Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Biomolecules ; 14(6)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38927133

RESUMO

Lipid peroxidation plays an important role in various pathologies and aging, at least partially mediated by ferroptosis. The role of mitochondrial lipid peroxidation during ferroptosis remains poorly understood. We show that supplementation of exogenous iron in the form of ferric ammonium citrate at submillimolar doses induces production of reactive oxygen species (ROS) and lipid peroxidation in mitochondria that precede ferroptosis in H9c2 cardiomyocytes. The mitochondria-targeted antioxidant SkQ1 and the redox mediator methylene blue, which inhibits the production of ROS in complex I of the mitochondrial electron transport chain, prevent both mitochondrial lipid peroxidation and ferroptosis. SkQ1 and methylene blue also prevented accumulation of lipofuscin observed after 24 h incubation of cardiomyocytes with ferric ammonium citrate. Using isolated cardiac mitochondria as an in vitro ferroptosis model, it was shown that rotenone (complex I inhibitor) in the presence of ferrous iron stimulates lipid peroxidation and lipofuscin accumulation. Our data indicate that ROS generated in complex I stimulate mitochondrial lipid peroxidation, lipofuscin accumulation, and ferroptosis induced by exogenous iron.


Assuntos
Ferroptose , Ferro , Peroxidação de Lipídeos , Lipofuscina , Miócitos Cardíacos , Espécies Reativas de Oxigênio , Peroxidação de Lipídeos/efeitos dos fármacos , Ferroptose/efeitos dos fármacos , Lipofuscina/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Animais , Ratos , Espécies Reativas de Oxigênio/metabolismo , Ferro/metabolismo , Linhagem Celular , Compostos de Amônio Quaternário/farmacologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Azul de Metileno/farmacologia , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos , Compostos Férricos , Plastoquinona/análogos & derivados
2.
Int J Mol Sci ; 23(3)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35163053

RESUMO

Astrocytes and microglia are the first cells to react to neurodegeneration, e.g., in Alzheimer's disease (AD); however, the data on changes in glial support during the most common (sporadic) type of the disease are sparse. Using senescence-accelerated OXYS rats, which simulate key characteristics of sporadic AD, and Wistar rats (parental normal strain, control), we investigated hippocampal neurogenesis and glial changes during AD-like pathology. Using immunohistochemistry, we showed that the early stage of the pathology is accompanied by a lower intensity of neurogenesis and decreased astrocyte density in the dentate gyrus. The progressive stage is concurrent with reactive astrogliosis and microglia activation, as confirmed by increased cell densities and by the acquisition of cell-specific gene expression profiles, according to transcriptome sequencing data. Besides, here, we continued to analyze the anti-AD effects of prolonged supplementation with mitochondria-targeted antioxidant SkQ1. The antioxidant did not affect neurogenesis, partly normalized the gene expression profile of astrocytes and microglia, and shifted the resting/activated microglia ratio toward a decrease in the activated-cell density. In summary, both astrocytes and microglia are more vulnerable to AD-associated neurodegeneration in the CA3 area than in other hippocampal areas; SkQ1 had an anti-inflammatory effect and is a promising modality for AD prevention and treatment.


Assuntos
Doença de Alzheimer/dietoterapia , Doença de Alzheimer/patologia , Giro Denteado/patologia , Plastoquinona/análogos & derivados , Doença de Alzheimer/etiologia , Doença de Alzheimer/genética , Animais , Astrócitos/química , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Giro Denteado/química , Giro Denteado/efeitos dos fármacos , Suplementos Nutricionais , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Plastoquinona/administração & dosagem , Plastoquinona/farmacologia , Ratos , Ratos Wistar
3.
BMC Pharmacol Toxicol ; 22(1): 49, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34530934

RESUMO

BACKGROUND: Preconditioning of the heart ameliorates doxorubicin (Dox)-induced cardiotoxicity. We tested whether pretreating cardiomyocytes by mitochondrial-targeted antioxidants, mitoquinone (MitoQ) or SKQ1, would provide better protection against Dox than co-treatment. METHODS: We investigated the dose-response relationship of MitoQ, SKQ1, and vitamin C on Dox-induced damage on H9c2 cardiomyoblasts when drugs were given concurrently with Dox (e.g., co-treatment) or 24 h prior to Dox (e.g., pretreatment). Moreover, their effects on intracellular and mitochondrial oxidative stress were evaluated by 2,7-dichlorofluorescin diacetate and MitoSOX, respectively. RESULTS: Dox (0.5-50 µM, n = 6) dose-dependently reduced cell viability. By contrast, co-treatment of MitoQ (0.05-10 µM, n = 6) and SKQ1 (0.05-10 µM, n = 6), but not vitamin C (1-2000 µM, n = 3), significantly improved cell viability only at intermediate doses (0.5-1 µM). MitoQ (1 µM) and SKQ1 (1 µM) significantly increased cell viability to 1.79 ± 0.12 and 1.59 ± 0.08 relative to Dox alone, respectively (both p < 0.05). Interestingly, when given as pretreatment, only higher doses of MitoQ (2.5 µM, n = 9) and SKQ1 (5 µM, n = 7) showed maximal protection and improved cell viability to 2.19 ± 0.13 and 1.65 ± 0.07 relative to Dox alone, respectively (both p < 0.01), which was better than that of co-treatment. Moreover, the protective effects were attributed to the significant reduction in Dox-induced intracellular and mitochondrial oxidative stress. CONCLUSION: The data suggest that MitoQ and SKQ1, but not vitamin C, mitigated DOX-induced damage. Moreover, MitoQ pretreatment showed significantly higher cardioprotection than its co-treatment and SKQ1, which may be due to its better antioxidant effects.


Assuntos
Antibióticos Antineoplásicos/toxicidade , Antioxidantes/administração & dosagem , Cardiotônicos/administração & dosagem , Doxorrubicina/toxicidade , Mitocôndrias/efeitos dos fármacos , Compostos Organofosforados/administração & dosagem , Plastoquinona/análogos & derivados , Ubiquinona/análogos & derivados , Animais , Ácido Ascórbico/administração & dosagem , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Esquema de Medicação , Interações Medicamentosas , Mitocôndrias/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Plastoquinona/administração & dosagem , Ratos , Superóxidos/metabolismo , Ubiquinona/administração & dosagem
4.
Oxid Med Cell Longev ; 2020: 8956504, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32104543

RESUMO

Benzalkonium chloride (BAC) is currently the most commonly used antimicrobial preservative in ophthalmic solutions, nasal sprays, and cosmetics. However, a large number of clinical and experimental investigations showed that the topical administration of BAC-containing eye drops could cause a variety of ocular surface changes, from ocular discomfort to potential risk for future glaucoma surgery. BAC-containing albuterol may increase the risk of albuterol-related systemic adverse effects. BAC, commonly present in personal care products, in cosmetic products can induce irritation and dose-dependent changes in the cell morphology. The cationic nature of BAC (it is a quaternary ammonium) suggests that one of the major targets of BAC in the cell may be mitochondria, the only intracellular compartment charged negatively. However, the influence of BAC on mitochondria has not been clearly understood. Here, the effects of BAC on energy parameters of rat liver mitochondria as well as on yeast cells were examined. BAC, being a "weaker" uncoupler, potently inhibited respiration in state 3, diminished the mitochondrial membrane potential, caused opening of the Ca2+/Pi-dependent pore, blocked ATP synthesis, and promoted H2O2 production by mitochondria. BAC triggered oxidative stress and mitochondrial fragmentation in yeast cells. BAC-induced oxidative stress in mitochondria and yeast cells was almost totally prevented by the mitochondria-targeted antioxidant SkQ1; the protective effect of SkQ1 on mitochondrial fragmentation was only partial. Collectively, these data showed that BAC acts adversely on cell bioenergetics (especially on ATP synthesis) and mitochondrial dynamics and that its prooxidant effect can be partially prevented by the mitochondria-targeted antioxidant SkQ1.


Assuntos
Compostos de Benzalcônio/farmacologia , Mitocôndrias Hepáticas/metabolismo , Animais , Antioxidantes/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Plastoquinona/análogos & derivados , Plastoquinona/farmacologia , Ratos , Espécies Reativas de Oxigênio/metabolismo
5.
Ecotoxicol Environ Saf ; 191: 110241, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32007925

RESUMO

One of the major mechanisms of heavy metal toxicity is the induction of oxidative stress. Redox-active heavy metals, like chromium, can induce it directly, whereas redox-inactive metals, like cadmium, play an indirect role in the generation of reactive oxygen species (ROS). Living organisms defend themselves against oxidative stress taking advantage of low-molecular-weight antioxidants and ROS-detoxifying enzymes. Tocopherols and plastoquinol are important plastid prenyllipid antioxidants, playing a role during acclimation of Chlamydomonas reinhardtii to heavy metal-induced stress. However, partial inhibition of synthesis of these prenyllipids by pyrazolate did not decrease the tolerance of C. reinhardtii to Cr- and Cd-induced stress, suggesting redundancy between antioxidant mechanisms. To verify this hypothesis we have performed comparative analyses of growth, photosynthetic pigments, low-molecular-weight antioxidants (tocopherols, plastoquinol, plastochromanol, ascorbate, soluble thiols, proline), activities of the ascorbate peroxidase (APX), catalase and superoxide dismutase (SOD) and cumulative superoxide production in C. reinhardtii exposed to Cd2+ and Cr2O72- ions in the presence or absence of pyrazolate. The decreased α-tocopherol and plastoquinol content resulted in the increase in superoxide generation and APX activity in pyrazolate-treated algae. The application of heavy metal ions and pyrazolate had a pronounced impact on Asc and total thiol content, as well as SOD and APX activities (the latter only in Cd-exposed cultures), when compared with algae grown in the presence of heavy metal ions or pyrazolate alone. The superoxide production in cultures exposed to heavy metal ions and pyrazolate decreased when compared to the cultures exposed to either heavy metal ions or an inhibitor alone.


Assuntos
Antioxidantes/metabolismo , Cloreto de Cádmio/toxicidade , Cromatos/toxicidade , Plastoquinona/análogos & derivados , Compostos de Potássio/toxicidade , Tocoferóis/metabolismo , Chlamydomonas reinhardtii/metabolismo , Relação Dose-Resposta a Droga , Íons , Estresse Oxidativo/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Plastoquinona/metabolismo , Espécies Reativas de Oxigênio/metabolismo
6.
Biochim Biophys Acta Mol Basis Dis ; 1866(5): 165664, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31926265

RESUMO

Neutrophils release neutrophil extracellular traps (NETs) in response to numerous pathogenic microbes as the last suicidal resource (NETosis) in the fight against infection. Apart from the host defense function, NETs play an essential role in the pathogenesis of various autoimmune and inflammatory diseases. Therefore, understanding the molecular mechanisms of NETosis is important for regulating aberrant NET release. The initiation of NETosis after the recognition of pathogens by specific receptors is mediated by an increase in intracellular Ca2+ concentration, therefore, the use of Ca2+ ionophore A23187 can be considered a semi-physiological model of NETosis. Induction of NETosis by various stimuli depends on reactive oxygen species (ROS) produced by NADPH oxidase, however, NETosis induced by Ca2+ ionophores was suggested to be mediated by ROS produced in mitochondria (mtROS). Using the mitochondria-targeted antioxidant SkQ1 and specific inhibitors of NADPH oxidase, we showed that both sources of ROS, mitochondria and NADPH oxidase, are involved in NETosis induced by A23187 in human neutrophils. In support of the critical role of mtROS, SkQ1-sensitive NETosis was demonstrated to be induced by A23187 in neutrophils from patients with chronic granulomatous disease (CGD). We assume that Ca2+-triggered mtROS production contributes to NETosis either directly (CGD neutrophils) or by stimulating NADPH oxidase. The opening of the mitochondrial permeability transition pore (mPTP) in neutrophils treated by A23187 was revealed using the electron transmission microscopy as a swelling of the mitochondrial matrix. Using specific inhibitors, we demonstrated that the mPTP is involved in mtROS production, NETosis, and the oxidative burst induced by A23187.


Assuntos
Armadilhas Extracelulares/metabolismo , Doença Granulomatosa Crônica/patologia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , NADPH Oxidase 2/metabolismo , Neutrófilos/metabolismo , Explosão Respiratória/fisiologia , Adolescente , Calcimicina/farmacologia , Cálcio/metabolismo , Cátions Bivalentes/metabolismo , Células Cultivadas , Criança , Transporte de Elétrons , Sequestradores de Radicais Livres/farmacologia , Doença Granulomatosa Crônica/sangue , Voluntários Saudáveis , Humanos , Mutação com Perda de Função , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/fisiologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Proteínas de Transporte da Membrana Mitocondrial/ultraestrutura , Poro de Transição de Permeabilidade Mitocondrial , NADPH Oxidase 2/antagonistas & inibidores , NADPH Oxidase 2/genética , Neutrófilos/citologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/ultraestrutura , Oxirredução/efeitos dos fármacos , Plastoquinona/análogos & derivados , Plastoquinona/farmacologia , Cultura Primária de Células , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Explosão Respiratória/efeitos dos fármacos
7.
Int J Mol Sci ; 21(3)2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31973128

RESUMO

Ocular inflammation contributes to the pathogenesis of blind-causing retinal degenerative diseases, such as age-related macular degeneration (AMD) or photic maculopathy. Here, we report on inflammatory mechanisms that are associated with retinal degeneration induced by bright visible light, which were revealed while using a rabbit model. Histologically and electrophysiologically noticeable degeneration of the retina is preceded and accompanied by oxidative stress and inflammation, as evidenced by granulocyte infiltration and edema in this tissue, as well as the upregulation of total protein, pro-inflammatory cytokines, and oxidative stress markers in aqueous humor (AH). Consistently, quantitative lipidomic studies of AH elucidated increase in the concentration of arachidonic (AA) and docosahexaenoic (DHA) acids and lyso-platelet activating factor (lyso-PAF), together with pronounced oxidative and inflammatory alterations in content of lipid mediators oxylipins. These alterations include long-term elevation of prostaglandins, which are synthesized from AA via cyclooxygenase-dependent pathways, as well as a short burst of linoleic acid derivatives that can be produced by both enzymatic and non-enzymatic free radical-dependent mechanisms. The upregulation of all oxylipins is inhibited by the premedication of the eyes while using mitochondria-targeted antioxidant SkQ1, whereas the accumulation of prostaglandins and lyso-PAF can be specifically suppressed by topical treatment with cyclooxygenase inhibitor Nepafenac. Interestingly, the most prominent antioxidant and anti-inflammatory benefits and overall retinal protective effects are achieved by simultaneous administrating of both drugs indicating their synergistic action. Taken together, these findings provide a rationale for using a combination of mitochondria-targeted antioxidant and cyclooxygenase inhibitor for the treatment of inflammatory components of retinal degenerative diseases.


Assuntos
Humor Aquoso/metabolismo , Inflamação/tratamento farmacológico , Luz/efeitos adversos , Retina/metabolismo , Degeneração Retiniana/tratamento farmacológico , Degeneração Retiniana/metabolismo , Animais , Antioxidantes/farmacologia , Ácido Araquidônico/metabolismo , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/metabolismo , Edema/patologia , Inflamação/patologia , Peroxidação de Lipídeos , Degeneração Macular/tratamento farmacológico , Degeneração Macular/metabolismo , Masculino , Mitocôndrias/metabolismo , Estresse Oxidativo , Oxilipinas/metabolismo , Plastoquinona/análogos & derivados , Plastoquinona/farmacologia , Fator de Ativação de Plaquetas/análogos & derivados , Fator de Ativação de Plaquetas/metabolismo , Coelhos , Retina/efeitos dos fármacos , Retina/patologia , Retina/efeitos da radiação , Degeneração Retiniana/induzido quimicamente , Degeneração Retiniana/patologia
8.
Arch Pharm (Weinheim) ; 352(12): e1900170, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31602720

RESUMO

Two series of amino-1,4-benzoquinones (AQ1-18) based on the structural analogs of plastoquinones were synthesized and the structure-activity relationship against chronic myelogenous leukemia activity was examined. All of the synthesized compounds were tested for their cytotoxic effects on different leukemic cell lines. Of interest, AQ15 exhibited a better selectivity than the reference drug imatinib on cancer cells. Owing to this, AQ15 was selected for a further apoptosis/necrosis evaluation where AQ15-treated K562 cells demonstrated similar apoptotic effects like imatinib-treated cells at their IC50 values. The inhibitory effects of AQ15 and the other three compounds with various activities against eight tyrosine kinases, including ABL1, were investigated. AQ15 showed weak activity against ABL1, and a correlation was observed between the anti-K562 and anti-ABL1 activities. The binding mode of AQ15 into the ATP binding pocket of ABL1 kinase was predicted in silico, showing the formation of some key interactions. In addition, AQ15 was shown to suppress the downstream signaling of BCR-ABL in K562 cells. Finally, AQ15 obviously cleaved DNA in the presence of an iron(II) complex system, indicating that this can be the major mechanism of its antiproliferative action, whereas the mild inhibition of ABL kinase is just in-part mechanism of its overall outstanding cellular activity.


Assuntos
Antineoplásicos/síntese química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Descoberta de Drogas/métodos , Plastoquinona/análogos & derivados , Antineoplásicos/química , Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Clivagem do DNA/efeitos dos fármacos , Humanos , Células Jurkat , Células K562 , Simulação de Acoplamento Molecular , Estrutura Molecular , Proteínas Proto-Oncogênicas c-abl/metabolismo
9.
BMC Ophthalmol ; 18(1): 336, 2018 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-30587174

RESUMO

BACKGROUND: Cornea protects the eye against natural and anthropogenic ultraviolet (UV) damage and mechanical injury. Corneal incisions produced by UV lasers in ophthalmic surgeries are often complicated by oxidative stress and inflammation, which delay wound healing and result in vision deterioration. This study trialed a novel approach to prevention and treatment of iatrogenic corneal injuries using SkQ1, a mitochondria-targeted antioxidant approved for therapy of polyethiological dry eye disease. METHODS: Rabbit models of UV-induced and mechanical corneal damage were employed. The animals were premedicated or treated with conjunctival instillations of 7.5 µM SkQ1. Corneal damage was assessed by fluorescein staining and histological analysis. Oxidative stress in cornea was monitored by measuring malondialdehyde (MDA) using thiobarbituric acid assay. Total antioxidant activity (AOA) was determined using hemoglobin/H2O2/luminol assay. Glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities were measured using colorimetric assays. RESULTS: In both models corneas exhibited fluorescein-stained lesions, histologically manifesting as basal membrane denudation, apoptosis of keratocytes, and stromal edema, which were accompanied by oxidative stress as indicated by increase in lipid peroxidation and decline in AOA. The UV-induced lesions were more severe and long healing as corneal endothelium was involved and GPx and SOD were downregulated. The treatment inhibited loss of keratocytes and other cells, facilitated re-epithelialization and stromal remodeling, and reduced inflammatory infiltrations and edema thereby accelerating corneal healing approximately 2-fold. Meanwhile the premedication almost completely prevented development of UV-induced lesions. Both therapies reduced oxidative stress, but only premedication inhibited downregulation of the innate antioxidant activity of the cornea. CONCLUSIONS: SkQ1 efficiently prevents UV-induced corneal damage and enhances corneal wound healing after UV and mechanical impacts common to ocular surgery. Its therapeutic action can be attributed to suppression of mitochondrial oxidative stress, which in the first case embraces all corneal cells including epitheliocytes, while in the second case affects residual endothelial cells and stromal keratocytes actively working in wound healing. We suggest SkQ1 premedication to be used in ocular surgery for preventing iatrogenic complications in the cornea.


Assuntos
Antioxidantes/uso terapêutico , Córnea/efeitos dos fármacos , Lesões da Córnea/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Plastoquinona/análogos & derivados , Raios Ultravioleta/efeitos adversos , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Córnea/metabolismo , Modelos Animais de Doenças , Glutationa Peroxidase/metabolismo , Doença Iatrogênica/prevenção & controle , Malondialdeído/metabolismo , Mitocôndrias , Estresse Oxidativo/fisiologia , Plastoquinona/farmacologia , Plastoquinona/uso terapêutico , Coelhos , Superóxido Dismutase/metabolismo
10.
Biochemistry (Mosc) ; 83(10): 1245-1254, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30472961

RESUMO

Here, we studied the effect of the mitochondria-targeted antioxidant SkQ1 (plastoquinone cationic derivative) on the CASP3 gene expression and caspase-3 activity in rat cerebral cortex and brain mitochondria under normal conditions and in oxidative stress induced by hyperbaric oxygenation (HBO). Under physiological conditions, SkQ1 administration (50 nmol/kg, 5 days) did not affect the CASP3 gene expression and caspase-3-like activity in the cortical cells, as well as caspase-3-like activity in brain mitochondria, but caused a moderate decrease in the content of primary products of lipid peroxidation (LPO) and an increase in the reduced glutathione (GSH) level. HBO-induced oxidative stress (0.5 MPa, 90 min) was accompanied by significant upregulation of CASP3 mRNA and caspase-3-like activity in the cerebral cortex, activation of the mitochondrial enzyme with simultaneous decrease in the GSH content, increase in the glutathione reductase activity, and stimulation of LPO. Administration of SkQ1 before the HBO session maintained the basal levels of the CASP3 gene expression and enzyme activity in the cerebral cortex cells and led to the normalization of caspase-3-like activity and redox parameters in brain mitochondria. We hypothesize that SkQ1 protects brain cells from the HBO-induced oxidative stress due to its antioxidant activity and stimulation of antiapoptotic mechanisms.


Assuntos
Encéfalo/metabolismo , Caspase 3/metabolismo , Expressão Gênica/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Plastoquinona/análogos & derivados , Animais , Caspase 3/genética , Catalase/genética , Catalase/metabolismo , Glutationa/metabolismo , Glutationa Redutase/genética , Glutationa Redutase/metabolismo , Oxigenoterapia Hiperbárica , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Mitocôndrias/metabolismo , Plastoquinona/farmacologia , RNA Mensageiro/metabolismo , Ratos , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
11.
Cell Cycle ; 17(14): 1797-1811, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29995559

RESUMO

Mitochondria are important regulators of tumour growth and progression due to their specific role in cancer metabolism and modulation of apoptotic pathways. In this paper we describe that mitochondria-targeted antioxidant SkQ1 designed as a conjugate of decyl-triphenylphosphonium cation (TPP+) with plastoquinone, suppressed the growth of fibrosarcoma HT1080 and rhabdomyosarcoma RD tumour cells in culture and tumour growth of RD in xenograft nude mouse model. Under the same conditions, no detrimental effect of SkQ1 on cell growth of primary human subcutaneous fibroblasts was observed. The tumour growth suppression was shown to be a result of the antioxidant action of low nanomolar concentrations of SkQ1. We have revealed significant prolongation of mitosis induced by SkQ1 in both tumour cell cultures. Prolonged mitosis and apoptosis could be responsible for growth suppression after SkQ1 treatment in RD cells. Growth suppression in HT1080 cells was accompanied by the delay of telophase and cytokinesis, followed by multinuclear cells formation. The effects of SkQ1 on the cell cycle were proved to be at least partially mediated by inactivation of Aurora family kinases. ABBREVIATIONS: TPP+: Triphenylphosphonium cation; ROS: Reactive oxygen species; mtROS: Mitochondrial reactive oxygen species; NAC: N-acetyl-L-cysteine; DCFH-DA: Dichlorodihydrofluorescein diacetate; APC: Anaphase promoting complex; ABPs: Actin-binding proteins; DMEM: Dulbecco's modified Eagle media; SDS: sodium dodecyl sulfate; HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid.


Assuntos
Antioxidantes/farmacologia , Fibrossarcoma/patologia , Mitocôndrias/metabolismo , Plastoquinona/análogos & derivados , Rabdomiossarcoma/patologia , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Animais , Aurora Quinase B/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Modelos Animais de Doenças , Camundongos Nus , Mitocôndrias/efeitos dos fármacos , Mitose/efeitos dos fármacos , Plastoquinona/farmacologia , Proteína do Retinoblastoma/metabolismo
12.
Plant Physiol ; 176(2): 1247-1261, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28924017

RESUMO

We present a new simulation model of the reactions in the photosynthetic electron transport chain of C3 species. We show that including recent insights about the regulation of the thylakoid proton motive force, ATP/NADPH balancing mechanisms (cyclic and noncyclic alternative electron transport), and regulation of Rubisco activity leads to emergent behaviors that may affect the operation and regulation of photosynthesis under different dynamic environmental conditions. The model was parameterized with experimental results in the literature, with a focus on Arabidopsis (Arabidopsis thaliana). A dataset was constructed from multiple sources, including measurements of steady-state and dynamic gas exchange, chlorophyll fluorescence, and absorbance spectroscopy under different light intensities and CO2, to test predictions of the model under different experimental conditions. Simulations suggested that there are strong interactions between cyclic and noncyclic alternative electron transport and that an excess capacity for alternative electron transport is required to ensure adequate redox state and lumen pH. Furthermore, the model predicted that, under specific conditions, reduction of ferredoxin by plastoquinol is possible after a rapid increase in light intensity. Further analysis also revealed that the relationship between ATP synthesis and proton motive force was highly regulated by the concentrations of ATP, ADP, and inorganic phosphate, and this facilitated an increase in nonphotochemical quenching and proton motive force under conditions where metabolism was limiting, such as low CO2, high light intensity, or combined high CO2 and high light intensity. The model may be used as an in silico platform for future research on the regulation of photosynthetic electron transport.


Assuntos
Arabidopsis/fisiologia , Transporte de Elétrons/fisiologia , Modelos Biológicos , Plantas/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Dióxido de Carbono/metabolismo , Simulação por Computador , Ferredoxinas/metabolismo , Fluorescência , Concentração de Íons de Hidrogênio , Luz , NADP/metabolismo , Fotossíntese/fisiologia , Plastoquinona/análogos & derivados , Plastoquinona/metabolismo
13.
Oxid Med Cell Longev ; 2017: 9281519, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29158874

RESUMO

Dry eye syndrome (DES) is an age-related condition increasingly detected in younger people of risk groups, including patients who underwent ocular surgery or long-term general anesthesia. Being a multifactorial disease, it is characterized by oxidative stress in the cornea and commonly complicated by ocular surface inflammation. Polyetiologic DES is responsive to SkQ1, a mitochondria-targeted antioxidant suppressing age-related changes in the ocular tissues. Here, we demonstrate safety and efficacy of topical administration of SkQ1 at a dosage of 7.5 µM for the prevention of general anesthesia-induced DES in rabbits. The protective action of SkQ1 improves clinical state of the ocular surface by inhibiting apoptotic and prenecrotic changes in the corneal epithelium. The underlying mechanism involves the suppression of the oxidative stress supported by the stimulation of intrinsic antioxidant activity and the activity of antioxidant enzymes, foremost glutathione peroxidase and glutathione reductase, in the cornea. Furthermore, SkQ1 increases antioxidant activity and stability of the tear film and produces anti-inflammatory effect exhibited as downregulation of TNF-α and IL-6 and pronounced upregulation of IL-10 in tears. Our data suggest novel features of SkQ1 and point to its feasibility in patients with DES and individuals at risk for the disease including those subjected to general anesthesia.


Assuntos
Anestesia/efeitos adversos , Síndromes do Olho Seco/etiologia , Mitocôndrias/metabolismo , Plastoquinona/análogos & derivados , Antioxidantes , Síndromes do Olho Seco/tratamento farmacológico , Humanos , Plastoquinona/farmacologia , Plastoquinona/uso terapêutico
14.
Biochim Biophys Acta Bioenerg ; 1858(11): 873-883, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28734933

RESUMO

The desert microalga Chlorella ohadii was reported to grow at extreme light intensities with minimal photoinhibition, tolerate frequent de/re-hydrations, yet minimally employs antenna-based non-photochemical quenching for photoprotection. Here we investigate the molecular mechanisms by measuring Photosystem II charge separation yield (chlorophyll variable fluorescence, Fv/Fm) and flash-induced O2 yield to measure the contributions from both linear (PSII-LEF) and cyclic (PSII-CEF) electron flow within PSII. Cells grow increasingly faster at higher light intensities (µE/m2/s) from low (20) to high (200) to extreme (2000) by escalating photoprotection via shifting from PSII-LEF to PSII-CEF. This shifts PSII charge separation from plastoquinone reduction (PSII-LEF) to plastoquinol oxidation (PSII-CEF), here postulated to enable proton gradient and ATP generation that powers photoprotection. Low light-grown cells have unusually small antennae (332 Chl/PSII), use mainly PSII-LEF (95%) and convert 40% of PSII charge separations into O2 (a high O2 quantum yield of 0.06mol/mol PSII/flash). High light-grown cells have smaller antenna and lower PSII-LEF (63%). Extreme light-grown cells have only 42 Chl/PSII (no LHCII antenna), minimal PSII-LEF (10%), and grow faster than any known phototroph (doubling time 1.3h). Adding a synthetic quinone in excess to supplement the PQ pool fully uncouples PSII-CEF from its natural regulation and produces maximum PSII-LEF. Upon dark adaptation PSII-LEF rapidly reverts to PSII-CEF, a transient protection mechanism to conserve water and minimize the cost of antenna biosynthesis. The capacity of the electron acceptor pool (plastoquinone pool), and the characteristic times for exchange of (PQH2)B with PQpool and reoxidation of (PQH2)pool were determined.


Assuntos
Chlorella/metabolismo , Elétrons , Microalgas/metabolismo , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/metabolismo , Trifosfato de Adenosina/biossíntese , Chlorella/crescimento & desenvolvimento , Chlorella/efeitos da radiação , Clorofila/metabolismo , Transporte de Elétrons , Cinética , Luz , Microalgas/crescimento & desenvolvimento , Microalgas/efeitos da radiação , Oxirredução , Oxigênio/metabolismo , Plastoquinona/análogos & derivados , Plastoquinona/metabolismo , Termodinâmica , Tilacoides/metabolismo , Tilacoides/efeitos da radiação
15.
Biochim Biophys Acta Bioenerg ; 1858(9): 750-762, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28554565

RESUMO

Previously suggested antioxidant mechanisms for mitochondria-targeted plastoquinone SkQ1 included: i) ion-pairing of cationic SkQ1+ with free fatty acid anions resulting in uncoupling; ii) SkQ1H2 ability to interact with lipoperoxyl radical; iii) interference with electron flow at the inner ubiquinone (Q) binding site of Complex III (Qi), involving the reduction of SkQ1 to SkQ1H2 by ubiquinol. We elucidated SkQ1 antioxidant properties by confocal fluorescence semi-quantification of mitochondrial superoxide (Jm) and cytosolic H2O2 (Jc) release rates in HepG2 cells. Only in glycolytic cells, SkQ1 prevented the rotenone-induced enhancement of Jm and Jc but not basal releases without rotenone. The effect ceased in glutaminolytic aglycemic cells, in which the redox parameter NAD(P)H/FAD increased after rotenone in contrast to its decrease in glycolytic cells. Autofluorescence decay indicated decreased NADPH/NADH ratios with rotenone in both metabolic modes. SkQ1 did not increase cell respiration and diminished Jm established high by antimycin or myxothiazol but not by stigmatellin. The revealed SkQ1 antioxidant modes reflect its reduction to SkQ1H2 at Complex I IQ or Complex III Qi site. Both reductions diminish electron diversions to oxygen thus attenuating superoxide formation. Resulting SkQ1H2 oxidizes back to SkQ1at the second (flavin) Complex I site, previously indicated for MitoQ10. Regeneration proceeds only at lower NAD(P)H/FAD in glycolytic cells. In contrast, cyclic SkQ1 reduction/SkQ1H2 oxidation does not substantiate antioxidant activity in intact cells in the absence of oxidative stress (neither pro-oxidant activity, representing a great advantage). A targeted delivery to oxidative-stressed tissues is suggested for the effective antioxidant therapy based on SkQ1.


Assuntos
Antioxidantes/farmacologia , Mitocôndrias/efeitos dos fármacos , Fosforilação Oxidativa , Plastoquinona/análogos & derivados , Antimicina A/análogos & derivados , Antimicina A/farmacologia , Complexo I de Transporte de Elétrons/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Glicólise , Células Hep G2 , Humanos , Metacrilatos/farmacologia , Mitocôndrias/metabolismo , NAD/metabolismo , Oxirredução , Estresse Oxidativo , Plastoquinona/farmacologia , Polienos/farmacologia , Rotenona/farmacologia , Superóxidos/metabolismo , Tiazóis/farmacologia
16.
Bull Exp Biol Med ; 162(6): 730-733, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28429222

RESUMO

The effect of mitochondria-targeted antioxidant 10-(6'-plastoquinonyl) decyltriphenylphosphonium bromide (SkQ1) and its fragment dodecyltriphenylphosphonium (C12TPP), weak uncouplers of respiration and oxidative phosphorylation, was studied using a mouse model of carrageenan-induced acute inflammation in the subcutaneous air pouch. In our model, SkQ1 demonstrated a strong anti-inflammatory effect that manifested in a decrease in the absolute number of inflammatory cells, mainly neutrophils, and their relative number in parallel with an increase in macrophages and mast cell content in the inflammatory exudate. The concentration of proinflammatory cytokine IL-6 in the exudate also tended to decrease. C12TPP produced no significant effect on the inflammation process.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Toxidermias/prevenção & controle , Compostos Organofosforados/farmacologia , Plastoquinona/análogos & derivados , Desacopladores/farmacologia , Animais , Carragenina , Contagem de Células , Respiração Celular/efeitos dos fármacos , Toxidermias/imunologia , Toxidermias/patologia , Inflamação , Interleucina-6/biossíntese , Interleucina-6/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Masculino , Mastócitos/efeitos dos fármacos , Mastócitos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Fosforilação Oxidativa/efeitos dos fármacos , Plastoquinona/farmacologia , Pele/efeitos dos fármacos , Pele/imunologia , Pele/patologia
17.
Oncotarget ; 8(3): 4901-4913, 2017 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-27902484

RESUMO

In the course of cancer progression, epithelial cells often acquire morphological and functional characteristics of mesenchymal cells, a process known as epithelial-to-mesenchymal transition (EMT). EMT provides epithelial cells with migratory, invasive, and stem cell capabilities. Reactive oxygen species produced by mitochondria (mtROS) could be of special importance for pro-tumorigenic signaling and EMT.In our study, we used mitochondria-targeted antioxidant SkQ1 to lower the mtROS level and analyze their role in the regulation of the actin cytoskeleton, adhesion junctions, and signaling pathways critical for tumorigenesis of cervical carcinomas. A decrease in mtROS was found to induce formation of ß-cytoplasmic actin stress fibers and circumferential rings in cervical cancer SiHa and Ca-Ski cells. It was accompanied by an upregulation of E-cadherin in SiHa cells and a downregulation of N-cadherin in Ca-Ski cells. In SiHa cells, an increase in E-cadherin expression was accompanied by a reduction of Snail, E-cadherin negative regulator. A stimulation of mtROS by epidermal growth factor (EGF) caused a Snail upregulation in SiHa cells that could be downregulated by SkQ1. SkQ1 caused a decrease in activation of extracellular-signal-regulated kinases 1 and 2 (ERK1/2) in SiHa and Ca-Ski. EGF produced an opposite effect. Incubation with SkQ1 suppressed EGF-induced p-ERK1/2 upregulation in SiHa, but not in Ca-Ski cells. Thus, we showed that scavenging of mtROS by SkQ1 initiated reversal of EMT and suppressed proliferation of cervical cancer cells.


Assuntos
Antineoplásicos/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Plastoquinona/análogos & derivados , Espécies Reativas de Oxigênio/metabolismo , Neoplasias do Colo do Útero/metabolismo , Actinas/metabolismo , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Plastoquinona/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição da Família Snail/metabolismo
18.
Biochemistry (Mosc) ; 82(12): 1493-1503, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29486699

RESUMO

The therapeutic effect of mitochondria-targeted antioxidant 10-(6´-plastoquinonyl)decyltriphenylphosphonium bromide (SkQ1) in experimental models of acute inflammation and wound repair has been shown earlier. It was suggested that the antiinflammatory activity of SkQ1 is related to its ability to suppress inflammatory activation of the vascular endothelium and neutrophil migration into tissues. Here, we demonstrated that SkQ1 inhibits activation of mast cells (MCs) followed by their degranulation and histamine release in vivo and in vitro. Intraperitoneal injections of SkQ1 in the mouse air-pouch model reduced the number of leukocytes in the air-pouch cavity and significantly decreased the histamine content in it, as well as suppressing MC degranulation in the air-pouch tissue. The direct effect of SkQ1 on MCs was studied in vitro in the rat basophilic leukemia RBL-2H3 cell line. SkQ1 inhibited induced degranulation of RBL-2H3 cells. These results suggest that mitochondrial reactive oxygen species are involved in the activation of MCs. It is known that MCs play a crucial role in regulation of vascular permeability by secreting histamine. Suppression of MC degranulation by SkQ1 might be a significant factor in the antiinflammatory activity of this mitochondria-targeted antioxidant.


Assuntos
Antioxidantes/farmacologia , Degranulação Celular/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Plastoquinona/análogos & derivados , Animais , Linhagem Celular , Injeções Intraperitoneais , Masculino , Mastócitos/citologia , Mastócitos/efeitos dos fármacos , Mastócitos/metabolismo , Camundongos , Mitocôndrias/metabolismo , Plastoquinona/farmacologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Pele/patologia
19.
Biochemistry (Mosc) ; 81(10): 1188-1197, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27908243

RESUMO

Prolonged or excessive increase in the circulatory level of proinflammatory tumor necrosis factor (TNF) leads to abnormal activation and subsequent damage to endothelium. TNF at high concentrations causes apoptosis of endothelial cells. Previously, using mitochondria-targeted antioxidants of SkQ family, we have shown that apoptosis of endothelial cells is dependent on the production of reactive oxygen species (ROS) in mitochondria (mito-ROS). Now we have found that TNF at low concentrations does not cause cell death but activates caspase-3 and caspase-dependent increase in endothelial permeability in vitro. This effect is probably due to the cleavage of ß-catenin - an adherent junction protein localized in the cytoplasm. We have also shown that extracellular matrix metalloprotease 9 (MMP9) VE-cadherin shedding plays a major role in the TNF-induced endothelial permeability. The mechanisms of the caspase-3 and MMP9 activation are probably not related to each other since caspase inhibition did not affect VE-cadherin cleavage and MMP9 inhibition had no effect on the caspase-3 activation. Mitochondria-targeted antioxidant SkQR1 inhibited TNF-induced increase in endothelial permeability. SkQR1 also inhibited caspase-3 activation, ß-catenin cleavage, and MMP9-dependent VE-cadherin shedding. The data suggest that mito-ROS are involved in the increase in endothelial permeability due to the activation of both caspase-dependent cleavage of intracellular proteins and of MMP9-dependent cleavage of the transmembrane cell-to-cell contact proteins.


Assuntos
Antioxidantes/farmacologia , Permeabilidade Capilar/efeitos dos fármacos , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Plastoquinona/análogos & derivados , Rodaminas/farmacologia , Fator de Necrose Tumoral alfa/farmacocinética , Antígenos CD/metabolismo , Apoptose/efeitos dos fármacos , Caderinas/metabolismo , Caspase 3/metabolismo , Caspase 9/metabolismo , Linhagem Celular , Células Endoteliais/citologia , Endotélio Vascular/citologia , Humanos , Mitocôndrias/metabolismo , Plastoquinona/farmacologia
20.
Oxid Med Cell Longev ; 2016: 4650489, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27274778

RESUMO

Background. Chronic pancreatitis is one of the main risk factors for pancreatic cancer. In acute and chronic pancreatitis, oxidative stress is thought to play a key role. In this respect, the recently described mitochondria-targeted antioxidant SkQ1 effectively scavenges reactive oxygen species at nanomolar concentrations. Therefore, we aimed to characterize the influence of SkQ1 on tissue injury and pain in acute and chronic pancreatitis. Methods. Both acute and chronic pancreatitis were induced in C57BL/6 mice by intraperitoneal cerulein injections and treatment with SkQ1 was carried out by peroral applications. Hyperalgesia was assessed by behavioral observation and measurement of abdominal mechanical sensitivity. Blood serum and pancreatic tissue were harvested for analysis of lipase and histology. Results. SkQ1 did not influence pain, serological, or histological parameters of tissue injury in acute pancreatitis. In chronic pancreatitis, a highly significant reduction of pain-related behavior (p < 0.0001) was evident, but histological grading revealed increased tissue injury in SkQ1-treated animals (p = 0.03). Conclusion. After SkQ1 treatment, tissue injury is not ameliorated in acute pancreatitis and increased in chronic pancreatitis. However, we show an analgesic effect in chronic pancreatitis. Further studies will need to elucidate the risks and benefits of mitochondria-targeted antioxidants as an analgesic.


Assuntos
Analgésicos/farmacologia , Antioxidantes/farmacologia , Hiperalgesia/prevenção & controle , Mitocôndrias/efeitos dos fármacos , Pâncreas/efeitos dos fármacos , Pancreatite Crônica/tratamento farmacológico , Pancreatite/tratamento farmacológico , Plastoquinona/análogos & derivados , Doença Aguda , Analgésicos/toxicidade , Animais , Antioxidantes/toxicidade , Comportamento Animal/efeitos dos fármacos , Biomarcadores/sangue , Ceruletídeo , Modelos Animais de Doenças , Feminino , Hiperalgesia/etiologia , Hiperalgesia/psicologia , Lipase/sangue , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Atividade Motora/efeitos dos fármacos , Percepção da Dor/efeitos dos fármacos , Pâncreas/metabolismo , Pâncreas/patologia , Pancreatite/sangue , Pancreatite/induzido quimicamente , Pancreatite/patologia , Pancreatite Crônica/sangue , Pancreatite Crônica/induzido quimicamente , Pancreatite Crônica/patologia , Plastoquinona/farmacologia , Plastoquinona/toxicidade , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA