Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 239
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38731994

RESUMO

The mechanism of ethylene (ET)-regulated salinity stress response remains largely unexplained, especially for semi-halophytes and halophytes. Here, we present the results of the multifaceted analysis of the model semi-halophyte Mesembryanthemum crystallinum L. (common ice plant) ET biosynthesis pathway key components' response to prolonged (14 days) salinity stress. Transcriptomic analysis revealed that the expression of 3280 ice plant genes was altered during 14-day long salinity (0.4 M NaCl) stress. A thorough analysis of differentially expressed genes (DEGs) showed that the expression of genes involved in ET biosynthesis and perception (ET receptors), the abscisic acid (ABA) catabolic process, and photosynthetic apparatus was significantly modified with prolonged stressor presence. To some point this result was supported with the expression analysis of the transcript amount (qPCR) of key ET biosynthesis pathway genes, namely ACS6 (1-aminocyclopropane-1-carboxylate synthase) and ACO1 (1-aminocyclopropane-1-carboxylate oxidase) orthologs. However, the pronounced circadian rhythm observed in the expression of both genes in unaffected (control) plants was distorted and an evident downregulation of both orthologs' was induced with prolonged salinity stress. The UPLC-MS analysis of the ET biosynthesis pathway rate-limiting semi-product, namely of 1-aminocyclopropane-1-carboxylic acid (ACC) content, confirmed the results assessed with molecular tools. The circadian rhythm of the ACC production of NaCl-treated semi-halophytes remained largely unaffected by the prolonged salinity stress episode. We speculate that the obtained results represent an image of the steady state established over the past 14 days, while during the first hours of the salinity stress response, the view could be completely different.


Assuntos
Etilenos , Regulação da Expressão Gênica de Plantas , Estresse Salino , Plantas Tolerantes a Sal , Etilenos/biossíntese , Etilenos/metabolismo , Plantas Tolerantes a Sal/genética , Plantas Tolerantes a Sal/metabolismo , Mesembryanthemum/metabolismo , Mesembryanthemum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Vias Biossintéticas , Perfilação da Expressão Gênica/métodos , Ácido Abscísico/metabolismo , Salinidade , Transcriptoma
2.
Artigo em Inglês | MEDLINE | ID: mdl-38805028

RESUMO

A polyphasic approach was used to characterize two novel actinobacterial strains, designated PKS22-38T and LSe1-13T, which were isolated from mangrove soils and leaves of halophyte Sesuvium portulacastrum (L.), respectively. Phylogenetic analyses based on 16S rRNA gene sequences showed that they belonged to the genus Gordonia and were most closely related to three validly published species with similarities ranging from 98.6 to 98.1 %. The genomic DNA G+C contents of strains PKS22-38T and LSe1-13T were 67.3 and 67.2 mol%, respectively. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between the two strains were 93.3 and 54.9 %, respectively, revealing that they are independent species. Meanwhile, the ANI and dDDH values between the two novel strains and closely related type strains were below 80.5 and 24.0 %, respectively. Strains PKS22-38T and LSe1-13T contained C16 : 0, C18 : 1 ω9c and C18 : 0 10-methyl (TBSA) as the major fatty acids and diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylinositol as the main phospholipids. The predominant menaquinone was MK-9(H2). Based on phenotypic, chemotaxonomic, phylogenetic and genomic data, strains PKS22-38T and LSe1-13T are considered to represent two novel species within the genus Gordonia, for which the names Gordonia prachuapensis sp. nov. and Gordonia sesuvii sp. nov. are proposed, with strain PKS22-38T (=TBRC 17540T=NBRC 116256T) and strain LSe1-13T (=TBRC 17706T=NBRC 116396T) as the type strains, respectively.


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Ácidos Graxos , Hibridização de Ácido Nucleico , Filogenia , Folhas de Planta , RNA Ribossômico 16S , Análise de Sequência de DNA , Microbiologia do Solo , Vitamina K 2 , RNA Ribossômico 16S/genética , Folhas de Planta/microbiologia , DNA Bacteriano/genética , Vitamina K 2/análogos & derivados , Vitamina K 2/análise , Ácidos Graxos/química , Ácidos Graxos/análise , Tailândia , Plantas Tolerantes a Sal/microbiologia , Sedimentos Geológicos/microbiologia , Fosfolipídeos/análise , Fosfolipídeos/química , Áreas Alagadas , Bactéria Gordonia/genética , Bactéria Gordonia/classificação , Bactéria Gordonia/isolamento & purificação
3.
Funct Plant Biol ; 512024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38669461

RESUMO

Chlorophyll a fluorescence parameters related to PSII photochemistry, photoprotection and photoinhibition were investigated in four C3 plant species growing in their natural habitat: Prosopis juliflora ; Abutilon indicum ; Salvadora persica ; and Phragmites karka . This study compared the light reaction responses of P. juliflora , an invasive species, with three native co-existing species, which adapt to varying water deficit and high salt stress. Chlorophyll a fluorescence quenching analyses revealed that P. juliflora had the highest photochemical quantum efficiency and yield, regulated by higher fraction of open reaction centres and reduced photoprotective energy dissipation without compromising the integrity of photosynthetic apparatus due to photoinhibition. Moreover, the elevated values of parameters obtained through polyphasic chlorophyll a fluorescence induction kinetics, which characterise the photochemistry of PSII and electron transport, highlighted the superior performance index of energy conservation in the transition from excitation to the reduction of intersystem electron carriers for P. juliflora compared to other species. Enhanced pigment contents and their stoichiometry in P. juliflora apparently contributed to upregulating fluxes and yields of energy absorbance, trapping and transport. This enhanced photochemistry, along with reduced non-photochemical processes, could explain the proclivity for invasion advantage in P. juliflora across diverse stress conditions.


Assuntos
Clorofila A , Clorofila , Complexo de Proteína do Fotossistema II , Prosopis , Prosopis/efeitos dos fármacos , Prosopis/química , Complexo de Proteína do Fotossistema II/metabolismo , Clorofila/metabolismo , Clorofila A/metabolismo , Estresse Salino/efeitos dos fármacos , Plantas Tolerantes a Sal/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Espécies Introduzidas , Fluorescência
4.
Int J Mol Sci ; 25(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38473702

RESUMO

The aim of this study was to investigate how introducing halophilic sulfur-oxidizing bacteria (SOB) Halothiobacillus halophilus to the growth substrate affects the physiological and biochemical responses of the halophyte Tripolium pannonicum (also known as sea aster or seashore aster) under salt and cadmium stress conditions. This study assessed the plant's response to these stressors and bacterial inoculation by analyzing various factors including the accumulation of elements such as sodium (Na), chloride (Cl), cadmium (Cd) and sulfur (S); growth parameters; levels of photosynthetic pigments, proline and phenolic compounds; the formation of malondialdehyde (MDA); and the plant's potential to scavenge 2,2-Diphenyl-1-picrylhydrazyl (DPPH). The results revealed that bacterial inoculation was effective in mitigating the deleterious effect of cadmium stress on some growth criteria. For instance, stem length was 2-hold higher, the growth tolerance index was 3-fold higher and there was a 20% increase in the content of photosynthetic pigments compared to non-inoculated plants. Furthermore, the SOB contributed to enhancing cadmium tolerance in Tripolium pannonicum by increasing the availability of sulfur in the plant's leaves, which led to the maintenance of an appropriate, about 2-fold-higher level of phenolic compounds (phenylpropanoids and flavonols), as well as chloride ions. The level of MDA decreased after bacterial application in all experimental variants except when both salt and cadmium stress were present. These findings provide novel insights into how halophytes respond to abiotic stress following inoculation of the growth medium with sulfur-oxidizing bacteria. The data suggest that inoculating the substrate with SOB has a beneficial effect on T. pannonicum's tolerance to cadmium stress.


Assuntos
Cádmio , Plantas Tolerantes a Sal , Cádmio/farmacologia , Cloretos/farmacologia , Cloreto de Sódio/farmacologia , Cloreto de Sódio na Dieta/farmacologia , Sódio/farmacologia , Oxirredução , Enxofre/farmacologia , Bactérias
5.
Molecules ; 29(2)2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38257211

RESUMO

Suaeda glauca, a halophyte in the Amaranthaceae family, exhibits remarkable resilience to high salt and alkali stresses despite the absence of salt glands or vesicles in its leaves. While there is growing pharmacological interest in S. glauca, research on its secondary metabolites remains limited. In this study, chemical constituents of the aerial parts of S. glauca were identified using 1D- and 2D-NMR experiments, and its biological activity concerning hair loss was newly reported. Eight compounds, including alkaloids (1~3), flavonoids (4~6), and phenolics (7 and 8), were isolated. The compounds, except the flavonoids, were isolated for the first time from S. glauca. In the HPLC chromatogram, quercetin-3-O-ß-d-glucoside, kaempferol-3-O-ß-d-glucoside, and kaempferol were identified as major constituents in the extract of S. glauca. Additionally, the therapeutic potential of the extract of S. glauca and the isolated compounds 1~8 on the expressions of VEGF and IGF-1, as well as the regulation of Wnt/ß-catenin signaling, were evaluated in human follicle dermal papilla cells (HFDPCs) and human umbilical vein endothelial cells (HUVECs). Among the eight compounds, compound 4 was the most potent in terms of increasing the expression of VEGF and IGF-1 and the regulation of Wnt/ß-catenin. These findings suggest that S. glauca extract and its compounds are potential new candidates for preventing or treating hair loss.


Assuntos
Chenopodiaceae , Fator de Crescimento Insulin-Like I , Humanos , Animais , Plantas Tolerantes a Sal , beta Catenina , Fator A de Crescimento do Endotélio Vascular , Alopecia , Flavonoides/farmacologia , Células Endoteliais da Veia Umbilical Humana , Extratos Vegetais/farmacologia
6.
Planta ; 258(6): 109, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37907764

RESUMO

MAIN CONCLUSION: Arsenic tolerance in the halophyte Salvadora persica is achieved by enhancing antioxidative defense and modulations of various groups of metabolites like amino acids, organic acids, sugars, sugar alcohols, and phytohormones. Salvadora persica is a facultative halophyte that thrives under high saline and arid regions of the world. In present study, we examine root metabolic responses of S. persica exposed to individual effects of high salinity (750 mM NaCl), arsenic (600 µM As), and combined treatment of salinity and arsenic (250 mM NaCl + 600 µM As) to decipher its As and salinity resistance mechanism. Our results demonstrated that NaCl supplementation reduced the levels of reactive oxygen species (ROS) under As stress. The increased activities of antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), and glutathione reductase (GR) maintained appropriate levels of ROS [superoxide (O2•-) and hydrogen peroxide (H2O2)] under salinity and/or As stress. The metabolites like sugars, amino acids, polyphenols, and organic acids exhibited higher accumulations when salt was supplied with As. Furthermore, comparatively higher accumulations of glycine, glutamate, and cystine under combined stress of salt and As may indicate its role in glutathione and phytochelatins (PCs) synthesis in root. The levels of phytohormones such as salicylate, jasmonate, abscisic acid, and auxins were significantly increased under high As with and without salinity stress. The amino acid metabolism, glutathione metabolism, carbohydrate metabolism, tricarboxylic acid cycle (TCA cycle), phenylpropanoid biosynthesis, and phenylalanine metabolism are the most significantly altered metabolic pathways in response to NaCl and/or As stress. Our study decoded the important metabolites and metabolic pathways involved in As and/or salinity tolerance in root of the halophyte S. persica providing clues for development of salinity and As resistance crops.


Assuntos
Arsênio , Salvadoraceae , Antioxidantes/metabolismo , Plantas Tolerantes a Sal/metabolismo , Salvadoraceae/metabolismo , Arsênio/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Cloreto de Sódio/farmacologia , Salinidade , Peróxido de Hidrogênio/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Estresse Oxidativo , Glutationa
7.
Mol Biol Rep ; 50(11): 9731-9738, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37819497

RESUMO

BACKGROUND: Sesuvium portulacastrum is a facultative halophyte capable of thriving in a saline environment. Despite molecular studies conducted to unravel its salt adaptation mechanism, there is a paucity of information on the role of salt-responsive orthologs and microRNAs (miRNAs) in this halophyte. Here, we searched the orthology to identify salt-responsive orthologs and miRNA targets of Sesuvium using the Arabidopsis genome. METHODS: The relative fold change of orthologs, conserved miRNAs, and miRNA targets of Sesuvium was analyzed under 100 mM (LS) and 250 mM NaCl (HS) treatment at 24 h using qRT-PCR. The comparison between the expression of Sesuvium orthologs and Arabidopsis orthologs (Arabidopsis eFP browser database) was used to identify differentially expressed genes. RESULTS: Upon salt treatment, we found that SpCIPK3 (1.95-fold in LS and 2.90-fold in HS) in Sesuvium roots, and SpNHX7 (1.61-fold in LS and 6.39-fold in HS) and, SpSTPK2 (2.54-fold in LS and 7.65-fold in HS) in Sesuvium leaves were upregulated in a salt concentration-specific manner. In Arabidopsis, these genes were either downregulated or did not show significant variation, implicating its significance in the halophytic nature of Sesuvium. Furthermore, miRNAs like miR394a, miR396a, and miR397a exhibited a negative correlation with their targets-Frigida interacting protein 1, Cysteine proteinases superfamily protein, and Putative laccase, respectively under different salt treatments. CONCLUSION: The study revealed that the high salt tolerance in Sesuvium is associated with distinct transcriptional reprogramming, hence, to gain holistic mechanistic insights, global-scale profiling is required.


Assuntos
Aizoaceae , Arabidopsis , MicroRNAs , Tolerância ao Sal/genética , Arabidopsis/genética , Plantas Tolerantes a Sal/genética , Plantas Tolerantes a Sal/metabolismo , Aizoaceae/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
8.
Plant Physiol Biochem ; 201: 107763, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37301187

RESUMO

Cadmium (Cd) and sodium (Na) are two of the most phytotoxic metallic elements causing environmental and agricultural problems. Metallothioneins (MTs) play an important role in the adaptation to abiotic stress. We previously isolated a novel type 2 MT gene from Halostachys caspica (H. caspica), named HcMT, which responded to metal and salt stress. To understand the regulatory mechanisms controlling HcMT expression, we cloned the HcMT promoter and characterized its tissue-specific and spatiotemporal expression patterns. ß-Glucuronidase (GUS) activity analysis showed that the HcMT promoter was responsive to CdCl2, CuSO4, ZnSO4 and NaCl stress. Therefore, we further investigated the function of HcMT under abiotic stress in yeast and Arabidopsis thaliana (Arabidopsis). In CdCl2, CuSO4 or ZnSO4 stress, HcMT significantly enhanced the metal ions tolerance and accumulation in yeast through function as a metal chelator. Moreover, the HcMT protein also protected yeast cells from NaCl, PEG and hydrogen peroxide (H2O2) toxicity with less effectiveness. However, transgenic Arabidopsis carrying HcMT gene only displayed tolerance to CdCl2 and NaCl, accompanying by higher content of Cd2+ or Na+ and lower H2O2, compared to wild-type (WT) plants. Next, we demonstrated that the recombinant HcMT protein has the ability to bind Cd2+ and the potential of scavenging ROS (reactive oxygen species) in vitro. This result further confirmed that the role of HcMT to influence plants to CdCl2 and NaCl stress may bind metal ions and scavenge ROS. Overall, we described the biological functions of HcMT and developed a metal- and salt-inducible promoter system for using in genetic engineering.


Assuntos
Arabidopsis , Chenopodiaceae , Plantas Tolerantes a Sal/genética , Cádmio/toxicidade , Cádmio/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sódio/metabolismo , Saccharomyces cerevisiae/genética , Metalotioneína/genética , Metalotioneína/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Peróxido de Hidrogênio/metabolismo , Cloreto de Sódio/metabolismo , Chenopodiaceae/genética , Estresse Fisiológico/genética
9.
J Hazard Mater ; 458: 131922, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37379599

RESUMO

The enhancement of cadmium (Cd) extraction by plants from contaminated soils associated with phosphate-solubilizing bacteria (PSB) has been widely reported, but the underlying mechanism remains scarcely, especially in Cd-contaminated saline soils. In this study, a green fluorescent protein-labeled PSB, the strain E. coli-10527, was observed to be abundantly colonized in the rhizosphere soils and roots of halophyte Suaeda salsa after inoculation in saline soil pot tests. Cd extraction by plants was significantly promoted. The enhanced Cd phytoextraction by E. coli-10527 was not solely dependent on bacterial efficient colonization, but more significantly, relied on the remodeling of rhizosphere microbiota, as confirmed by soil sterilization test. Taxonomic distribution and co-occurrence network analyses suggested that E. coli-10527 strengthened the interactive effects of keystone taxa in the rhizosphere soils, and enriched the key functional bacteria that involved in plant growth promotion and soil Cd mobilization. Seven enriched rhizospheric taxa (Phyllobacterium, Bacillus, Streptomyces mirabilis, Pseudomonas mirabilis, Rhodospirillale, Clostridium, and Agrobacterium) were obtained from 213 isolated strains, and were verified to produce phytohormone and promote soil Cd mobilization. E. coli-10527 and those enriched taxa could assemble as a simplified synthetic community to strengthen Cd phytoextraction through their synergistic interactions. Therefore, the specific microbiota in rhizosphere soils enriched by the inoculated PSB were also the key to intensifying Cd phytoextraction.


Assuntos
Chenopodiaceae , Poluentes do Solo , Cádmio/metabolismo , Solo , Plantas Tolerantes a Sal/metabolismo , Escherichia coli/metabolismo , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Microbiologia do Solo , Bactérias/metabolismo , Rizosfera , Fosfatos/análise
10.
Artigo em Inglês | MEDLINE | ID: mdl-37347684

RESUMO

A polyphasic approach was used to describe two halophilic actinobacterial strains, designated LSu2-4T and RSe5-2T, which were isolated from halophytes [Suaeda maritima (L.) Dum. and Sesuvium portulacastrum (L.) L.] collected from Prachuap Khiri Khan province, Thailand. Comparative analysis of 16S rRNA gene sequences showed that strains LSu2-4T and RSe5-2T were assigned to the genus Nocardiopsis, with Nocardiopsis chromatogenes YIM 90109T(99.2 and 99.2 % similarities, respectively) and Nocardiopsis halophila DSM 44494T(99.0 and 98.8 % similarities, respectively) being their closely related strains. Whereas the 16S rRNA gene sequence similarity between LSu2-4T and RSe5-2T was 99.4 %. Phylogenetic and phylogenomic analyses based on 16S rRNA gene and whole-genome sequences revealed that both strains clustered with N. chromatogenes YIM 90109T and N. halophila DSM 44494T. The average nucleotide identity (ANI) based on blast, ANI based on MUMmer and digital DNA-DNA hybridization (dDDH) relatedness values between the two strains and their closest type strains were below the threshold values for identifying a novel species. Morphological characteristics and chemotaxonomic features of both strains were typical for the genus Nocardiopsis by formed well-developed substrate mycelia and aerial mycelia which fragmented into rod-shaped spores. Whole-cell hydrolysates contained meso-diaminopimelic acid as the diagnostic diamino acid. The predominant menaquinones were variously hydrogenated with 10 isoprene units and contained phosphatidylcholine in their polar lipid profiles. Major fatty acids were iso-C16:0 and 10-methyl C18:0. In silico analysis predicted that the genomes of LSu2-4T and RSe5-2T contained genes associated with stress responses and biosynthetic gene clusters encoding diverse bioactive metabolites. Characterization based on chemotaxonomic, phenotypic, genotypic and phylogenetic evidence demonstrated that strains LSu2-4T and RSe5-2T represents two novel species of the genus Nocardiopsis, for which the names Nocardiopsis suaedae sp. nov. (type strain LSu2-4T=TBRC 16415T=NBRC 115855T) and Nocardiopsis endophytica sp. nov. (type strain RSe5-2T=TBRC 16416T=NBRC 115856T) are proposed.


Assuntos
Actinobacteria , Actinomycetales , DNA Bacteriano , Nocardia , Ácidos Graxos/química , Plantas Tolerantes a Sal , Filogenia , Nocardiopsis , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , Composição de Bases , Nocardia/genética , Vitamina K 2/química
11.
Sci Rep ; 13(1): 3727, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36878934

RESUMO

Long-term exposure to dietary xenobiotics can induce oxidative stress in the gastrointestinal tract, possibly causing DNA damage and contributing to the initiation of carcinogenesis. Halophytes are exposed to constant abiotic stresses, which are believed to promote the accumulation of antioxidant metabolites like polyphenols. The aim of this study was to evaluate the antioxidant and antigenotoxic properties of the ethanol extract of the aerial part of the halophyte Polygonum maritimum L. (PME), which can represent a dietary source of bioactive compounds with potential to attenuate oxidative stress-related damage. The PME exhibited a high antioxidant potential, revealed by the in vitro capacity to scavenge the free radical DPPH (IC50 = 2.29 ± 0.10 µg/mL) and the improved viability of the yeast Saccharomyces cerevisiae under oxidative stress (p < 0.001, 10 min). An antigenotoxic effect of PME against H2O2-induced oxidative stress was found in S. cerevisiae (p < 0.05) with the dominant deletion assay. In vitro colorimetric assays and LC-DAD-ESI/MSn analysis showed that PME is a polyphenol-rich extract composed of catechin, (epi)catechin dimer and trimers, quercetin and myricetin glycosides. Hence, P. maritimum is a source of antioxidant and antigenotoxic metabolites for application in industries that develop products to provide health benefits.


Assuntos
Catequina , Polygonum , Antioxidantes/farmacologia , Plantas Tolerantes a Sal , Peróxido de Hidrogênio , Saccharomyces cerevisiae , Estresse Oxidativo , Extratos Vegetais/farmacologia
12.
Int J Mol Sci ; 24(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36982245

RESUMO

Halophytes and xerophytes, plants with adequate tolerance to high salinity with strong ability to survive in drought ecosystem, have been recognized for their nutritional and medicinal values owing to their comparatively higher productions of secondary metabolites, primarily the phenolics, and the flavonoids, as compared to the normal vegetation in other climatic regions. Given the consistent increases in desertification around the world, which are associated with increasing salinity, high temperature, and water scarcity, the survival of halophytes due to their secondary metabolic contents has prioritized these plant species, which have now become increasingly important for environmental protection, land reclamation, and food and animal-feed security, with their primary utility in traditional societies as sources of drugs. On the medicinal herbs front, because the fight against cancer is still ongoing, there is an urgent need for development of more efficient, safe, and novel chemotherapeutic agents, than those currently available. The current review describes these plants and their secondary-metabolite-based chemical products as promising candidates for developing newer cancer therapeutics. It further discusses the prophylactic roles of these plants, and their constituents in prevention and management of cancers, through an exploration of their phytochemical and pharmacological properties, with a view on immunomodulation. The important roles of various phenolics and structurally diverse flavonoids as major constituents of the halophytes in suppressing oxidative stress, immunomodulation, and anti-cancer effects are the subject matter of this review and these aspects are outlined in details.


Assuntos
Neoplasias , Plantas Tolerantes a Sal , Animais , Plantas Tolerantes a Sal/metabolismo , Ecossistema , Estresse Oxidativo , Recursos Naturais , Imunomodulação , Neoplasias/tratamento farmacológico , Neoplasias/prevenção & controle
13.
Int J Mol Sci ; 24(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36769352

RESUMO

Cold stress is a key environmental factor affecting plant growth and development, crop productivity, and geographic distribution. Thioredoxins (Trxs) are small proteins that are ubiquitously expressed in all organisms and implicated in several cellular processes, including redox reactions. However, their role in the regulation of cold stress in the halophyte plant Lobularia maritima remains unknown. We recently showed that overexpression of LmTrxh2, which is the gene that encodes the h-type Trx protein previously isolated from L. maritima, led to an enhanced tolerance to salt and osmotic stress in transgenic tobacco. This study functionally characterized the LmTrxh2 gene via its overexpression in tobacco and explored its cold tolerance mechanisms. Results of the RT-qPCR and western blot analyses indicated differential temporal and spatial regulation of LmTrxh2 in L. maritima under cold stress at 4 °C. LmTrxh2 overexpression enhanced the cold tolerance of transgenic tobacco, as evidenced by increased germination rate, fresh weight and catalase (CAT), superoxide dismutase (SOD) and peroxidase (POD) activities; reduced malondialdehyde levels, membrane leakage, superoxide anion (O2-), and hydrogen peroxide (H2O2) levels; and higher retention of chlorophyll than in non-transgenic plants (NT). Furthermore, the transcript levels of reactive oxygen species (ROS)-related genes (NtSOD and NtCAT1), stress-responsive late embryogenis abundant protein 5 (NtLEA5), early response to dehydration 10C (NtERD10C), DRE-binding proteins 1A (NtDREB1A), and cold-responsive (COR) genes (NtCOR15A, NtCOR47, and NtKIN1) were upregulated in transgenic lines compared with those in NT plants under cold stress, indicating that LmTrxh2 conferred cold stress tolerance by enhancing the ROS scavenging ability of plants, thus enabling them to maintain membrane integrity. These results suggest that LmTrxh2 promotes cold tolerance in tobacco and provide new insight into the improvement of cold-stress resistance to cold stress in non-halophyte plants and crops.


Assuntos
Brassicaceae , Nicotiana , Antioxidantes/metabolismo , Brassicaceae/genética , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Plantas Tolerantes a Sal/genética , Estresse Fisiológico/genética , Nicotiana/metabolismo , Temperatura Baixa
14.
Biomed Pharmacother ; 159: 114288, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36682245

RESUMO

Plants that are pharmacologically significant require intensive phytochemical characterization for bioactive profiling of the compounds, which has enabled their safe use in ayurvedic medicine. The present study is focused on the phytochemical analyses, quantitative estimation and profiling of secondary metabolites of leaf extract, as well as the antioxidant and cytotoxic activity of the potent halophytes such as Avicennia marina, Ceriops tagal, Ipomoea pes-caprae, and Sonneratia apetala. The in vitro antioxidant property was investigated using DPPH, ferric reducing antioxidant capacity (FRAP) assay. Bioactive compounds such as phenols, flavonoids, saponin and alkaloids were quantitatively estimated from the extracts of A.marina, C.tagal, I.pes-capra and S.apetala, which possessed higher phenol content than the other studied halophytes. The extracts at 200 µg/ml revealed higher antioxidant activity than the standard ascorbic acid and it functions as a powerful oxygen free radical scavenger with 77.37%, 75.35% and 72.84% for S.apetala, I.pes-caprae and C.tagal respectively and with least IC50 for I.pes-caprae (11.95 µg/ml) followed by C.tagal (49.94 µg/ml). Cell viability and anti-proliferative activity of different polyphenolic fractions of C.tagal (CT1 and CT2) and I.pes-caprae fraction (IP) against LN229, SNB19 revealed Ipomoea as the promising anti-cytotoxic fraction. IP-derived polyphenols was further subjected to apoptosis, migration assay, ROS and caspase - 3 and - 7 to elucidate its potentiality as a therapeutic drug. IP-polyphenols was found to have higher percentage of inhibition than the CT1 and CT2 polyphenols of C.tagal on comparison with TMZ. All the above-mentioned in-vitro analysis further validated the ability of IP-polyphenols inducing cell death via ROS-mediated caspase dependent pathway. Further, proteomic and phospho-proteomic analysis revealed the potential role of IP-polyphenols in the regulation of cell proliferation through MMK3, p53, p70 S6 kinase and RSK1 proteins involved in mitogen-activated protein kinase signaling pathway. Our analysis confirmed the promising role of I.pes-caprae derived polyphenols as an anti-metastatic compound against GBM cells.


Assuntos
Antineoplásicos , Glioma , Humanos , Polifenóis/farmacologia , Polifenóis/análise , Antioxidantes/química , Plantas Tolerantes a Sal/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteômica , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Fenóis/farmacologia , Fenóis/análise , Flavonoides/farmacologia , Flavonoides/análise , Transdução de Sinais , Proliferação de Células , Antineoplásicos/farmacologia , Glioma/tratamento farmacológico
15.
Environ Pollut ; 320: 121046, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36627045

RESUMO

Chromium (Cr) is a highly toxic element adversely affecting the environment, cultivable lands, and human populations. The present study investigated the effects of Cr (VI) (100-400 µM) on plant morphology and growth, photosynthetic pigments, organic osmolytes, ionomics, and metabolomic dynamics of the halophyte Suaeda maritima to decipher the Cr tolerance mechanisms. Cr exposure reduced the growth and biomass in S. maritima. The photosynthetic pigments content significantly declined at higher Cr concentrations (400 µM). However, at lower Cr concentrations (100-300 µM), the photosynthetic pigments remained unaffected or increased. The results suggest that a high concentration of Cr exposure might have adverse effects on PS II in S. maritima. The enhanced uptake of Na+ in S. maritima imposed to Cr stress indicates that Na+ might have a pivotal role in osmotic adjustment, thereby maintaining water status under Cr stress. The proline content was significantly upregulated in Cr-treated plants suggesting its role in maintaining osmotic balance and scavenging ROS. The metabolomic analysis of control and 400 µM Cr treated plants led to the identification of 62 metabolites. The fold chain analysis indicated the upregulation of several metabolites, including phytohormones (SA and GA3), polyphenols (cinnamic acid, sinapic acid, coumaric acid, vanillic acid, and syringic acid), and amino acids (alanine, leucine, proline, methionine, and cysteine) under Cr stress. The upregulation of these metabolites suggests the enhanced metal chelation and sequestration in vacuoles, reducing oxidative stress by scavenging ROS and promoting photosynthesis by maintaining the chloroplast membrane structure and photosynthetic pigments. Furthermore, in S. maritima, Cr tolerance index (Ti) was more than 60% in all the treatments, and Cr bio-concentration factor (BCF) and translocation factor (Tf) values were all greater than 1.0, which clearly indicates the Cr-hyperaccumulator characteristics of this halophyte.


Assuntos
Chenopodiaceae , Cromo , Humanos , Cromo/toxicidade , Cromo/metabolismo , Plantas Tolerantes a Sal , Espécies Reativas de Oxigênio , Estresse Oxidativo , Antioxidantes/metabolismo , Prolina/metabolismo , Prolina/farmacologia , Chenopodiaceae/metabolismo , Estresse Fisiológico
16.
J Plant Res ; 136(1): 117-137, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36409432

RESUMO

Tolerance mechanisms employed by plants under environmental stresses can protect them against other co-occurring stresses. In this study, the effect of pre-exposure and simultaneous salt treatment on nickel (Ni) toxicity tolerance in one halophyte (L. sativum) and one glycophyte (L. latifolium) Lepidium species in hydroponics was investigated. In order to compare the species independent from their salt and Ni tolerance level, the glycophyte was subjected to lower salt and Ni concentrations and for a shorter period of time than the halophyte. Salt (NaCl) was applied at 50 and 100 mM concentrations and Ni was provided at an equal free Ni2+ activity by adding 100 and 200 µM Ni as single stresses, but 130 and 300 µM Ni for the treatment of its combination with salt in the glycophyte and halophyte, respectively. Temporal analyses of signaling molecules revealed that the halophyte is characteristically different from the glycophyte in that it exhibits a higher constitutive level of nitric oxide and hydrogen peroxide, a longer duration of response to Ni, and its augmentation by salt. In addition to higher biomass and less Ni accumulation in salt-treated plants, the concentrations of free thiol groups, leaf pigments, proline, free and cell wall-bound phenolics contents, and the activity of phenolic metabolizing enzymes were higher in L. latifolium under the combined salt and Ni treatments than under the single Ni stress. In contrast, the biomass and most biochemical parameters of Ni-stressed L. sativum plants were not enhanced by salt treatment but rather decreased. Our findings shed light on cross-tolerance mechanisms in halophytes and uncovered halophyte survival strategies under multiple stresses.


Assuntos
Lepidium , Cloreto de Sódio , Cloreto de Sódio/farmacologia , Plantas Tolerantes a Sal/fisiologia , Níquel/toxicidade , Estresse Fisiológico
17.
J Biomol Struct Dyn ; 41(1): 147-160, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-34854366

RESUMO

Cakile maritima ssp. aegyptiaca (Wild.) Nyman is growing with dimorphic leaf forms (entire or pinnatifid lamina) along the Mediterranean coast of Egypt. The cytotoxic activities of dried shoot systems of the two morphological forms were evaluated by testing and comparing the effects of ethanolic and aqueous extracts on the viability of five human cell lines. GC-MS analysis was performed to identify the bioactive and anticancer compounds present in the most active extracts. MTT assay indicated that both aqueous and ethanolic extracts have selective cytotoxic activities against cancer cell lines with no inhibitory activities against normal Wi38 or Vero cell lines. The underlying mechanism of cytotoxicity involved the induction of G2/M phase arrest in targeted cells MCF-7 and HCT-116 associated with inducing apoptosis in both cell lines, as indicated by Annexin-V assay. Apoptosis investigation in MCF-7 and HCT-116 cells treated with ethanolic extracts, was further investigated through RT-PCR, which exhibited elevation of proapoptotic genes of P53, BAX, Capase-3,6,7,8,9, and downregulation of antiapoptotic gene (BCL-2) upon treatment. The GC-MS analysis of ethanolic extracts of pinnatifid and entire forms revealed the existence of 18 and 13 compounds, respectively, with eleven compounds that were detected in pinnatifid form only and seven compounds were identified exclusively in the entire form. Molecular Docking study revealed that the identified compounds exhibited good binding affinity towards BCL-2 inhibition, and this agreed with the suggested apoptotic mechanism. To the best of authors' knowledge, this is the first scientific evidence underline the variability in the chemical composition associated with variable anticancer activities of dimorphic forms of C. maritima.Communicated by Ramaswamy H. Sarma.


Assuntos
Antineoplásicos , Plantas Tolerantes a Sal , Humanos , Egito , Simulação de Acoplamento Molecular , Antineoplásicos/farmacologia , Antineoplásicos/química , Apoptose , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Proteínas Proto-Oncogênicas c-bcl-2 , Células MCF-7
18.
Molecules ; 29(1)2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38202803

RESUMO

Polyphenols from residual non-food grade Salicornia ramosissima have health-promoting effects in feed, food, or nutraceutical applications. Therefore, the isolation of polyphenols is of interest from a series of environmentally friendly isolation methods with recyclable solvents. The isolation of polyphenols from non-food grade S. ramosissima was investigated using sequential membrane filtration with and without acid pretreatment, liquid-liquid extraction, resin adsorption, and centrifugal partition chromatography (CPC); analyzed by the Folin-Ciocalteu assay for total polyphenols; and finally analyzed using UPLC-TQMS in negative ion-spray mode for detection of 14 polyphenols. Sequential membrane filtration and acid hydrolysis indicated the polyphenols forming complexes with other compounds, retaining the polyphenols in the retentate fraction of large molecular weight cut-off membrane sizes. Conventional liquid-liquid extraction using sequential ethyl acetate and n-butanol showed most polyphenols were extracted, apart from chlorogenic acids, indicating a low isolation efficiency of higher polarity polyphenols. Analysis of the extract after resin adsorption by Amberlite XAD-4 resin showed high efficiency for separation, with 100% of polyphenols adsorbed to the resin after 13 bed volumes and 96.7% eluted from the resin using ethanol. CPC fractionations were performed to fractionate the concentrated extract after resin adsorption. CPC fractionations of the 14 polyphenols were performed using an organic or aqueous phase as a mobile phase. Depending on the mobile phase, different compounds were isolated in a high concentration. Using these easily scalable methods, it was possible to comprehensively study the polyphenols of interest from S. ramosissima and their isolation mechanics. This study will potentially lead the way for the large-scale isolation of polyphenols from S. ramosissima and other complex halophytes. The compounds of the highest concentration after CPC fractionation were isoquercitrin and hyperoside (155.27 mg/g), chlorogenic acid (85.54 mg/g), cryptochlorogenic acid (101.50 mg/g), and protocatechuic acid (398.67 mg/g), and further isolation using CPC could potentially yield novel polyphenol nutraceuticals.


Assuntos
Chenopodiaceae , Polifenóis , Plantas Tolerantes a Sal , Ácido Clorogênico , Solventes
19.
J Proteomics ; 269: 104703, 2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36084920

RESUMO

Halogeton glomeratus (H. glomeratus) is categorized as a halophyte, it can potentially endure not only salt but also heavy metals. The aim of this work was to study the molecular mechanisms underlying the Cd2+ tolerance of halophyte H. glomeratus seedlings. For that we used a combination of physiological characteristics and data-independent acquisition-based proteomic approaches. The results revealed that the significant changes of physiological characteristics of H. glomeratus occurred under approximately 0.4 mM Cd2+ condition and that Cd2+ accumulated in Cd2+-treated seedling roots, stems and leaves. At the early stage of Cd2+ stress, numerous differentially abundant proteins related to "phosphoenolpyruvate carboxylase", "transmembrane transporters", and "vacuolar protein sorting-associated protein" took important roles in the response of H. glomeratus to Cd2+ stress. At the later stage of Cd2+ stress, some differentially abundant proteins involved in "alcohol-forming fatty acyl-CoA reductase", "glutathione transferase", and "abscisic acid receptor" were considered to regulate the adaptation of H. glomeratus exposed to Cd2+ stress. Finally, we found various detoxification-related differentially abundant proteins related to Cd2+ stress. These biological processes and regulators synergistically regulated the Cd2+ tolerance of H. glomeratus. SIGNIFICANCE: The halophyte, H.glomeratus, has a strong tolerance to salinity, also survives in the heavy metal stress. At present, there are few reports on the comprehensive characterization and identification of Cd2+ response and adaption related regulators in H.glomeratus. This research focuses on the molecular mechanisms of H. glomeratus tolerance to Cd2+ stress at proteome levels to uncover the novel insight of the Cd2+-related biological processes and potential candidates involved in the response and adaption mechanism. The results will help elucidate the genetic basis of this species' tolerance to Cd2+ stress and develop application prospect of wild genetic resources to heavy metal phytoremediation.


Assuntos
Chenopodiaceae , Plantas Tolerantes a Sal , Ácido Abscísico , Cádmio/toxicidade , Chenopodiaceae/genética , Glutationa/metabolismo , Fosfoenolpiruvato/metabolismo , Folhas de Planta/metabolismo , Proteoma/metabolismo , Proteômica , Plântula/metabolismo , Transferases/metabolismo
20.
Molecules ; 27(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35684352

RESUMO

The aim of this study was to determine the compositions of carbohydrates, phenolic compounds, fatty acids (FAs), and amino acids (AAs) of four Rea Sea halophytes: Anabasis ehrenbergii, Suaeda aegyptiaca, Suaeda monoica, and Zygophyllum album. The results showed that S. aegyptiaca and S. monoica were rich in gallic acid with 41.72 and 47.48 mg/g, respectively, while A. ehrenbergii was rich in naringenin with 11.88 mg/g. The polysaccharides of the four species were mainly composed of galactose (54.74%) in A. ehrenbergii, mannose (44.15%) in S. aegyptiaca, glucose and ribose (33 and 26%, respectively) in S. monoica, and arabinose and glucose (36.67 and 31.52%, respectively) in Z. album. Glutamic acid and aspartic acid were the major AAs in all halophyte species with 50-63% and 10-22% of the total AAs, respectively. The proportion of unsaturated fatty acids (UFA) of the four species was 42.18-55.33%, comprised mainly of linolenic acid (15.54-28.63%) and oleic acid (5.68-22.05%), while palmitic acid (23.94-49.49%) was the most abundant saturated fatty acid (SFA). Phytol and 9,19-cyclolanost-24-en-3ß-ol represented the major unsaponifiable matter (USM) constituents of S. monoica and A. ehrenbergii with proportions 42.44 and 44.11%, respectively. The phenolic fraction of S. aegyptiaca and S. monoica demonstrated noteworthy antioxidant activity with IC50 values of 9.0 and 8.0 µg/mL, respectively, while the FAs fraction of Z. album exhibited potent cytotoxic activity against Huh-7, A-549, and Caco-2 cancer cell lines with IC50 values of 7.4, 10.8, and 11.8 µg/mL, respectively. Our results indicate that these plants may be considered a source of naturally occurring compounds with antioxidant and anticancer effects that could be suitable for future applications.


Assuntos
Antioxidantes , Chenopodiaceae , Antioxidantes/análise , Antioxidantes/farmacologia , Células CACO-2 , Ácidos Graxos , Glucose , Humanos , Oceano Índico , Fenóis/análise , Fenóis/farmacologia , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Plantas Tolerantes a Sal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA