Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
mBio ; 15(4): e0023224, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38411954

RESUMO

Neddylation is a type of posttranslational modification known to regulate a wide range of cellular processes by covalently conjugating the ubiquitin-like protein Nedd8 to target proteins at lysine residues. However, the role of neddylation in malaria parasites has not been determined. Here, for the first time, we showed that neddylation plays an essential role in malaria transmission in Plasmodium berghei. We found that disruption of Nedd8 did not affect blood-stage propagation, gametocyte development, gamete formation, or zygote formation while abolishing the formation of ookinetes and further transmission of the parasites in mosquitoes. These phenotypic defects in Nedd8 knockout parasites were complemented by reintroducing the gene that restored mosquito transmission to wild-type levels. Our data establish the role of P. berghei Nedd8 in malaria parasite transmission.IMPORTANCENeddylation is a process by which Nedd8 is covalently attached to target proteins through three-step enzymatic cascades. The attachment of Nedd8 residues results in a range of diverse functions, such as cell cycle regulation, metabolism, immunity, and tumorigenesis. The potential neddylation substrates are cullin (CUL) family members, which are implicated in controlling the cell cycle. Cullin neddylation leads to the activation of cullin-RING ubiquitin ligases, which regulate a myriad of biological processes through target-specific ubiquitylation. Neddylation possibly regulates meiosis in zygotes, which subsequently develop into ookinetes. Our findings point to an essential function of this neddylation pathway and highlight its possible importance in designing novel intervention strategies.


Assuntos
Plasmodium berghei , Ubiquitinas , Animais , Ubiquitinas/genética , Ubiquitinas/metabolismo , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Proteínas Culina/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
2.
mBio ; 13(6): e0309622, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36445080

RESUMO

During vertebrate infection, obligate intracellular malaria parasites develop within a parasitophorous vacuole, which constitutes the interface between the parasite and its hepatocyte or erythrocyte host cells. To traverse this barrier, Plasmodium spp. utilize a dual-function pore formed by EXP2 for nutrient transport and, in the context of the PTEX translocon, effector protein export across the vacuole membrane. While critical to blood-stage survival, less is known about EXP2/PTEX function in the liver stage, although major differences in the export mechanism are suggested by absence of the PTEX unfoldase HSP101 in the intrahepatic vacuole. Here, we employed the glucosamine-activated glmS ribozyme to study the role of EXP2 during Plasmodium berghei liver-stage development in hepatoma cells. Insertion of the glmS sequence into the exp2 3' untranslated region (UTR) enabled glucosamine-dependent depletion of EXP2 after hepatocyte invasion, allowing separation of EXP2 function during intrahepatic development from a recently reported role in hepatocyte invasion. Postinvasion EXP2 knockdown reduced parasite size and largely abolished expression of the mid- to late-liver-stage marker LISP2. As an orthogonal approach to monitor development, EXP2-glmS parasites and controls were engineered to express nanoluciferase. Activation of glmS after invasion substantially decreased luminescence in hepatoma monolayers and in culture supernatants at later time points corresponding to merosome detachment, which marks the culmination of liver-stage development. Collectively, our findings extend the utility of the glmS ribozyme to study protein function in the liver stage and reveal that EXP2 is important for intrahepatic parasite development, indicating that PTEX components also function at the hepatocyte-parasite interface. IMPORTANCE After the mosquito bite that initiates a Plasmodium infection, parasites first travel to the liver and develop in hepatocytes. This liver stage is asymptomatic but necessary for the parasite to transition to the merozoite form, which infects red blood cells and causes malaria. To take over their host cells, avoid immune defenses, and fuel their growth, these obligately intracellular parasites must import nutrients and export effector proteins across a vacuole membrane in which they reside. In the blood stage, these processes depend on a translocon called PTEX, but it is unclear if PTEX also functions during the liver stage. Here, we adapted the glmS ribozyme to control expression of EXP2, the membrane pore component of PTEX, during the liver stage of the rodent malaria parasite Plasmodium berghei. Our results show that EXP2 is important for intracellular development in the hepatocyte, revealing that PTEX components are also functionally important during liver-stage infection.


Assuntos
Eritrócitos , Hepatócitos , Malária , Plasmodium berghei , Proteínas de Protozoários , Carcinoma Hepatocelular , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Neoplasias Hepáticas , Malária/genética , Malária/metabolismo , Malária/parasitologia , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Plasmodium falciparum/genética , Transporte Proteico/genética , Transporte Proteico/fisiologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , RNA Catalítico/metabolismo , Animais , Camundongos , Hepatócitos/metabolismo , Hepatócitos/parasitologia
3.
Ann Parasitol ; 68(1): 111-120, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35491857

RESUMO

This study investigates the effects of Ficus platyphylla and artesunate combination on the prognosis of malaria in parasitized mice. Five groups (n=6) of mice were used. Groups one and two were normal control (NC) and parasitemia control (PC) respectively. Groups 3-5 were all parasitized and administered 300 mg/kg of the extract (FPE300), 5 mg/kg artesunate (ART5), and a combination of both (ART5+FPE300) respectively. Within the five days of oral treatments, daily packed cell volume (PCV) and parasitemia load were measured. The experiment was terminated by cervical dislocation. Blood samples were immediately taken by cardiac puncture and separated into plasma and serum. Plasma samples were used to determine erythrocytes, haemoglobin and leukocytes while some cytokines (TNF- α, IL-10), antioxidant profile (malondialdehyde, reduced gluthathione, catalase, superoxide dismutase), renal (urea, creatinine, uric acid), and hepatic markers (alanine transferase, aspartate transferase, alkaline phosphatase) were assessed from serum. Administration of ART5+FPE300 significantly (P<0.01) reduced daily parasitemia load and PCV compared to PC, with erythrocytes, haemoglobin and leukocytes values being comparable to NC. In addition, this drug- herb combination significantly (P<0.05) mitigated inflammatory response, oxidative stress and hepato-renal toxicities respectively compared to PC. Co-administration of Ficus platyphylla and artesunate improves the prognosis of malaria and the resulting pathological consequences by inhibiting inflammatory response and oxidative stress in parasitized mice.


Assuntos
Antimaláricos , Ficus , Malária , Animais , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Artesunato/farmacologia , Artesunato/uso terapêutico , Citocinas , Combinação de Medicamentos , Ficus/metabolismo , Interleucina-10/farmacologia , Interleucina-10/uso terapêutico , Malária/tratamento farmacológico , Camundongos , Estresse Oxidativo , Parasitemia/tratamento farmacológico , Plasmodium berghei/metabolismo , Transferases/farmacologia , Transferases/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/uso terapêutico
4.
J Biol Chem ; 298(6): 101987, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35487244

RESUMO

Aminoacyl-tRNA synthetases (aaRSs) attach amino acids to their cognate transfer RNAs. In eukaryotes, a subset of cytosolic aaRSs is organized into a multisynthetase complex (MSC), along with specialized scaffolding proteins referred to as aaRS-interacting multifunctional proteins (AIMPs). In Plasmodium, the causative agent of malaria, the tRNA import protein (tRip), is a membrane protein that participates in tRNA trafficking; we show that tRip also functions as an AIMP. We identified three aaRSs, the glutamyl-tRNA synthetase (ERS), glutaminyl-tRNA synthetase (QRS), and methionyl-tRNA synthetase (MRS), which were specifically coimmunoprecipitated with tRip in Plasmodium berghei blood stage parasites. All four proteins contain an N-terminal glutathione-S-transferase (GST)-like domain that was demonstrated to be involved in MSC assembly. In contrast to previous studies, further dissection of GST-like interactions identified two exclusive heterotrimeric complexes: the Q-complex (tRip-ERS-QRS) and the M-complex (tRip-ERS-MRS). Gel filtration and light scattering suggest a 2:2:2 stoichiometry for both complexes but with distinct biophysical properties and mutational analysis further revealed that the GST-like domains of QRS and MRS use different strategies to bind ERS. Taken together, our results demonstrate that neither the singular homodimerization of tRip nor its localization in the parasite plasma membrane prevents the formation of MSCs in Plasmodium. Besides, the extracellular localization of the tRNA-binding module of tRip is compensated by the presence of additional tRNA-binding modules fused to MRS and QRS, providing each MSC with two spatially distinct functions: aminoacylation of intraparasitic tRNAs and binding of extracellular tRNAs. This unique host-pathogen interaction is discussed.


Assuntos
Aminoacil-tRNA Sintetases , Citocinas/metabolismo , Metionina tRNA Ligase , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Plasmodium berghei/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas de Ligação a RNA/metabolismo , Aminoacil-tRNA Sintetases/metabolismo , Humanos , Proteínas de Membrana , Metionina tRNA Ligase/metabolismo , RNA de Transferência/metabolismo
5.
Nat Commun ; 12(1): 6773, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34799567

RESUMO

After inoculation by the bite of an infected mosquito, Plasmodium sporozoites enter the blood stream and infect the liver, where each infected cell produces thousands of merozoites. These in turn, infect red blood cells and cause malaria symptoms. To initiate a productive infection, sporozoites must exit the circulation by traversing the blood lining of the liver vessels after which they infect hepatocytes with unique specificity. We screened a phage display library for peptides that structurally mimic (mimotope) a sporozoite ligand for hepatocyte recognition. We identified HP1 (hepatocyte-binding peptide 1) that mimics a ~50 kDa sporozoite ligand (identified as phospholipid scramblase). Further, we show that HP1 interacts with a ~160 kDa hepatocyte membrane putative receptor (identified as carbamoyl-phosphate synthetase 1). Importantly, immunization of mice with the HP1 peptide partially protects them from infection by the rodent parasite P. berghei. Moreover, an antibody to the HP1 mimotope inhibits human parasite P. falciparum infection of human hepatocytes in culture. The sporozoite ligand for hepatocyte invasion is a potential novel pre-erythrocytic vaccine candidate.


Assuntos
Vacinas Antimaláricas/uso terapêutico , Malária Falciparum/prevenção & controle , Proteínas de Transferência de Fosfolipídeos/imunologia , Proteínas de Protozoários/imunologia , Esporozoítos/imunologia , Animais , Carbamoil-Fosfato Sintase (Amônia)/metabolismo , Modelos Animais de Doenças , Epitopos/imunologia , Feminino , Células Hep G2 , Hepatócitos/imunologia , Hepatócitos/metabolismo , Hepatócitos/parasitologia , Humanos , Fígado/enzimologia , Fígado/parasitologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Masculino , Camundongos , Biblioteca de Peptídeos , Proteínas de Transferência de Fosfolipídeos/isolamento & purificação , Proteínas de Transferência de Fosfolipídeos/metabolismo , Plasmodium berghei/imunologia , Plasmodium berghei/metabolismo , Plasmodium falciparum/imunologia , Plasmodium falciparum/metabolismo , Cultura Primária de Células , Proteínas de Protozoários/isolamento & purificação , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Esporozoítos/metabolismo , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/uso terapêutico
6.
Biochem J ; 478(9): 1705-1732, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33843972

RESUMO

Autophagy, a lysosome-dependent degradative process, does not appear to be a major degradative process in malaria parasites and has a limited repertoire of genes. To better understand the autophagy process, we investigated Plasmodium falciparum Atg18 (PfAtg18), a PROPPIN family protein, whose members like S. cerevisiae Atg18 (ScAtg18) and human WIPI2 bind PI3P and play an essential role in autophagosome formation. Wild type and mutant PfAtg18 were expressed in P. falciparum and assessed for localization, the effect of various inhibitors and antimalarials on PfAtg18 localization, and identification of PfAtg18-interacting proteins. PfAtg18 is expressed in asexual erythrocytic stages and localized to the food vacuole, which was also observed with other Plasmodium Atg18 proteins, indicating that food vacuole localization is likely a shared feature. Interaction of PfAtg18 with the food vacuole-associated PI3P is essential for localization, as PfAtg18 mutants of PI3P-binding motifs neither bound PI3P nor localized to the food vacuole. Interestingly, wild type ScAtg18 interacted with PI3P, but its expression in P. falciparum showed complete cytoplasmic localization, indicating additional requirement for food vacuole localization. The food vacuole multi-drug resistance protein 1 (MDR1) was consistently identified in the immunoprecipitates of PfAtg18 and P. berghei Atg18, and also interacted with PfAtg18. In contrast with PfAtg18, ScAtg18 did not interact with MDR1, which, in addition to PI3P, could play a critical role in localization of PfAtg18. Chloroquine and amodiaquine caused cytoplasmic localization of PfAtg18, suggesting that these target PfAtg18 transport pathway. Thus, PI3P and MDR1 are critical mediators of PfAtg18 localization.


Assuntos
Proteínas Relacionadas à Autofagia/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Fosfatos de Fosfatidilinositol/metabolismo , Plasmodium berghei/genética , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Vacúolos/metabolismo , Amodiaquina/farmacologia , Animais , Antimaláricos/farmacologia , Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Transporte Biológico , Cloroquina/farmacologia , Eritrócitos/efeitos dos fármacos , Eritrócitos/parasitologia , Regulação da Expressão Gênica , Humanos , Malária/parasitologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium berghei/metabolismo , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/metabolismo , Ligação Proteica , Proteínas de Protozoários/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacúolos/efeitos dos fármacos
7.
Cell Microbiol ; 23(1): e13271, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32979009

RESUMO

The protozoan parasite Plasmodium, causative agent of malaria, invades hepatocytes by invaginating the host cell plasma membrane and forming a parasitophorous vacuole membrane (PVM). Surrounded by this PVM, the parasite undergoes extensive replication. Parasites inside a PVM provoke the Plasmodium-associated autophagy-related (PAAR) response. This is characterised by a long-lasting association of the autophagy marker protein LC3 with the PVM, which is not preceded by phosphatidylinositol 3-phosphate (PI3P)-labelling. Prior to productive invasion, sporozoites transmigrate several cells and here we describe that a proportion of traversing sporozoites become trapped in a transient traversal vacuole, provoking a host cell response that clearly differs from the PAAR response. These trapped sporozoites provoke PI3P-labelling of the surrounding vacuolar membrane immediately after cell entry, followed by transient LC3-labelling and elimination of the parasite by lysosomal acidification. Our data suggest that this PI3P response is not only restricted to sporozoites trapped during transmigration but also affects invaded parasites residing in a compromised vacuole. Thus, host cells can employ a pathway distinct from the previously described PAAR response to efficiently recognise and eliminate Plasmodium parasites.


Assuntos
Autofagia , Hepatócitos/parasitologia , Fosfatos de Fosfatidilinositol/metabolismo , Plasmodium berghei/metabolismo , Plasmodium berghei/parasitologia , Esporozoítos/metabolismo , Vacúolos/parasitologia , Animais , Linhagem Celular , Feminino , Células HeLa , Interações Hospedeiro-Parasita , Humanos , Malária/parasitologia , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Organismos Geneticamente Modificados
8.
Molecules ; 25(19)2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32977642

RESUMO

Harmicines represent hybrid compounds composed of ß-carboline alkaloid harmine and cinnamic acid derivatives (CADs). In this paper we report the synthesis of amide-type harmicines and the evaluation of their biological activity. N-harmicines 5a-f and O-harmicines 6a-h were prepared by a straightforward synthetic procedure, from harmine-based amines and CADs using standard coupling conditions, 1-[bis(dimethylamino)methylene]-1H-1,2,3-triazolo [4,5-b]pyridinium 3-oxid hexafluorophosphate (HATU) and N,N-diisopropylethylamine (DIEA). Amide-type harmicines exerted remarkable activity against the erythrocytic stage of P. falciparum, in low submicromolar concentrations, which was significantly more pronounced compared to their antiplasmodial activity against the hepatic stages of P. berghei. Furthermore, a cytotoxicity assay against the human liver hepatocellular carcinoma cell line (HepG2) revealed favorable selectivity indices of the most active harmicines. Molecular dynamics simulations demonstrated the binding of ligands within the ATP binding site of PfHsp90, while the calculated binding free energies confirmed higher activity of N-harmicines 5 over their O-substituted analogues 6. Amino acids predominantly affecting the binding were identified, which provided guidelines for the further derivatization of the harmine framework towards more efficient agents.


Assuntos
Antimaláricos/farmacologia , Alcaloides Indólicos/farmacologia , Plasmodium berghei/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Animais , Feminino , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/metabolismo , Fígado/efeitos dos fármacos , Fígado/parasitologia , Simulação de Dinâmica Molecular , Plasmodium berghei/metabolismo , Plasmodium berghei/fisiologia , Plasmodium falciparum/metabolismo , Plasmodium falciparum/fisiologia , Conformação Proteica
9.
Mol Microbiol ; 114(3): 454-467, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32432369

RESUMO

Reticulon and REEP family of proteins stabilize the high curvature of endoplasmic reticulum (ER) tubules. Plasmodium berghei Yop1 (PbYop1) is a REEP5 homolog in Plasmodium. Here, we characterize its function using a gene-knockout (Pbyop1∆). Pbyop1∆ asexual stage parasites display abnormal ER architecture and an enlarged digestive vacuole. The erythrocytic cycle of Pbyop1∆ parasites is severely attenuated and the incidence of experimental cerebral malaria is significantly decreased in Pbyop1∆-infected mice. Pbyop1∆ sporozoites have reduced speed, are slower to invade host cells but give rise to equal numbers of infected HepG2 cells, as WT sporozoites. We propose that PbYOP1's disruption may lead to defects in trafficking and secretion of a subset of proteins required for parasite development and invasion of erythrocytes. Furthermore, the maintenance of ER morphology in different parasite stages is likely to depend on different proteins.


Assuntos
Malária/patologia , Proteínas de Membrana Transportadoras/metabolismo , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Proteínas de Protozoários/metabolismo , Animais , Linhagem Celular , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Feminino , Técnicas de Inativação de Genes , Genes de Protozoários , Células Hep G2 , Humanos , Malária/transmissão , Masculino , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Movimento , Plasmodium berghei/ultraestrutura , Transporte Proteico , Proteínas de Protozoários/genética , Ratos , Ratos Wistar , Esporozoítos/metabolismo , Virulência
10.
PLoS One ; 14(12): e0224610, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31869339

RESUMO

Malaria is an infectious disease of major worldwide clinical importance that causes a variety of severe, or complicated, syndromes including cerebral malaria, which is often fatal. Leukocyte integrins are essential for host defense but also mediate physiologic responses of the innate and adaptive immune systems. We previously showed that targeted deletion of the αD subunit (αD-/-) of the αDß2 integrin, which is expressed on key leukocyte subsets in mice and humans, leads to absent expression of the integrin heterodimer on murine macrophages and reduces mortality in mice infected with Plasmodium berghei ANKA (P. berghei ANKA). To further identify mechanisms involved in the protective effect of αD deletion in this model of severe malaria we examined wild type C57BL/6 (WT) and αD-/- mice after P. berghei ANKA infection and found that vessel plugging and leukocyte infiltration were significantly decreased in the brains of αD-/- animals. Intravital microscopy demonstrated decreased rolling and adhesion of leukocytes in cerebral vessels of αD-/- mice. Flow cytometry analysis showed decreased T-lymphocyte accumulation in the brains of infected αD-/- animals. Evans blue dye exclusion assays demonstrated significantly less dye extravasation in the brains of αD-/- mice, indicating preserved blood-brain barrier integrity. WT mice that were salvaged from P. berghei ANKA infection by treatment with chloroquine had impaired aversive memory, which was not observed in αD-/- mice. We conclude that deletion of integrin αDß2 alters the natural course of experimental severe malaria, demonstrating previously unrecognized activities of a key leukocyte integrin in immune-inflammatory responses that mediate cerebral involvement.


Assuntos
Antígenos CD11/metabolismo , Cadeias alfa de Integrinas/metabolismo , Malária/fisiopatologia , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Edema Encefálico/metabolismo , Edema Encefálico/fisiopatologia , Antígenos CD11/fisiologia , Cloroquina/metabolismo , Modelos Animais de Doenças , Inflamação/metabolismo , Cadeias alfa de Integrinas/fisiologia , Integrinas/imunologia , Integrinas/metabolismo , Contagem de Leucócitos , Leucócitos/metabolismo , Leucócitos/fisiologia , Macrófagos/metabolismo , Malária/genética , Malária Cerebral/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasmodium berghei/metabolismo
11.
Nano Lett ; 19(12): 8887-8895, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31671939

RESUMO

Cerebral malaria is a lethal complication of malaria infection characterized by central nervous system dysfunction and is often not effectively treated by antimalarial combination therapies. It has been shown that the sequestration of the parasite-infected red blood cells that interact with cerebral vessel endothelial cells and the damage of the blood-brain barrier (BBB) play critical roles in the pathogenesis. In this study, we developed a ferritin nanozyme (Fenozyme) composed of recombinant human ferritin (HFn) protein shells that specifically target BBB endothelial cells (BBB ECs) and the inner Fe3O4 nanozyme core that exhibits reactive oxygen species-scavenging catalase-like activity. In the experimental cerebral malaria (ECM) mouse model, administration of the Fenozyme, but not HFn, markedly ameliorated the damage of BBB induced by the parasite and improved the survival rate of infected mice significantly. Further investigations found that Fenozyme, as well as HFn, was able to polarize the macrophages in the liver to the M1 phenotype and promote the elimination of malaria in the blood. Thus, the catalase-like activity of the Fenozyme is required for its therapeutic effect in the mouse model. Moreover, the Fenozyme significantly alleviated the brain inflammation and memory impairment in ECM mice that had been treated with artemether, indicating that combining Fenozyme with an antimalarial drug is a novel strategy for the treatment of cerebral malaria.


Assuntos
Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Ferritinas/farmacologia , Malária Cerebral/prevenção & controle , Plasmodium berghei/metabolismo , Animais , Barreira Hematoencefálica/parasitologia , Barreira Hematoencefálica/patologia , Modelos Animais de Doenças , Células Endoteliais/parasitologia , Células Endoteliais/patologia , Ferritinas/genética , Humanos , Inflamação/metabolismo , Inflamação/parasitologia , Inflamação/patologia , Inflamação/prevenção & controle , Fígado/metabolismo , Fígado/parasitologia , Fígado/patologia , Macrófagos/metabolismo , Macrófagos/parasitologia , Macrófagos/patologia , Malária Cerebral/metabolismo , Malária Cerebral/patologia , Camundongos , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia
12.
Cell Chem Biol ; 26(9): 1253-1262.e5, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31257182

RESUMO

Plasmodium parasites undergo an obligatory and asymptomatic developmental stage within the liver before infecting red blood cells to cause malaria. The hijacked host pathways critical to parasite infection during this hepatic phase remain poorly understood. Here, we implemented a forward genetic screen to identify over 100 host factors within the human druggable genome that are critical to P. berghei infection in hepatoma cells. Notably, we found knockdown of genes involved in protein trafficking pathways to be detrimental to parasite infection. The disruption of protein trafficking modulators, including COPB2 and GGA1, decreases P. berghei parasite size, and an immunofluorescence study suggests that these proteins are recruited to the Plasmodium parasitophorous vacuole in infected hepatocytes. These findings reveal that various host intracellular protein trafficking pathways are subverted by Plasmodium parasites during the liver stage and provide new insights into their manipulation for growth and development.


Assuntos
Malária/tratamento farmacológico , Malária/genética , Plasmodium berghei/efeitos dos fármacos , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Carcinoma Hepatocelular/genética , Linhagem Celular , Proteína Coatomer/genética , Doenças Transmissíveis , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Fígado/parasitologia , Camundongos , Parasitos , Plasmodium/metabolismo , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Transporte Proteico/genética
13.
Commun Biol ; 2: 166, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31069275

RESUMO

Atovaquone-proguanil (Malarone®) is used for malaria prophylaxis and treatment. While the cytochrome bc1-inhibitor atovaquone has potent activity, proguanil's action is attributed to its cyclization-metabolite, cycloguanil. Evidence suggests that proguanil has limited intrinsic activity, associated with mitochondrial-function. Here we demonstrate that proguanil, and cyclization-blocked analogue tBuPG, have potent, but slow-acting, in vitro anti-plasmodial activity. Activity is folate-metabolism and isoprenoid biosynthesis-independent. In yeast dihydroorotate dehydrogenase-expressing parasites, proguanil and tBuPG slow-action remains, while bc1-inhibitor activity switches from comparatively fast to slow-acting. Like proguanil, tBuPG has activity against P. berghei liver-stage parasites. Both analogues act synergistically with bc1-inhibitors against blood-stages in vitro, however cycloguanil antagonizes activity. Together, these data suggest that proguanil is a potent slow-acting anti-plasmodial agent, that bc1 is essential to parasite survival independent of dihydroorotate dehydrogenase-activity, that Malarone® is a triple-drug combination that includes antagonistic partners and that a cyclization-blocked proguanil may be a superior combination partner for bc1-inhibitors in vivo.


Assuntos
Antimaláricos/farmacologia , Atovaquona/farmacologia , Inibidores Enzimáticos/farmacologia , Plasmodium berghei/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Proguanil/análogos & derivados , Animais , Anopheles , Antimaláricos/química , Atovaquona/química , Ciclização/efeitos dos fármacos , Di-Hidro-Orotato Desidrogenase , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Complexo III da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Inibidores Enzimáticos/química , Eritrócitos/efeitos dos fármacos , Eritrócitos/parasitologia , Ácido Fólico/metabolismo , Células Hep G2 , Humanos , Concentração Inibidora 50 , Fígado/efeitos dos fármacos , Fígado/parasitologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium berghei/metabolismo , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/metabolismo , Proguanil/química , Proguanil/farmacologia , Esporozoítos/efeitos dos fármacos , Esporozoítos/crescimento & desenvolvimento , Esporozoítos/metabolismo , Terpenos/metabolismo , Triazinas/química , Triazinas/farmacologia
14.
Proc Natl Acad Sci U S A ; 116(12): 5681-5686, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30833408

RESUMO

Malaria, the disease caused by Plasmodium spp. infection, remains a major global cause of morbidity and mortality. Host protection from malaria relies on immune-driven resistance mechanisms that kill Plasmodium However, these mechanisms are not sufficient per se to avoid the development of severe forms of disease. This is accomplished instead via the establishment of disease tolerance to malaria, a defense strategy that does not target Plasmodium directly. Here we demonstrate that the establishment of disease tolerance to malaria relies on a tissue damage-control mechanism that operates specifically in renal proximal tubule epithelial cells (RPTEC). This protective response relies on the induction of heme oxygenase-1 (HMOX1; HO-1) and ferritin H chain (FTH) via a mechanism that involves the transcription-factor nuclear-factor E2-related factor-2 (NRF2). As it accumulates in plasma and urine during the blood stage of Plasmodium infection, labile heme is detoxified in RPTEC by HO-1 and FTH, preventing the development of acute kidney injury, a clinical hallmark of severe malaria.


Assuntos
Heme/metabolismo , Rim/metabolismo , Malária/fisiopatologia , Animais , Apoferritinas/metabolismo , Linhagem Celular , Progressão da Doença , Células Epiteliais/metabolismo , Ferritinas/metabolismo , Ferritinas/fisiologia , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/fisiologia , Humanos , Tolerância Imunológica/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/fisiologia , Oxirredutases , Plasmodium berghei/metabolismo , Plasmodium berghei/parasitologia , Regulação para Cima
15.
Front Immunol ; 9: 2611, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30483269

RESUMO

CD8+ T cells are key players during infection with the malaria parasite Plasmodium berghei ANKA (PbA). While they cannot provide protection against blood-stage parasites, they can cause immunopathology, thus leading to the severe manifestation of cerebral malaria. Hence, the tight control of CD8+ T cell function is key in order to prevent fatal outcomes. One major mechanism to control CD8+ T cell activation, proliferation and effector function is the integration of co-inhibitory and co-stimulatory signals. In this study, we show that one such pathway, the HVEM-CD160 axis, significantly impacts CD8+ T cell regulation and thereby the incidence of cerebral malaria. Here, we show that the co-stimulatory molecule HVEM is indeed required to maintain CD8+ T effector populations during infection. Additionally, by generating a CD160-/- mouse line, we observe that the HVEM ligand CD160 counterbalances stimulatory signals in highly activated and cytotoxic CD8+ T effector cells, thereby restricting immunopathology. Importantly, CD160 is also induced on cytotoxic CD8+ T cells during acute Plasmodium falciparum malaria in humans. In conclusion, CD160 is specifically expressed on highly activated CD8+ T effector cells that are harmful during the blood-stage of malaria.


Assuntos
Antígenos CD/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Malária Cerebral/metabolismo , Receptores Imunológicos/metabolismo , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Adulto , Idoso , Animais , Proliferação de Células/fisiologia , Células Cultivadas , Proteínas Ligadas por GPI/metabolismo , Humanos , Ativação Linfocitária/fisiologia , Malária Cerebral/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Plasmodium berghei/metabolismo , Plasmodium falciparum/metabolismo
16.
Sci Rep ; 8(1): 15101, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30305687

RESUMO

Plasmodium sporozoites deposited in the skin following a mosquito bite must migrate and invade blood vessels to complete their development in the liver. Once in the bloodstream, sporozoites arrest in the liver sinusoids, but the molecular determinants that mediate this specific homing are not yet genetically defined. Here we investigate the involvement of the thrombospondin-related sporozoite protein (TRSP) in this process using knockout Plasmodium berghei parasites and in vivo bioluminescence imaging in mice. Resorting to a homing assay, trsp knockout sporozoites were found to arrest in the liver similar to control parasites. Moreover, we found no defects in the establishment of infection in mice following inoculation of trsp knockout sporozoites via intravenous and cutaneous injection or mosquito bite. Accordingly, mutant sporozoites were also able to successfully invade hepatocytes in vitro. Altogether, these results suggest TRSP may have a redundant role in the completion of the pre-erythrocytic phase of the malaria parasite. Nonetheless, identifying molecules with paramount roles in this phase could aid in the search for new antigens needed for the design of a protective vaccine against malaria.


Assuntos
Eritrócitos/parasitologia , Plasmodium berghei/metabolismo , Proteínas de Protozoários/metabolismo , Trombospondinas/metabolismo , Animais , Culicidae/parasitologia , Feminino , Técnicas de Inativação de Genes , Células Hep G2 , Hepatócitos/parasitologia , Humanos , Mordeduras e Picadas de Insetos/parasitologia , Fígado/parasitologia , Camundongos Endogâmicos C57BL , Plasmodium berghei/patogenicidade , Esporozoítos/metabolismo , Esporozoítos/patogenicidade
17.
PLoS Pathog ; 14(5): e1007057, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29775485

RESUMO

Within the liver a single Plasmodium parasite transforms into thousands of blood-infective forms to cause malaria. Here, we use RNA-sequencing to identify host genes that are upregulated upon Plasmodium berghei infection of hepatocytes with the hypothesis that host pathways are hijacked to benefit parasite development. We found that expression of aquaporin-3 (AQP3), a water and glycerol channel, is significantly induced in Plasmodium-infected hepatocytes compared to uninfected cells. This aquaglyceroporin localizes to the parasitophorous vacuole membrane, the compartmental interface between the host and pathogen, with a temporal pattern that correlates with the parasite's expansion in the liver. Depletion or elimination of host AQP3 expression significantly reduces P. berghei parasite burden during the liver stage and chemical disruption by a known AQP3 inhibitor, auphen, reduces P. falciparum asexual blood stage and P. berghei liver stage parasite load. Further use of this inhibitor as a chemical probe suggests that AQP3-mediated nutrient transport is an important function for parasite development. This study reveals a previously unknown potential route for host-dependent nutrient acquisition by Plasmodium which was discovered by mapping the transcriptional changes that occur in hepatocytes throughout P. berghei infection. The dataset reported may be leveraged to identify additional host factors that are essential for Plasmodium liver stage infection and highlights Plasmodium's dependence on host factors within hepatocytes.


Assuntos
Aquaporina 3/metabolismo , Plasmodium berghei/metabolismo , Animais , Aquaporina 3/fisiologia , Células Hep G2 , Hepatócitos/metabolismo , Hepatócitos/parasitologia , Humanos , Fígado/metabolismo , Fígado/parasitologia , Hepatopatias , Malária/parasitologia , Camundongos , Parasitos/metabolismo , Plasmodium berghei/genética , Plasmodium berghei/parasitologia , Proteínas de Protozoários/metabolismo , Análise de Sequência de RNA/métodos , Esporozoítos/metabolismo , Vacúolos/metabolismo
18.
Nat Microbiol ; 3(1): 17-25, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29109477

RESUMO

The causative agent of malaria, Plasmodium, replicates inside a membrane-bound parasitophorous vacuole (PV), which shields this intracellular parasite from the cytosol of the host cell 1 . One common threat for intracellular pathogens is the homeostatic process of autophagy, through which cells capture unwanted intracellular material for lysosomal degradation 2 . During the liver stage of a malaria infection, Plasmodium parasites are targeted by the autophagy machinery of the host cell, and the PV membrane (PVM) becomes decorated with several autophagy markers, including LC3 (microtubule-associated protein 1 light chain 3) 3,4 . Here we show that Plasmodium berghei parasites infecting hepatic cells rely on the PVM transmembrane protein UIS3 to avoid elimination by host-cell-mediated autophagy. We found that UIS3 binds host LC3 through a non-canonical interaction with a specialized surface on LC3 where host proteins with essential functions during autophagy also bind. UIS3 acts as a bona fide autophagy inhibitor by competing with host LC3-interacting proteins for LC3 binding. Our work identifies UIS3, one of the most promising candidates for a genetically attenuated vaccine against malaria 5 , as a unique and potent mediator of autophagy evasion in Plasmodium. We propose that the protein-protein interaction between UIS3 and host LC3 represents a target for antimalarial drug development.


Assuntos
Autofagia/fisiologia , Hepatócitos/patologia , Malária/patologia , Malária/parasitologia , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Plasmodium berghei/genética , Animais , Autofagossomos/metabolismo , Linhagem Celular , Células HEK293 , Células Hep G2 , Hepatócitos/parasitologia , Hepatócitos/ultraestrutura , Interações Hospedeiro-Patógeno , Humanos , Malária/fisiopatologia , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Plasmodium berghei/metabolismo , Plasmodium berghei/patogenicidade , Ligação Proteica , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Vacúolos/metabolismo
19.
J Biol Chem ; 292(43): 17857-17875, 2017 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-28893907

RESUMO

Myosin A (MyoA) is a Class XIV myosin implicated in gliding motility and host cell and tissue invasion by malaria parasites. MyoA is part of a membrane-associated protein complex called the glideosome, which is essential for parasite motility and includes the MyoA light chain myosin tail domain-interacting protein (MTIP) and several glideosome-associated proteins (GAPs). However, most studies of MyoA have focused on single stages of the parasite life cycle. We examined MyoA expression throughout the Plasmodium berghei life cycle in both mammalian and insect hosts. In extracellular ookinetes, sporozoites, and merozoites, MyoA was located at the parasite periphery. In the sexual stages, zygote formation and initial ookinete differentiation precede MyoA synthesis and deposition, which occurred only in the developing protuberance. In developing intracellular asexual blood stages, MyoA was synthesized in mature schizonts and was located at the periphery of segmenting merozoites, where it remained throughout maturation, merozoite egress, and host cell invasion. Besides the known GAPs in the malaria parasite, the complex included GAP40, an additional myosin light chain designated essential light chain (ELC), and several other candidate components. This ELC bound the MyoA neck region adjacent to the MTIP-binding site, and both myosin light chains co-located to the glideosome. Co-expression of MyoA with its two light chains revealed that the presence of both light chains enhances MyoA-dependent actin motility. In conclusion, we have established a system to study the interplay and function of the three glideosome components, enabling the assessment of inhibitors that target this motor complex to block host cell invasion.


Assuntos
Estágios do Ciclo de Vida/fisiologia , Proteínas de Membrana , Miosinas , Plasmodium berghei , Plasmodium falciparum , Proteínas de Protozoários , Animais , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Miosinas/genética , Miosinas/metabolismo , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
20.
Artigo em Inglês | MEDLINE | ID: mdl-28560184

RESUMO

Glycosylphosphatidylinositol (GPI) anchor of Plasmodium falciparum origin is considered an important toxin leading to severe malaria pathology through stimulation of pro-inflammatory responses from innate immune cells. Even though the GPI-induced immune response is widely described to be mediated by pattern recognition receptors such as TLR2 and TLR4, previous studies have revealed that these two receptors are dispensable for the development of severe malaria pathology. Therefore, this study aimed at the identification of potential alternative Plasmodium GPI receptors. Herein, we have identified the host protein moesin as an interaction partner of Plasmodium GPI in vitro. Given previous reports indicating the relevance of moesin especially in the LPS-mediated induction of pro-inflammatory responses, we have conducted a series of in vitro and in vivo experiments to address the physiological relevance of the moesin-Plasmodium GPI interaction in the context of malaria pathology. We report here that although moesin and Plasmodium GPI interact in vitro, moesin is not critically involved in processes leading to Plasmodium-induced pro-inflammatory immune responses or malaria-associated cerebral pathology.


Assuntos
Glicosilfosfatidilinositóis/metabolismo , Interações Hospedeiro-Parasita/fisiologia , Proteínas dos Microfilamentos/metabolismo , Plasmodium/metabolismo , Plasmodium/patogenicidade , Animais , Células da Medula Óssea , Quimiocinas/metabolismo , Citocinas/metabolismo , Feminino , Glicosilfosfatidilinositóis/química , Glicosilfosfatidilinositóis/genética , Glicosilfosfatidilinositóis/imunologia , Interações Hospedeiro-Parasita/imunologia , Humanos , Imunidade Inata , Malária/genética , Malária/parasitologia , Malária/patologia , Malária Cerebral , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/genética , Fagocitose , Plasmodium berghei/metabolismo , Plasmodium berghei/patogenicidade , Plasmodium falciparum , Transdução de Sinais , Células THP-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA