Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.785
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
JCI Insight ; 9(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713510

RESUMO

Multiple myeloma is a largely incurable and life-threatening malignancy of antibody-secreting plasma cells. An effective and widely available animal model that recapitulates human myeloma and related plasma cell disorders is lacking. We show that busulfan-conditioned human IL-6-transgenic (hIL-6-transgenic) NSG (NSG+hIL6) mice reliably support the engraftment of malignant and premalignant human plasma cells, including from patients diagnosed with monoclonal gammopathy of undetermined significance, pre- and postrelapse myeloma, plasma cell leukemia, and amyloid light chain amyloidosis. Consistent with human disease, NSG+hIL6 mice engrafted with patient-derived myeloma cells developed serum M spikes, and a majority developed anemia, hypercalcemia, and/or bone lesions. Single-cell RNA sequencing showed nonmalignant and malignant cell engraftment, the latter expressing a wide array of mRNAs associated with myeloma cell survival and proliferation. Myeloma-engrafted mice given CAR T cells targeting plasma cells or bortezomib experienced reduced tumor burden. Our results establish NSG+hIL6 mice as an effective patient-derived xenograft model for study and preclinical drug development of multiple myeloma and related plasma cell disorders.


Assuntos
Modelos Animais de Doenças , Interleucina-6 , Mieloma Múltiplo , Animais , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/patologia , Humanos , Camundongos , Interleucina-6/metabolismo , Camundongos Transgênicos , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Masculino , Feminino , Plasmócitos/imunologia , Gamopatia Monoclonal de Significância Indeterminada/imunologia , Gamopatia Monoclonal de Significância Indeterminada/patologia
2.
Sci Rep ; 14(1): 11176, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750071

RESUMO

Multiple Myeloma (MM) is a hematological malignancy characterized by the clonal proliferation of plasma cells within the bone marrow. Diagnosing MM presents considerable challenges, involving the identification of plasma cells in cytology examinations on hematological slides. At present, this is still a time-consuming manual task and has high labor costs. These challenges have adverse implications, which rely heavily on medical professionals' expertise and experience. To tackle these challenges, we present an investigation using Artificial Intelligence, specifically a Machine Learning analysis of hematological slides with a Deep Neural Network (DNN), to support specialists during the process of diagnosing MM. In this sense, the contribution of this study is twofold: in addition to the trained model to diagnose MM, we also make available to the community a fully-curated hematological slide dataset with thousands of images of plasma cells. Taken together, the setup we established here is a framework that researchers and hospitals with limited resources can promptly use. Our contributions provide practical results that have been directly applied in the public health system in Brazil. Given the open-source nature of the project, we anticipate it will be used and extended to diagnose other malignancies.


Assuntos
Mieloma Múltiplo , Humanos , Medula Óssea/patologia , Brasil , Hematologia/métodos , Aprendizado de Máquina , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/patologia , Redes Neurais de Computação , Plasmócitos/patologia
3.
Recenti Prog Med ; 115(5): 238-242, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38708535

RESUMO

Plasma cell multiple myeloma (MM) is a multiform clinical entity characterized by different laboratory hallmarks. This case shows a rare entity of plasma cell myeloma: the entire plasma cell population lack the CD138 expression. In this case, a careful analysis of laboratory finding, particular flow cytometry gating strategies and the use of other ancillary laboratory tests, guide the clinicians to correct diagnosis. The correct evaluation of pre-analytical phase and the correct gating strategy are the necessary conditions to produce robust and solid flow cytometric results. The diagnostic implications of CD138-negative plasma cell are strictly linked to stem cell-like clonogenic features, such as possible more aggressive clinical behaviour and increasing probability of chemotherapy resistance. At this time, clinical laboratory remains the main reference point to MM diagnosis.


Assuntos
Citometria de Fluxo , Mieloma Múltiplo , Plasmócitos , Sindecana-1 , Idoso , Humanos , Masculino , Citometria de Fluxo/métodos , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/patologia , Plasmócitos/patologia , Sindecana-1/metabolismo , Sindecana-1/análise
4.
Sci Rep ; 14(1): 10362, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710832

RESUMO

POEMS syndrome (polyneuropathy, organomegaly, endocrinopathy, monoclonal protein [M-protein], and skin changes) is a rare systemic disorder characterized by various symptoms caused by underlying plasma cell (PC) dyscrasia. Detection of monoclonal PCs is mandatory for the diagnosis of POEMS syndrome; however, the usefulness of EuroFlow-based next-generation flow cytometry (EuroFlow-NGF) in POEMS syndrome for detecting monoclonal PCs in bone marrow (BM) and the gating strategy suitable for flow cytometry study of POEMS syndrome remain unknown. We employed EuroFlow-NGF-based single-tube eight-color multiparameter flow cytometry (MM-flow) and established a new gating strategy (POEMS-flow) to detect the monoclonal PCs in POEMS syndrome, gating CD38 broadly from dim to bright and CD45 narrowly from negative to dim compared to MM-flow. MM-flow detected monoclonal PCs in 9/25 (36.0%) cases, including 2/2 immunofixation electrophoresis (IFE)-negative cases (100%). However, POEMS-flow detected monoclonal PCs in 18/25 cases (72.0%), including 2/2 IFE-negative cases (100%). POEMS-flow detected monoclonal PCs with immunophenotypes of CD19- in 17/18 (94.4%). In six cases where post-treatment samples were available, the size of the clones was significantly reduced after the treatment (P = 0.031). POEMS-flow can enhance the identification rate of monoclonal PCs in POEMS syndrome and become a valuable tool for the diagnosis of POEMS syndrome.


Assuntos
Citometria de Fluxo , Síndrome POEMS , Plasmócitos , Síndrome POEMS/diagnóstico , Humanos , Citometria de Fluxo/métodos , Pessoa de Meia-Idade , Masculino , Feminino , Idoso , Plasmócitos/metabolismo , Plasmócitos/patologia , Adulto , Imunofenotipagem/métodos , Medula Óssea/patologia
5.
Nat Commun ; 15(1): 4144, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755140

RESUMO

Multiple Myeloma is an incurable plasma cell malignancy with a poor survival rate that is usually treated with immunomodulatory drugs (iMiDs) and proteosome inhibitors (PIs). The malignant plasma cells quickly become resistant to these agents causing relapse and uncontrolled growth of resistant clones. From whole genome sequencing (WGS) and RNA sequencing (RNA-seq) studies, different high-risk translocation, copy number, mutational, and transcriptional markers can be identified. One of these markers, PHF19, epigenetically regulates cell cycle and other processes and is already studied using RNA-seq. In this study, we generate a large (325,025 cells and 49 patients) single cell multi-omic dataset and jointly quantify ATAC- and RNA-seq for each cell and matched genomic profiles for each patient. We identify an association between one plasma cell subtype with myeloma progression that we call relapsed/refractory plasma cells (RRPCs). These cells are associated with chromosome 1q alterations, TP53 mutations, and higher expression of PHF19. We also identify downstream regulation of cell cycle inhibitors in these cells, possible regulation by the transcription factor (TF) PBX1 on chromosome 1q, and determine that PHF19 may be acting primarily through this subset of cells.


Assuntos
Cromossomos Humanos Par 1 , Proteínas de Ligação a DNA , Mieloma Múltiplo , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Mieloma Múltiplo/tratamento farmacológico , Humanos , Cromossomos Humanos Par 1/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação Neoplásica da Expressão Gênica , Plasmócitos/metabolismo , Mutação , Recidiva Local de Neoplasia/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Amplificação de Genes
6.
Nat Commun ; 15(1): 4182, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38755157

RESUMO

Bone marrow plasma cells (BMPC) are the correlate of humoral immunity, consistently releasing antibodies into the bloodstream. It remains unclear if BMPC reflect different activation environments or maturation of their precursors. Here we define human BMPC heterogeneity and track the recruitment of antibody-secreting cells (ASC) from SARS-CoV-2 vaccine immune reactions to the bone marrow (BM). Trajectories based on single-cell transcriptomes and repertoires of peripheral and BM ASC reveal sequential colonisation of BMPC compartments. In activated B cells, IL-21 suppresses CD19 expression, indicating that CD19low-BMPC are derived from follicular, while CD19high-BMPC originate from extrafollicular immune reactions. In primary immune reactions, both CD19low- and CD19high-BMPC compartments are populated. In secondary immune reactions, most BMPC are recruited to CD19high-BMPC compartments, reflecting their origin from extrafollicular reactivations of memory B cells. A pattern also observable in vaccinated-convalescent individuals and upon diphtheria/tetanus/pertussis recall-vaccination. Thus, BMPC diversity reflects the evolution of a given humoral immune response.


Assuntos
Antígenos CD19 , Medula Óssea , Interleucinas , Plasmócitos , Humanos , Plasmócitos/imunologia , Interleucinas/imunologia , Interleucinas/metabolismo , Medula Óssea/imunologia , Antígenos CD19/imunologia , Antígenos CD19/metabolismo , Imunidade Humoral/imunologia , COVID-19/imunologia , COVID-19/virologia , SARS-CoV-2/imunologia , Células da Medula Óssea/imunologia , Células da Medula Óssea/citologia , Análise de Célula Única , Adulto , Linfócitos B/imunologia , Células Produtoras de Anticorpos/imunologia , Feminino , Masculino , Vacinação , Pessoa de Meia-Idade , Vacina contra Difteria, Tétano e Coqueluche/imunologia
7.
Rev Esp Patol ; 57(2): 111-115, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38599729

RESUMO

Russell bodies (RBs) are round eosinophilic intracytoplasmic inclusions formed by condensed immunoglobulins in mature plasma cells, which are called Mott cells. These cells are rarely found in the gastric tract, with even less cases reported in the colorectal region. There are still many questions about this event, as it is still unknown the relationship between the agents reported of increasing the probability of appearance of these cells and the generation of RBs. In this case report we describe the fifth patient presenting an infiltration of Mott cells in a colorectal polyp, being the second case with a monoclonal origin without a neoplastic cause, and the first one monoclonal for lambda. A comparison with previously similar reported cases is also done, and a possible etiopathogenic hypothesis proposed.


Assuntos
Pólipos Adenomatosos , Pólipos do Colo , Humanos , Pólipos do Colo/patologia , Plasmócitos/patologia , Pólipos Adenomatosos/complicações , Pólipos Adenomatosos/patologia
8.
Hematol Oncol ; 42(3): e3270, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38590272

RESUMO

Light chain amyloidosis is a rare disease caused by clonal plasma cells in the bone marrow generating an excessive amount of immunoglobulin light chains. These chains misfold and produce insoluble fibrils that deposit in various organs, including the heart, kidneys, liver, nervous system, and digestive tract. Life expectancy and symptoms during the course of the disease vary depending on which and how many organs are affected. Targeted plasma cell therapy has significantly advanced the clinical management of amyloidosis, with ongoing progress. However, current clinical studies are investigating innovative targets, drug combinations and treatment strategies to improve therapeutic outcomes by minimizing adverse effects and refining patient prognosis in these challenging hematological conditions. In this paper, we review the state of the art regarding the use of anti-amyloid antibodies, as a revolutionary and innovative approach in the current scenario of amyloid treatment.


Assuntos
Amiloidose , Amiloidose de Cadeia Leve de Imunoglobulina , Humanos , Amiloidose de Cadeia Leve de Imunoglobulina/tratamento farmacológico , Anticorpos Monoclonais/uso terapêutico , Amiloidose/complicações , Amiloidose/diagnóstico , Amiloidose/terapia , Cadeias Leves de Imunoglobulina , Plasmócitos
9.
Ann Med ; 56(1): 2338604, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38599340

RESUMO

BACKGROUND: Circulating plasma cells (CPCs) are defined by the presence of peripheral blood clonal plasma cells, which would contribute to the progression and dissemination of multiple myeloma (MM). An increasing number of studies have demonstrated the predictive potential of CPCs in the past few years. Therefore, there is a growing need for an updated meta-analysis to identify the specific relationship between CPCs and the prognosis of MM based on the current research status. METHODS: The PubMed, Embase, and Cochrane Library databases were screened to determine eligible studies from inception to November 5, 2023. Publications that reported the prognostic value of CPCs in MM patients were included. Hazard ratios (HRs) with 95% confidence intervals (CIs) of overall survival (OS) and progression-free survival (PFS) were extracted to pool the results. Subgroup analyses were performed based on region, sample size, cut-off value, detection time, initial treatment, and data type. The association between CPCs level and clinicopathological characteristics, including the International Staging System (ISS), Revised-ISS (R-ISS), and cytogenetic abnormalities were also evaluated. Statistical analyses were conducted using STATA 17.0 software. RESULTS: Twenty-two studies with a total of 5637 myeloma patients were enrolled in the current meta-analysis. The results indicated that myeloma patients with elevated CPCs were expected to have a poor OS (HR = 2.19, 95% CI: 1.81-2.66, p < 0.001) and PFS (HR = 2.45, 95% CI: 1.93-3.12, p < 0.001). Subgroup analyses did not alter the prognostic role of CPCs, regardless of region, sample size, cut-off value, detection time, initial treatment, or data type. Moreover, the increased CPCs were significantly related to advanced tumour stage (ISS III vs. ISS I-II: pooled OR = 2.89, 95% CI: 2.41-3.46, p < 0.001; R-ISS III vs. R-ISS I-II: pooled OR = 3.65, 95% CI: 2.43-5.50, p < 0.001) and high-risk cytogenetics (high-risk vs. standard-risk: OR = 2.22, 95% CI: 1.60-3.08, p < 0.001). CONCLUSION: Our meta-analysis confirmed that the increased number of CPCs had a negative impact on the PFS and OS of MM patients. Therefore, CPCs could be a promising prognostic biomarker that helps with risk stratification and disease monitoring.


There is a growing need for an updated meta-analysis to identify the specific relationship between CPCs and the prognosis of MM based on the current research status.Our meta-analysis revealed that a high CPCs level was significantly associated with worse OS and PFS in MM patients.CPCs could be a promising predictive biomarker that helps with risk stratification and disease monitoring.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/terapia , Plasmócitos/patologia , Prognóstico , Biomarcadores , Modelos de Riscos Proporcionais
10.
Cell Rep ; 43(4): 114045, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38578826

RESUMO

Autoantibodies against the enzyme transglutaminase 2 (TG2) are characteristic of celiac disease (CeD), and TG2-specific immunoglobulin (Ig) A plasma cells are abundant in gut biopsies of patients. Here, we describe the corresponding population of autoreactive B cells in blood. Circulating TG2-specific IgA cells are present in untreated patients on a gluten-containing diet but not in controls. They are clonally related to TG2-specific small intestinal plasma cells, and they express gut-homing molecules, indicating that they are plasma cell precursors. Unlike other IgA-switched cells, the TG2-specific cells are negative for CD27, placing them in the double-negative (IgD-CD27-) category. They have a plasmablast or activated memory B cell phenotype, and they harbor fewer variable region mutations than other IgA cells. Based on their similarity to naive B cells, we propose that autoreactive IgA cells in CeD are generated mainly through chronic recruitment of naive B cells via an extrafollicular response involving gluten-specific CD4+ T cells.


Assuntos
Linfócitos B , Doença Celíaca , Proteínas de Ligação ao GTP , Imunoglobulina A , Plasmócitos , Proteína 2 Glutamina gama-Glutamiltransferase , Transglutaminases , Doença Celíaca/imunologia , Doença Celíaca/patologia , Humanos , Transglutaminases/imunologia , Transglutaminases/metabolismo , Imunoglobulina A/imunologia , Imunoglobulina A/metabolismo , Imunoglobulina A/sangue , Linfócitos B/imunologia , Linfócitos B/metabolismo , Plasmócitos/imunologia , Plasmócitos/metabolismo , Proteínas de Ligação ao GTP/imunologia , Proteínas de Ligação ao GTP/metabolismo , Autoanticorpos/imunologia , Autoanticorpos/sangue , Adulto , Masculino , Feminino , Pessoa de Meia-Idade , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Glutens/imunologia
11.
Front Immunol ; 15: 1340001, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38680492

RESUMO

Germinal center (GC) responses are essential for establishing protective, long-lasting immunity through the differentiation of GC B cells (BGC) and plasma cells (BPC), along with the generation of antigen-specific antibodies. Among the various pathways influencing immune responses, the STING (Stimulator of Interferon Genes) pathway has emerged as significant, especially in innate immunity, and extends its influence to adaptive responses. In this study, we examined how the STING ligand cGAMP can modulate these key elements of the adaptive immune response, particularly in enhancing GC reactions and the differentiation of BGC, BPC, and follicular helper T cells (TFH). Employing in vivo models, we evaluated various antigens and the administration of cGAMP in Alum adjuvant, investigating the differentiation of BGC, BPC, and TFH cells, along with the production of antigen-specific antibodies. cGAMP enhances the differentiation of BGC and BPC, leading to increased antigen-specific antibody production. This effect is shown to be type I Interferon-dependent, with a substantial reduction in BPC frequency upon interferon (IFN)-ß blockade. Additionally, cGAMP's influence on TFH differentiation varies over time, which may be critical for refining vaccine strategies. The findings elucidate a complex, antigen-specific influence of cGAMP on T and B cell responses, providing insights that could optimize vaccine efficacy.


Assuntos
Diferenciação Celular , Centro Germinativo , Proteínas de Membrana , Nucleotídeos Cíclicos , Transdução de Sinais , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Animais , Nucleotídeos Cíclicos/metabolismo , Nucleotídeos Cíclicos/imunologia , Diferenciação Celular/imunologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/imunologia , Camundongos , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Camundongos Endogâmicos C57BL , Ativação Linfocitária/imunologia , Plasmócitos/imunologia , Plasmócitos/metabolismo
12.
Iran J Kidney Dis ; 18(2): 133-135, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38660697

RESUMO

IgG4-related disease (IgG4-RD) is a chronic systemic inflammatory  disease, characterized by tissue infiltration of lymphocytes and  IgG4-secreting plasma cells, presenting by fibrosis of different  tissues, which is usually responsive only to oral steroids therapy.  Kidneys are the most commonly involved organs, exhibiting renal  insufficiency, tubulointerstitial nephritis, and glomerulonephritis.  Here, we describe a patient with acute renal insufficiency who  was presented with edema, weakness, anemia and multiple  lymphadenopathies. Kidney and lymph node biopsy showed  crescentic glomerulonephritis in kidneys and lymphoplasmacytic  infiltration in lymph nodes. After a course of treatment with an  intravenous pulse of corticosteroid and cyclophosphamide, the  patient's symptoms subsided, and kidney function improved. DOI: 10.52547/ijkd.7788.


Assuntos
Ciclofosfamida , Glomerulonefrite , Doença Relacionada a Imunoglobulina G4 , Humanos , Doença Relacionada a Imunoglobulina G4/complicações , Doença Relacionada a Imunoglobulina G4/tratamento farmacológico , Doença Relacionada a Imunoglobulina G4/diagnóstico , Glomerulonefrite/imunologia , Glomerulonefrite/tratamento farmacológico , Glomerulonefrite/diagnóstico , Glomerulonefrite/patologia , Ciclofosfamida/uso terapêutico , Masculino , Linfonodos/patologia , Imunossupressores/uso terapêutico , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/imunologia , Rim/patologia , Biópsia , Imunoglobulina G/sangue , Glucocorticoides/uso terapêutico , Pessoa de Meia-Idade , Resultado do Tratamento , Linfadenopatia/etiologia , Plasmócitos/imunologia , Plasmócitos/patologia
13.
EMBO J ; 43(10): 1947-1964, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38605225

RESUMO

Transcription factors BACH2 and IRF4 are both essential for antibody class-switch recombination (CSR) in activated B lymphocytes, while they oppositely regulate the differentiation of plasma cells (PCs). Here, we investigated how BACH2 and IRF4 interact during CSR and plasma-cell differentiation. We found that BACH2 organizes heterochromatin formation of target gene loci in mouse splenic B cells, including targets of IRF4 activation such as Aicda, an inducer of CSR, and Prdm1, a master plasma-cell regulator. Release of these gene loci from heterochromatin in response to B-cell receptor stimulation was coupled to AKT-mTOR pathway activation. In Bach2-deficient B cells, PC genes' activation depended on IRF4 protein accumulation, without an increase in Irf4 mRNA. Mechanistically, a PU.1-IRF4 heterodimer in activated B cells promoted BACH2 function by inducing gene expression of Bach2 and Pten, a negative regulator of AKT signaling. Elevated AKT activity in Bach2-deficient B cells resulted in IRF4 protein accumulation. Thus, BACH2 and IRF4 mutually modulate the activity of each other, and BACH2 inhibits PC differentiation by both the repression of PC genes and the restriction of IRF4 protein accumulation.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Diferenciação Celular , Fatores Reguladores de Interferon , Plasmócitos , Animais , Fatores Reguladores de Interferon/metabolismo , Fatores Reguladores de Interferon/genética , Camundongos , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Plasmócitos/metabolismo , Plasmócitos/imunologia , Plasmócitos/citologia , Switching de Imunoglobulina/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Linfócitos B/metabolismo , Linfócitos B/imunologia , Linfócitos B/citologia , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Camundongos Knockout , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética , Camundongos Endogâmicos C57BL , Transativadores/metabolismo , Transativadores/genética , Heterocromatina/metabolismo , Heterocromatina/genética , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética
15.
J Cancer Res Ther ; 20(1): 476-478, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38554369

RESUMO

Multiple myeloma is a malignant plasma cell condition that mostly affects the skeletal system and bone marrow. Pleural effusions are uncommon and typically result from other conditions coexisting with multiple myeloma. Malignant myelomatous pleural effusions are rare complications of multiple myeloma, occurring in less than 1% of patients and are associated with poor prognosis having mean survival of less than 4 months. The present case report is a 41-year-old multiple myeloma patient who developed bilateral pleural effusion at a disease relapse. Chemotherapeutic regimen of cyclophosphamide, bortezomib, and dexamethasone given. Despite a positive response to treatment, the patient's condition worsened over the course of following month and he eventually passed away. Myelomatous pleural effusion indicates poor prognosis and early consideration helps in quick diagnosis and initiation of treatment which may help in improving prognosis.


Assuntos
Mieloma Múltiplo , Derrame Pleural Maligno , Derrame Pleural , Masculino , Humanos , Adulto , Mieloma Múltiplo/complicações , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/tratamento farmacológico , Recidiva Local de Neoplasia/patologia , Derrame Pleural/diagnóstico , Derrame Pleural/etiologia , Derrame Pleural/patologia , Derrame Pleural Maligno/diagnóstico , Derrame Pleural Maligno/tratamento farmacológico , Derrame Pleural Maligno/etiologia , Plasmócitos/patologia
16.
Nature ; 628(8008): 612-619, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38509366

RESUMO

There is increasing interest in how immune cells in the meninges-the membranes that surround the brain and spinal cord-contribute to homeostasis and disease in the central nervous system1,2. The outer layer of the meninges, the dura mater, has recently been described to contain both innate and adaptive immune cells, and functions as a site for B cell development3-6. Here we identify organized lymphoid structures that protect fenestrated vasculature in the dura mater. The most elaborate of these dural-associated lymphoid tissues (DALT) surrounded the rostral-rhinal confluence of the sinuses and included lymphatic vessels. We termed this structure, which interfaces with the skull bone marrow and a comparable venous plexus at the skull base, the rostral-rhinal venolymphatic hub. Immune aggregates were present in DALT during homeostasis and expanded with age or after challenge with systemic or nasal antigens. DALT contain germinal centre B cells and support the generation of somatically mutated, antibody-producing cells in response to a nasal pathogen challenge. Inhibition of lymphocyte entry into the rostral-rhinal hub at the time of nasal viral challenge abrogated the generation of germinal centre B cells and class-switched plasma cells, as did perturbation of B-T cell interactions. These data demonstrate a lymphoid structure around vasculature in the dura mater that can sample antigens and rapidly support humoral immune responses after local pathogen challenge.


Assuntos
Dura-Máter , Imunidade Humoral , Tecido Linfoide , Veias , Administração Intranasal , Antígenos/administração & dosagem , Antígenos/imunologia , Medula Óssea/imunologia , Sistema Nervoso Central/irrigação sanguínea , Sistema Nervoso Central/imunologia , Dura-Máter/irrigação sanguínea , Dura-Máter/imunologia , Centro Germinativo/citologia , Centro Germinativo/imunologia , Vasos Linfáticos/imunologia , Tecido Linfoide/irrigação sanguínea , Tecido Linfoide/imunologia , Plasmócitos/imunologia , Crânio/irrigação sanguínea , Linfócitos T/imunologia , Veias/fisiologia , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Animais , Camundongos , Idoso de 80 Anos ou mais
17.
Blood ; 143(20): 2025-2028, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38427775

RESUMO

ABSTRACT: Smoldering multiple myeloma (MM) is an asymptomatic clonal plasma cell condition considered as a premalignant entity that may evolve over time to symptomatic MM. Based on a "poorly defined" risk of progression, some well-intended investigators proposed prospective interventional trials for these individuals. We believe this may be a harmful intervention and favor a close "wait and watch" approach and rather enroll these patients in dedicated observational biological studies aiming to better identify patients who will evolve to MM, based on their plasma cells' biology, including genomics, epigenetics, and the immune microenvironment.


Assuntos
Mieloma Múltiplo Latente , Humanos , Mieloma Múltiplo Latente/diagnóstico , Mieloma Múltiplo Latente/patologia , Progressão da Doença , Microambiente Tumoral/imunologia , Plasmócitos/patologia , Mieloma Múltiplo/patologia , Mieloma Múltiplo/genética , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/terapia
18.
Front Immunol ; 15: 1346211, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38464531

RESUMO

Multiple myeloma is the second most common malignant hematologic malignancy which evolved different strategies for immune escape from the host immune surveillance and drug resistance, including uncontrolled proliferation of malignant plasma cells in the bone marrow, genetic mutations, or deletion of tumor antigens to escape from special targets and so. Therefore, it is a big challenge to efficiently treat multiple myeloma patients. Despite recent applications of immunomodulatory drugs (IMiDS), protease inhibitors (PI), targeted monoclonal antibodies (mAb), and even hematopoietic stem cell transplantation (HSCT), it remains hardly curable. Summarizing the possible evasion strategies can help design specific drugs for multiple myeloma treatment. This review aims to provide an integrative overview of the intrinsic and extrinsic evasion mechanisms as well as recently discovered microbiota utilized by multiple myeloma for immune evasion and drug resistance, hopefully providing a theoretical basis for the rational design of specific immunotherapies or drug combinations to prevent the uncontrolled proliferation of MM, overcome drug resistance and improve patient survival.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Medula Óssea/patologia , Anticorpos Monoclonais/uso terapêutico , Plasmócitos/patologia , Imunoterapia
19.
Blood Cancer J ; 14(1): 38, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38443358

RESUMO

Multiple myeloma (MM) is a heterogenous plasma cell malignancy, for which the established prognostic models exhibit limitations in capturing the full spectrum of outcome variability. Leveraging single-cell RNA-sequencing data, we developed a novel plasma cell gene signature. We evaluated and validated the associations of the resulting plasma cell malignancy (PBM) score with disease state, progression and clinical outcomes using data from five independent myeloma studies consisting of 2115 samples (1978 MM, 65 monoclonal gammopathy of undetermined significance, 35 smoldering MM, and 37 healthy controls). Overall, a higher PBM score was significantly associated with a more advanced stage within the spectrum of plasma cell dyscrasias (all p < 0.05) and a shorter overall survival in MM (hazard ratio, HR = 1.72; p < 0.001). Notably, the prognostic effect of the PBM score was independent of the International Staging System (ISS) and Revised ISS (R-ISS). The downstream analysis further linked higher PBM scores with the presence of cytogenetic abnormalities, TP53 mutations, and compositional changes in the myeloma tumor immune microenvironment. Our integrated analyses suggest the PBM score may provide an opportunity for refining risk stratification and guide decisions on therapeutic approaches to MM.


Assuntos
Mieloma Múltiplo , Paraproteinemias , Humanos , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/genética , Plasmócitos , Prognóstico , Análise de Sequência de RNA , Microambiente Tumoral
20.
Rinsho Ketsueki ; 65(2): 95-98, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-38448005

RESUMO

A 72-year-old woman presented with generalized lymphadenopathies and plasmacytosis accompanied by polyclonal hypergammopathy. 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) showed FDG accumulation in the systemic lymph nodes, spleen, and multiple bones. Human immunodeficiency virus antibody was negative. Lymph node histologic findings showed a monotonous population of plasma cells with a starry-sky appearance. The cells were positive for CD19, λ, and Epstein-Barr virus-encoded RNA, and negative for CD20 and CD56. The MIB-1 index was 80%. A diagnosis of plasmablastic lymphoma with plasmacytosis and polyclonal hypergammopathy was made, and complete metabolic response was achieved after six cycles of dose-adjusted-EPOCH therapy (etoposide, prednisolone, vincristine, cyclophosphamide, and doxorubicin).


Assuntos
Infecções por Vírus Epstein-Barr , Linfoma Plasmablástico , Feminino , Humanos , Idoso , Fluordesoxiglucose F18 , Herpesvirus Humano 4 , Plasmócitos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA