levels. To understand the ways, by which IR affects plant growth and development, one needs detailed knowledge about the mechanisms of the processes that occur at the (i) genetic and (ii) physiological levels, as well as their interplay and (iii) knowledge about regulation of these processes at different levels.


Assuntos
Desenvolvimento Vegetal/efeitos da radiação , Plantas/efeitos da radiação , Radiação Ionizante , Fotossíntese/efeitos da radiação , Espécies Reativas de Oxigênio , Reprodução
12.
PLoS One ; 14(2): e0210470, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30716078

RESUMO

Dryland ecosystems cover nearly 45% of the Earth's land area and account for large proportions of terrestrial net primary production and carbon pools. However, predicting rates of plant litter decomposition in these vast ecosystems has proven challenging due to their distinctly dry and often hot climate regimes, and potentially unique physical drivers of decomposition. In this study, we elucidated the role of photopriming, i.e. exposure of standing dead leaf litter to solar radiation prior to litter drop that would chemically change litter and enhance biotic decay of fallen litter. We exposed litter substrates to three different UV radiation treatments simulating three-months of UV radiation exposure in southern New Mexico: no light, UVA+UVB+Visible, and UVA+Visible. There were three litter types: mesquite leaflets (Prosopis glandulosa, litter with high nitrogen (N) concentration), filter paper (pure cellulose), and basswood (Tilia spp, high lignin concentration). We deployed the photoprimed litter in the field within a large scale precipitation manipulation experiment: ∼50% precipitation reduction, ∼150% precipitation addition, and ambient control. Our results revealed the importance of litter substrate, particularly N content, for overall decomposition in drylands, as neither filter paper nor basswood exhibited measurable mass loss over the course of the year-long study, while high N-containing mesquite litter exhibited potential mass loss. We saw no effect of photopriming on subsequent microbial decay. We did observe a precipitation effect on mesquite where the rate of decay was more rapid in ambient and precipitation addition treatments than in the drought treatment. Overall, we found that precipitation and N played a critical role in litter mass loss. In contrast, photopriming had no detected effects on mass loss over the course of our year-long study. These results underpin the importance of biotic-driven decomposition, even in the presence of photopriming, for understanding litter decomposition and biogeochemical cycles in drylands.


Assuntos
Folhas de Planta/efeitos da radiação , Plantas/efeitos da radiação , Prosopis/efeitos da radiação , Tilia/efeitos da radiação , Celulose/metabolismo , Clima Desértico , Ecossistema , Lignina/metabolismo , New Mexico , Nitrogênio/metabolismo , Folhas de Planta/fisiologia , Fenômenos Fisiológicos Vegetais/efeitos da radiação , Prosopis/fisiologia , Tilia/fisiologia , Raios Ultravioleta
13.
Radiat Prot Dosimetry ; 183(1-2): 136-141, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30624751

RESUMO

Radiation-induced bystander effects refer to the production of signals from irradiated cells which induce responses in unirradiated, or bystander, cells. There has been a recent resurgence of interest in low-energy photon biology. This is due to concerns about health effects, increased use of biophoton imaging techniques, and the fact that biophotons can act as a bystander signal. This review discusses the history of light signaling in biology and potential mechanisms involved in the generation and transduction of signaling mechanisms. The role of photons in signaling in the animal and plant kingdoms is also reviewed. Finally, the potential to harness these mechanisms in radiation protection or therapy is discussed with emphasis on promising future directions for research.


Assuntos
Efeito Espectador/efeitos da radiação , Fótons , Radiobiologia/métodos , Animais , Humanos , Plantas/efeitos da radiação
14.
Photochem Photobiol ; 95(1): 126-139, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29882348

RESUMO

Photobiomodulation (PBM), also known as low-level laser (light) therapy, was discovered over 50 years ago, but only recently has it been making progress toward wide acceptance. PBM originally used red and near-infrared (NIR) lasers, but now other wavelengths and non-coherent light-emitting diodes (LEDs) are being explored. The almost complete lack of side effects makes the conduction of controlled clinical trials relatively easy. Laboratory research has mainly concentrated on mammalian cells (normal or cancer) in culture, and small rodents (mice and rats) as models of different diseases. A sizeable body of work was carried out in the 1970s and 1980s in Russia looking at various bacterial and fungal cells. The present review covers some of these studies and a recent number of papers that have applied PBM to so-called "model organisms." These models include flies (Drosophila), worms (Caenorhabditis elegans), fish (zebrafish) and caterpillars (Galleria). Much knowledge about the genomics and proteomics, and many reagents for these organisms already exist. They are inexpensive to work with and have lower regulatory barriers compared to vertebrate animals. Other researchers have studied different models (snails, sea urchins, Paramecium, toads, frogs and chickens). Plants may respond to NIR light differently from visible light (photosynthesis and photomorphogenesis) but PBM in plants has not been much studied. Veterinarians routinely use PBM to treat non-mammalian patients. The conclusion is that red or NIR light does indeed have significant biologic effects conserved over many different kingdoms, and perhaps it is true that "all life-forms respond to light."


Assuntos
Luz , Terapia com Luz de Baixa Intensidade , Animais , Caenorhabditis elegans/efeitos da radiação , Drosophila/efeitos da radiação , Plantas/efeitos da radiação , Peixe-Zebra
16.
Plant Sci ; 278: 44-53, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30471728

RESUMO

Plants orchestrate various DNA damage responses (DDRs) to overcome the deleterious impacts of genotoxic agents on genetic materials. Ionizing radiation (IR) is widely used as a potent genotoxic agent in plant DDR research as well as plant breeding and quarantine services for commercial uses. This review aimed to highlight the recent advances in cellular and phenotypic DDRs, especially those induced by IR. Various physicochemical genotoxic agents damage DNA directly or indirectly by inhibiting DNA replication. Among them, IR-induced DDRs are considerably more complicated. Many aspects of such DDRs and their initial transcriptomes are closely related to oxidative stress response. Although many key components of DDR signaling have been characterized in plants, DDRs in plant cells are not understood in detail to allow comparison with those in yeast and mammalian cells. Recent studies have revealed plant DDR signaling pathways including the key regulator SOG1. The SOG1 and its upstream key components ATM and ATR could be functionally characterized by analyzing their knockout DDR phenotypes after exposure to IR. Considering the potent genotoxicity of IR and its various DDR phenotypes, IR-induced DDR studies should help to establish an integrated model for plant DDR signaling pathways by revealing the unknown key components of various DDRs in plants.


Assuntos
Dano ao DNA , Plantas/efeitos da radiação , Radiação Ionizante , Morte Celular , Reparo do DNA por Junção de Extremidades , Reparo do DNA , Epigênese Genética , Instabilidade Genômica , Modelos Genéticos , Plantas/genética , Transdução de Sinais , Transcriptoma
17.
J Radiol Prot ; 39(1): R1-R17, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30577037

RESUMO

The area affected by the Kyshtym accident in 1957 provided a unique opportunity for long-term studies of radiation effects in the environment. The biological effects observed in the area varied from deterministic lethal effects to an enhanced rate of mutations induced by radiation. This paper provides a comprehensive review of the long-term studies of biological effects in plants and animals inhabiting the Kyshtym affected areas over more than 50 years. Most of the observed effects were induced by the high irradiation during the 'acute' period after the accident. At the same time, some of the radiation effects were also because of long-term chronic exposure over many generations. Some phenomena such as (1) the increase of the mutation rate per unit dose with reduction of dose and dose rate, and (2) the radiodaptation of the affected populations to the chronic exposure were documented for the first time based on the radiobiological research performed in that area.


Assuntos
Doses de Radiação , Liberação Nociva de Radioativos , Animais , Peixes , Invertebrados/efeitos da radiação , Mamíferos , Plantas/efeitos da radiação , Federação Russa
18.
Ann ICRP ; 47(3-4): 304-312, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29648459

RESUMO

The International Commission on Radiological Protection (ICRP) recognises three types of exposure situations: planned, existing, and emergency. In all three situations, the release of radionuclides into the natural environment leads to exposures of non-human biota, as well as the potential for exposures of the public. This paper describes how the key principles of the ICRP system of radiological protection apply to non-human biota and members of the public in each of these exposure situations. Current work in this area within ICRP Task Group 105 is highlighted. For example, how simplified numeric criteria may be used in planned exposure situations that are protective of both the public and non-human biota. In emergency exposure situations, the initial response will always be focused on human protection; however, understanding the potential impacts of radionuclide releases on non-human biota will likely become important in terms of communication as governments and the public seek to understand the exposures that are occurring. For existing exposure situations, there is a need to better understand the potential impacts of radionuclides on animals and plants, especially when deciding on protective actions. Understanding the comparative impacts from radiological, non-radiological, and physical aspects is often important in managing the remediation of legacy sites. Task Group 105 is making use of case studies of how exposure situations have been managed in the past to provide additional guidance and advice for the protection of non-human biota.


Assuntos
Doses de Radiação , Exposição à Radiação/prevenção & controle , Proteção Radiológica/normas , Liberação Nociva de Radioativos/prevenção & controle , Radioisótopos/análise , Animais , Humanos , Agências Internacionais , Plantas/efeitos da radiação , Lesões por Radiação/prevenção & controle
19.
Sci Rep ; 8(1): 5914, 2018 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-29651024

RESUMO

The radiological accident in Goiania in 1987 caused a trail of human contamination, animal, plant and environmental by a radionuclide. Exposure to ionizing radiation results in different types of DNA lesions. The mutagenic effects of ionizing radiation on the germline are special concern because they can endures for several generations, leading to an increase in the rate of mutations in children of irradiated parents. Thus, to evaluate the biological mechanisms of ionizing radiation in somatic and germline cells, with consequent determination of the rate mutations, is extremely important for the estimation of genetic risks. Recently it was established that Chromosomal Microarray Analysis is an important tool for detecting wide spectra of gains or losses in the human genome. Here we present the results of the effect of accidental exposure to low doses of ionizing radiation on the formation of CNVs in the progeny of a human population accidentally exposed to Caesium-137 during the radiological accident in Goiânia, Brazil.


Assuntos
Radioisótopos de Césio/efeitos adversos , Variações do Número de Cópias de DNA/genética , Genoma Humano/efeitos da radiação , Liberação Nociva de Radioativos , Adulto , Animais , Brasil/epidemiologia , Variações do Número de Cópias de DNA/efeitos da radiação , Poluição Ambiental/efeitos adversos , Pai , Feminino , Genoma Humano/genética , Células Germinativas/efeitos da radiação , Humanos , Masculino , Análise em Microsséries , Mães , Mutação , Plantas/genética , Plantas/efeitos da radiação , Radiação Ionizante
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA