Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 276
Filtrar
1.
Genes (Basel) ; 15(4)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38674412

RESUMO

Comorbidities are prevalent in digestive cancers, intensifying patient discomfort and complicating prognosis. Identifying potential comorbidities and investigating their genetic connections in a systemic manner prove to be instrumental in averting additional health challenges during digestive cancer management. Here, we investigated 150 diseases across 18 categories by collecting and integrating various factors related to disease comorbidity, such as disease-associated SNPs or genes from sources like MalaCards, GWAS Catalog and UK Biobank. Through this extensive analysis, we have established an integrated pleiotropic gene set comprising 548 genes in total. Particularly, there enclosed the genes encoding major histocompatibility complex or related to antigen presentation. Additionally, we have unveiled patterns in protein-protein interactions and key hub genes/proteins including TP53, KRAS, CTNNB1 and PIK3CA, which may elucidate the co-occurrence of digestive cancers with certain diseases. These findings provide valuable insights into the molecular origins of comorbidity, offering potential avenues for patient stratification and the development of targeted therapies in clinical trials.


Assuntos
Comorbidade , Humanos , Estudo de Associação Genômica Ampla , Pleiotropia Genética , Neoplasias do Sistema Digestório/genética , Neoplasias do Sistema Digestório/epidemiologia , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença , Mapas de Interação de Proteínas/genética
2.
Genome Med ; 16(1): 21, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308367

RESUMO

BACKGROUND: The immune system has a central role in preventing carcinogenesis. Alteration of systemic immune cell levels may increase cancer risk. However, the extent to which common genetic variation influences blood traits and cancer risk remains largely undetermined. Here, we identify pleiotropic variants and predict their underlying molecular and cellular alterations. METHODS: Multivariate Cox regression was used to evaluate associations between blood traits and cancer diagnosis in cases in the UK Biobank. Shared genetic variants were identified from the summary statistics of the genome-wide association studies of 27 blood traits and 27 cancer types and subtypes, applying the conditional/conjunctional false-discovery rate approach. Analysis of genomic positions, expression quantitative trait loci, enhancers, regulatory marks, functionally defined gene sets, and bulk- and single-cell expression profiles predicted the biological impact of pleiotropic variants. Plasma small RNAs were sequenced to assess association with cancer diagnosis. RESULTS: The study identified 4093 common genetic variants, involving 1248 gene loci, that contributed to blood-cancer pleiotropism. Genomic hotspots of pleiotropism include chromosomal regions 5p15-TERT and 6p21-HLA. Genes whose products are involved in regulating telomere length are found to be enriched in pleiotropic variants. Pleiotropic gene candidates are frequently linked to transcriptional programs that regulate hematopoiesis and define progenitor cell states of immune system development. Perturbation of the myeloid lineage is indicated by pleiotropic associations with defined master regulators and cell alterations. Eosinophil count is inversely associated with cancer risk. A high frequency of pleiotropic associations is also centered on the regulation of small noncoding Y-RNAs. Predicted pleiotropic Y-RNAs show specific regulatory marks and are overabundant in the normal tissue and blood of cancer patients. Analysis of plasma small RNAs in women who developed breast cancer indicates there is an overabundance of Y-RNA preceding neoplasm diagnosis. CONCLUSIONS: This study reveals extensive pleiotropism between blood traits and cancer risk. Pleiotropism is linked to factors and processes involved in hematopoietic development and immune system function, including components of the major histocompatibility complexes, and regulators of telomere length and myeloid lineage. Deregulation of Y-RNAs is also associated with pleiotropism. Overexpression of these elements might indicate increased cancer risk.


Assuntos
Estudo de Associação Genômica Ampla , Neoplasias , Humanos , Feminino , Fenótipo , Locos de Características Quantitativas , Pleiotropia Genética , Neoplasias/genética , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença
3.
Am J Hum Genet ; 110(11): 1863-1874, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37879338

RESUMO

Genome-wide association studies (GWASs) across thousands of traits have revealed the pervasive pleiotropy of trait-associated genetic variants. While methods have been proposed to characterize pleiotropic components across groups of phenotypes, scaling these approaches to ultra-large-scale biobanks has been challenging. Here, we propose FactorGo, a scalable variational factor analysis model to identify and characterize pleiotropic components using biobank GWAS summary data. In extensive simulations, we observe that FactorGo outperforms the state-of-the-art (model-free) approach tSVD in capturing latent pleiotropic factors across phenotypes while maintaining a similar computational cost. We apply FactorGo to estimate 100 latent pleiotropic factors from GWAS summary data of 2,483 phenotypes measured in European-ancestry Pan-UK BioBank individuals (N = 420,531). Next, we find that factors from FactorGo are more enriched with relevant tissue-specific annotations than those identified by tSVD (p = 2.58E-10) and validate our approach by recapitulating brain-specific enrichment for BMI and the height-related connection between reproductive system and muscular-skeletal growth. Finally, our analyses suggest shared etiologies between rheumatoid arthritis and periodontal condition in addition to alkaline phosphatase as a candidate prognostic biomarker for prostate cancer. Overall, FactorGo improves our biological understanding of shared etiologies across thousands of GWASs.


Assuntos
Artrite Reumatoide , Estudo de Associação Genômica Ampla , Masculino , Humanos , Estudo de Associação Genômica Ampla/métodos , Herança Multifatorial , Fenótipo , Encéfalo , Artrite Reumatoide/genética , Polimorfismo de Nucleotídeo Único/genética , Pleiotropia Genética
4.
Sci Adv ; 8(16): eabl4602, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35452290

RESUMO

Coronary artery disease (CAD) remains the leading cause of death despite scientific advances. Elucidating shared CAD/pneumonia pathways may reveal novel insights regarding CAD pathways. We performed genome-wide pleiotropy analyses of CAD and pneumonia, examined the causal effects of the expression of genes near independently replicated SNPs and interacting genes with CAD and pneumonia, and tested interactions between disruptive coding mutations of each pleiotropic gene and smoking status on CAD and pneumonia risks. Identified pleiotropic SNPs were annotated to ADAMTS7 and IL6R. Increased ADAMTS7 expression across tissues consistently showed decreased risk for CAD and increased risk for pneumonia; increased IL6R expression showed increased risk for CAD and decreased risk for pneumonia. We similarly observed opposing CAD/pneumonia effects for NLRP3. Reduced ADAMTS7 expression conferred a reduced CAD risk without increased pneumonia risk only among never-smokers. Genetic immune-inflammatory axes of CAD linked to respiratory infections implicate ADAMTS7 and IL6R, and related genes.


Assuntos
Doença da Artéria Coronariana , Pleiotropia Genética , Pneumonia , Proteína ADAMTS7/genética , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/imunologia , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Pneumonia/genética , Pneumonia/imunologia , Polimorfismo de Nucleotídeo Único , Receptores de Interleucina-6/genética
5.
Psychol Med ; 52(5): 968-978, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-32762793

RESUMO

BACKGROUND: Substance use occurs at a high rate in persons with a psychiatric disorder. Genetically informative studies have the potential to elucidate the etiology of these phenomena. Recent developments in genome-wide association studies (GWAS) allow new avenues of investigation. METHOD: Using results of GWAS meta-analyses, we performed a factor analysis of the genetic correlation structure, a genome-wide search of shared loci, and causally informative tests for six substance use phenotypes (four smoking, one alcohol, and one cannabis use) and five psychiatric disorders (ADHD, anorexia, depression, bipolar disorder, and schizophrenia). RESULTS: Two correlated externalizing and internalizing/psychosis factor were found, although model fit was beneath conventional standards. Of 458 loci reported in previous univariate GWAS of substance use and psychiatric disorders, about 50% (230 loci) were pleiotropic with additional 111 pleiotropic loci not reported from past GWAS. Of the 341 pleiotropic loci, 152 were associated with both substance use and psychiatric disorders, implicating neurodevelopment, cell morphogenesis, biological adhesion pathways, and enrichment in 13 different brain tissues. Seventy-five and 114 pleiotropic loci were specific to either psychiatric disorders or substance use phenotypes, implicating neuronal signaling pathway and clathrin-binding functions/structures, respectively. No consistent evidence for phenotypic causation was found across different Mendelian randomization methods. CONCLUSIONS: Genetic etiology of substance use and psychiatric disorders is highly pleiotropic and involves shared neurodevelopmental path, neurotransmission, and intracellular trafficking. In aggregate, the patterns are not consistent with vertical pleiotropy, more likely reflecting horizontal pleiotropy or more complex forms of phenotypic causation.


Assuntos
Transtornos Mentais , Esquizofrenia , Transtornos Relacionados ao Uso de Substâncias , Pleiotropia Genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Transtornos Mentais/epidemiologia , Transtornos Mentais/genética , Fenótipo , Polimorfismo de Nucleotídeo Único , Esquizofrenia/epidemiologia , Esquizofrenia/genética , Transtornos Relacionados ao Uso de Substâncias/epidemiologia , Transtornos Relacionados ao Uso de Substâncias/genética
6.
Plant Mol Biol ; 108(4-5): 379-398, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34671919

RESUMO

KEY MESSAGE: High levels of two major starch synthases, SSIIa and GBSSI, in ss3a ss4b double mutant rice alter the starch structure but fail to recover the polygonal starch granule morphology. The endosperm starch granule is polygonal in wild-type rice but spherical in double mutant japonica rice lacking genes encoding two of the five major Starch synthase (SS) isozymes expressed in endosperm, SSIIIa and SSIVb. Japonica rice naturally has low levels of SSIIa and Granule-bound SSI (GBSSI). Therefore, introduction of active SSIIa allele and/or high-expressing GBSSI allele from indica rice into the japonica rice mutant lacking SS isozymes can help elucidate the compensatory roles of SS isozymes in starch biosynthesis. In this study, we crossed the ss3a ss4a double mutant japonica rice with the indica rice to generate three new rice lines with high and/or low SSIIa and GBSSI levels, and examined their starch structure, physicochemical properties, and levels of other starch biosynthetic enzymes. Lines with high SSIIa levels showed more SSI and SSIIa bound to starch granule, reduced levels of short amylopectin chains (7 ≤ DP ≤ 12), increased levels of amylopectin chains with DP > 13, and consequently higher gelatinization temperature. Lines with high GBSSI levels showed an increase in amylose content. The ADP-glucose content of the crude extract was high in lines with low or high SSIIa and low GBSSI levels, but was low in lines with high GBSSI. Addition of high SSIIa and GBSSI altered the starch structure and physicochemical properties but did not affect the starch granule morphology, confirming that SSIIIa and SSIVb are key enzymes affecting starch granule morphology in rice. The relationship among SS isozymes and its effect on the amount of substrate (ADP-glucose) is discussed.


Assuntos
Oryza/enzimologia , Sintase do Amido/metabolismo , Amido/metabolismo , Configuração de Carboidratos , Cruzamentos Genéticos , Pleiotropia Genética , Glucose-1-Fosfato Adenililtransferase/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Mutação , Oryza/química , Oryza/genética , Melhoramento Vegetal , Sementes/anatomia & histologia , Amido/química , Sintase do Amido/química , Sintase do Amido/genética
7.
Geroscience ; 44(1): 265-280, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34743297

RESUMO

Epidemiological studies report beneficial associations of higher educational attainment (EDU) with Alzheimer's disease (AD). Prior genome-wide association studies (GWAS) also reported variants associated with AD and EDU separately. The analysis of pleiotropic associations with these phenotypes may shed light on EDU-related protection against AD. We performed pleiotropic meta-analyses using Fisher's method and omnibus test applied to summary statistics for single nucleotide polymorphisms (SNPs) associated with AD and EDU in large-scale univariate GWAS at suggestive-effect (5 × 10-8 < p < 0.1) and genome-wide (p ≤ 5 × 10-8) significance levels. We report 53 SNPs that attained p ≤ 5 × 10-8 at least in one of the pleiotropic meta-analyses and were reported in the univariate GWAS at 5 × 10-8 < p < 0.1. Of them, there were 46 pleiotropic SNPs according to Fisher's method. Additionally, Fisher's method identified 25 of 206 SNPs with pleiotropic effects, which attained p ≤ 5 × 10-8 in the univariate GWAS. We showed that a large fraction of the pleiotropic associations was affected by a counterintuitive phenomenon of antagonistic genetic heterogeneity, which explains the increase, rather than decrease, of the significance of the pleiotropic associations in the omnibus test. Functional enrichment analysis showed that apart from cancers, gene set harboring the non-pleiotropic SNPs was characterized by late-onset AD and neurodevelopmental disorders. The pleiotropic gene set was characterized by a broad spectrum of progressive neurological and neuromuscular diseases and immune-mediated conditions, including progressive motor neuropathy, multiple sclerosis, Parkinson's disease, and severe AD. Our results suggest that disentangling genes harboring variants with and without pleiotropic associations with AD and EDU is promising for dissecting heterogeneity in biological mechanisms of AD.


Assuntos
Doença de Alzheimer , Estudo de Associação Genômica Ampla , Doença de Alzheimer/genética , Pleiotropia Genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Humanos , Polimorfismo de Nucleotídeo Único
8.
Mol Genet Genomics ; 297(1): 19-32, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34694461

RESUMO

Oral inflammatory diseases (OIDs) are a group of dental diseases with multiple clinical manifestations that impact the majority of the world's population. Many studies have investigated the associations between individual OID traits and genomic variants, but whether pleiotropic loci are shared by oral inflammatory traits remains poorly understood. Here, we conducted multitrait joint analyses based on the summary statistics of genome-wide association studies (GWASs) of five dental traits from the UK Biobank. Among these genome-wide significant loci, two were novel for both painful gums and toothache. We identified causal variants at each novel locus, and functional annotation based on multiomics data suggested IL10 and IL12A/TRIM59 as potential candidate genes at the novel pleiotropic loci. Subsequent analyses of pathway enrichment and protein-protein interaction networks suggested the involvement of the candidate genes in immune regulation. In conclusion, our results uncover novel pleiotropic loci for OID traits and highlight the importance of immune regulation in the pathogenesis of OIDs. These findings will enhance our understanding of the pathogenesis of OIDs and be beneficial for risk screening, prevention, and the development of novel drugs targeting the immune regulation of OIDs.


Assuntos
Pleiotropia Genética , Doenças da Boca/genética , Estomatite/genética , Estudos de Coortes , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Inflamação/epidemiologia , Inflamação/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Doenças da Boca/epidemiologia , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Característica Quantitativa Herdável , Estomatite/epidemiologia , Doenças Estomatognáticas/epidemiologia , Doenças Estomatognáticas/genética , Proteínas com Motivo Tripartido/genética , Reino Unido/epidemiologia
9.
Genes (Basel) ; 12(10)2021 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-34680904

RESUMO

In recent years, evidence has accumulated with regard to the ubiquity of pleiotropy across the genome, and shared genetic etiology is thought to play a large role in the widespread comorbidity among psychiatric disorders and risk factors. Recent methods investigate pleiotropy by estimating genetic correlation from genome-wide association summary statistics. More comprehensive estimates can be derived from the known relatedness between genetic relatives. Analysis of extended twin pedigree data allows for the estimation of genetic correlation for additive and non-additive genetic effects, as well as a shared household effect. Here we conduct a series of bivariate genetic analyses in extended twin pedigree data on lifetime major depressive disorder (MDD) and three indicators of lifestyle, namely smoking behavior, physical inactivity, and obesity, decomposing phenotypic variance and covariance into genetic and environmental components. We analyze lifetime MDD and lifestyle data in a large multigenerational dataset of 19,496 individuals by variance component analysis in the 'Mendel' software. We find genetic correlations for MDD and smoking behavior (rG = 0.249), physical inactivity (rG = 0.161), body-mass index (rG = 0.081), and obesity (rG = 0.155), which were primarily driven by additive genetic effects. These outcomes provide evidence in favor of a shared genetic etiology between MDD and the lifestyle factors.


Assuntos
Transtorno Depressivo Maior/genética , Estilo de Vida , Gêmeos Monozigóticos/genética , Adulto , Idoso , Transtorno Depressivo Maior/epidemiologia , Exercício Físico , Feminino , Pleiotropia Genética , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/epidemiologia , Linhagem , Fumar/epidemiologia , Gêmeos Monozigóticos/psicologia
10.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638981

RESUMO

MUC1 is a transmembrane mucin involved in carcinogenesis and cell signaling. Functional MUC1 variants are associated with multiple metabolic and biochemical traits. This study investigated the association of functional MUC1 variants with MUC1 DNA methylation and various metabolic, biochemical, and hematological parameters. In total, 80,728 participants from the Taiwan Biobank were enrolled for association analysis using functional MUC1 variants and a nearby gene regional plot association study. A subgroup of 1686 participants was recruited for MUC1 DNA methylation analysis. After Bonferroni correction, we found that two MUC1 variants, rs4072037 and rs12411216, were significantly associated with waist circumference, systolic blood pressure, hemoglobin A1C, renal functional parameters (blood urea nitrogen, serum creatinine levels, and estimated glomerular filtration rate), albuminuria, hematocrit, hemoglobin, red blood cell count, serum uric acid level, and gout risk, with both favorable and unfavorable effects. Causal inference analysis revealed that the association between the variants and gout was partially dependent on the serum uric acid level. Both gene variants showed genome-wide significant associations with MUC1 gene-body methylation. Regional plot association analysis further revealed lead single-nucleotide polymorphisms situated at the nearby TRIM46-MUC1-THBS3-MTX1 gene region for the studied phenotypes. In conclusion, our data demonstrated the pleiotropic effects of MUC1 variants with novel associations for gout, red blood cell parameters, and MUC1 DNA methylation. These results provide further evidence in understanding the critical role of TRIM46-MUC1-THBS3-MTX1 gene region variants in the pathogenesis of cardiometabolic, renal, and hematological disorders.


Assuntos
Pressão Sanguínea , Pleiotropia Genética , Gota/sangue , Gota/genética , Rim/fisiopatologia , Mucina-1/genética , Polimorfismo de Nucleotídeo Único , Adulto , Aterosclerose/epidemiologia , Aterosclerose/genética , Glicemia/análise , Nitrogênio da Ureia Sanguínea , Índice de Massa Corporal , Metilação de DNA/genética , Feminino , Estudo de Associação Genômica Ampla , Genótipo , Gota/epidemiologia , Gota/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Taiwan/epidemiologia , Ácido Úrico/sangue , Circunferência da Cintura
11.
Int J Mol Sci ; 22(17)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34502065

RESUMO

The novel peptide phoenixin was shown to be involved in several physiological processes ranging from reproduction to food intake. Interest in this protein has steadily increased over the last few years and its known implications have become much broader, playing a role in glucose homeostasis, anxiety, nociception, and pruritus. Phoenixin is expressed in a multitude of organs such as the small intestine, pancreas, and in the hypothalamus, as well as several other brain nuclei influencing numerous physiological functions. Its highly conserved amino-acid sequence amongst species leads to the assumption, that phoenixin might be involved in essential physiological functions. Its co-expression and opposing functionality to the extensively studied peptide nesfatin-1 has given rise to the idea of a possible counterbalancing role. Several recent publications focused on phoenixin's role in stress reactions, namely restraint stress and lipopolysaccharide-induced inflammation response, in which also nesfatin-1 is known to be altered. This review provides an overview on the phoenixins and nesfatin-1 properties and putative effects, and especially highlights the recent developments on their role and interaction in the response to response.


Assuntos
Nucleobindinas/metabolismo , Hormônios Peptídicos/metabolismo , Estresse Psicológico/metabolismo , Animais , Pleiotropia Genética , Humanos , Nucleobindinas/genética , Hormônios Peptídicos/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Estresse Psicológico/genética
12.
Nat Commun ; 12(1): 5254, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34489436

RESUMO

Pdr5, a member of the extensive ABC transporter superfamily, is representative of a clinically relevant subgroup involved in pleiotropic drug resistance. Pdr5 and its homologues drive drug efflux through uncoupled hydrolysis of nucleotides, enabling organisms such as baker's yeast and pathogenic fungi to survive in the presence of chemically diverse antifungal agents. Here, we present the molecular structure of Pdr5 solved with single particle cryo-EM, revealing details of an ATP-driven conformational cycle, which mechanically drives drug translocation through an amphipathic channel, and a clamping switch within a conserved linker loop that acts as a nucleotide sensor. One half of the transporter remains nearly invariant throughout the cycle, while its partner undergoes changes that are transmitted across inter-domain interfaces to support a peristaltic motion of the pumped molecule. The efflux model proposed here rationalises the pleiotropic impact of Pdr5 and opens new avenues for the development of effective antifungal compounds.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Trifosfato de Adenosina/metabolismo , Domínio Catalítico , Microscopia Crioeletrônica , Detergentes/química , Farmacorresistência Fúngica/genética , Pleiotropia Genética , Hidrólise , Mutação , Conformação Proteica , Domínios Proteicos , Rodaminas/química , Rodaminas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Vanadatos/química , Vanadatos/metabolismo
13.
Plant J ; 108(3): 829-840, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34492155

RESUMO

High-molecular-weight glutenin subunits (HMW-GS) are major components of seed storage proteins (SSPs) and largely determine the processing properties of wheat (Triticum aestivum) flour. HMW-GS are encoded by the GLU-1 loci and regulated at the transcriptional level by interaction between cis-elements and transcription factors (TFs). We recently validated the function of conserved cis-regulatory modules (CCRMs) in GLU-1 promoters, but their interacting TFs remained uncharacterized. Here we identified a CCRM-binding NAM-ATAF-CUC (NAC) protein, TaNAC100, through yeast one-hybrid (Y1H) library screening. Transactivation assays demonstrated that TaNAC100 could bind to the GLU-1 promoters and repress their transcription activity in tobacco (Nicotiana benthamiana). Overexpression of TaNAC100 in wheat significantly reduced the contents of HMW-GS and other SSPs as well as total seed protein. This was confirmed by transcriptome analyses. Conversely, enhanced expression of TaNAC100 increased seed starch contents and expression of key starch synthesis-related genes, such as TaGBSS1 and TaSUS2. Y1H assays also indicated TaNAC100 binding with the promoters of TaGBSS1 and TaSUS2. These results suggest that TaNAC100 functions as a hub controlling seed protein and starch synthesis. Phenotypic analyses showed that TaNAC100 overexpression repressed plant height, increased heading date, and promoted seed size and thousand kernel weight. We also investigated sequence variations in a panel of cultivars, but did not identify significant association of TaNAC100 haplotypes with agronomic traits. The findings not only uncover a useful gene for wheat breeding but also provide an entry point to reveal the mechanism underlying metabolic balance of seed storage products.


Assuntos
Proteínas de Plantas/genética , Sementes/metabolismo , Amido/biossíntese , Triticum/fisiologia , Produtos Agrícolas/fisiologia , Regulação da Expressão Gênica de Plantas , Pleiotropia Genética , Haplótipos , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Proteínas de Armazenamento de Sementes/genética , Proteínas de Armazenamento de Sementes/metabolismo , Sementes/genética , Amido/genética
14.
Sci Rep ; 11(1): 18030, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34504115

RESUMO

The mesoderm is considered the youngest of the three germ layers. Although its morphogenesis has been studied in some metazoans, the molecular components underlying this process remain obscure for numerous phyla including the highly diverse Mollusca. Here, expression of Hairy and enhancer of split (HES), Mox, and myosin heavy chain (MHC) was investigated in Acanthochitona fascicularis, a representative of Polyplacophora with putative ancestral molluscan features. While AfaMHC is expressed throughout myogenesis, AfaMox1 is only expressed during early stages of mesodermal band formation and in the ventrolateral muscle, an autapomorphy of the polyplacophoran trochophore. Comparing our findings to previously published data across Metazoa reveals Mox expression in the mesoderm in numerous bilaterians including gastropods, polychaetes, and brachiopods. It is also involved in myogenesis in molluscs, annelids, tunicates, and craniates, suggesting a dual role of Mox in mesoderm and muscle formation in the last common bilaterian ancestor. AfaHESC2 is expressed in the ectoderm of the polyplacophoran gastrula and later in the mesodermal bands and in putative neural tissue, whereas AfaHESC7 is expressed in the trochoblasts of the gastrula and during foregut formation. This confirms the high developmental variability of HES gene expression and demonstrates that Mox and HES genes are pleiotropic.


Assuntos
Pleiotropia Genética , Proteínas de Homeodomínio/genética , Mesoderma/metabolismo , Cadeias Pesadas de Miosina/genética , Poliplacóforos/genética , Fatores de Transcrição HES-1/genética , Animais , Anelídeos/classificação , Anelídeos/genética , Evolução Biológica , Gastrulação/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Mesoderma/citologia , Mesoderma/crescimento & desenvolvimento , Morfogênese/genética , Cadeias Pesadas de Miosina/metabolismo , Filogenia , Poliplacóforos/classificação , Poliplacóforos/crescimento & desenvolvimento , Poliplacóforos/metabolismo , Fatores de Transcrição HES-1/metabolismo , Urocordados/classificação , Urocordados/genética
15.
Sci Rep ; 11(1): 17980, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34504188

RESUMO

Cardiovacular disease (CVD) is the leading cause of death among older adults and is often accompanied by functional decline. It is unclear what is driving this co-occurrence, but it may be behavioral, environmental and/or genetic. We used a family-based study to estimate the phenotypic and shared genetic correlation between CVD risk factors and physical and cognitive functional measures. Participants (n = 1,881) were from the Long Life Family Study, which enrolled families based on their exceptional longevity (sample mean age = 69.4 years, 44% female). Cardiovascular disease risk factors included carotid vessel measures [intima-media thickness and inter-adventitial diameter], obesity [body mass index (BMI) and waist circumference], and hypertension [systolic and diastolic blood pressures]. Function was measured in the physical [gait speed, grip strength, chair stand] and cognitive [digital symbol substitution test, retained and working memory, semantic fluency, and trail making tests] domains. We used SOLAR to estimate the genetic, environmental, and phenotypic correlation between each pair adjusting for age, age2, sex, field center, smoking, height, and weight. There were significant phenotypic correlations (range |0.05-0.22|) between CVD risk factors and physical and cognitive function (all P < 0.05). Most significant genetic correlations (range |0.21-0.62|) were between CVD risk factorsand cognitive function, although BMI and waist circumference had significant genetic correlation with gait speed and chair stand time (range |0.29-0.53|; all P < 0.05). These results suggest that CVD risk factors may share a common genetic-and thus, biologic-basis with both cognitive and physical function. This is particularly informative for research into the genetic determinants of chronic disease.


Assuntos
Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/genética , Cognição , Família , Pleiotropia Genética , Hipertensão/epidemiologia , Longevidade/genética , Obesidade/epidemiologia , Desempenho Físico Funcional , Idoso , Idoso de 80 Anos ou mais , Pressão Sanguínea , Índice de Massa Corporal , Espessura Intima-Media Carotídea , Estudos de Coortes , Comorbidade , Dinamarca/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Estados Unidos/epidemiologia , Circunferência da Cintura , Velocidade de Caminhada
16.
Nucleic Acids Res ; 49(15): 8535-8555, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34358317

RESUMO

Gene deletion and gene expression alteration can lead to growth defects that are amplified or reduced when a second mutation is present in the same cells. We performed 154 genetic interaction mapping (GIM) screens with query mutants related with RNA metabolism and estimated the growth rates of about 700 000 double mutant Saccharomyces cerevisiae strains. The tested targets included the gene deletion collection and 900 strains in which essential genes were affected by mRNA destabilization (DAmP). To analyze the results, we developed RECAP, a strategy that validates genetic interaction profiles by comparison with gene co-citation frequency, and identified links between 1471 genes and 117 biological processes. In addition to these large-scale results, we validated both enhancement and suppression of slow growth measured for specific RNA-related pathways. Thus, negative genetic interactions identified a role for the OCA inositol polyphosphate hydrolase complex in mRNA translation initiation. By analysis of suppressors, we found that Puf4, a Pumilio family RNA binding protein, inhibits ribosomal protein Rpl9 function, by acting on a conserved UGUAcauUA motif located downstream the stop codon of the RPL9B mRNA. Altogether, the results and their analysis should represent a useful resource for discovery of gene function in yeast.


Assuntos
Genes Fúngicos , RNA Fúngico/metabolismo , Saccharomyces cerevisiae/genética , Alelos , Deleção de Genes , Pleiotropia Genética , Fosfatos de Inositol/metabolismo , Iniciação Traducional da Cadeia Peptídica , Estabilidade de RNA , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/fisiologia , Proteínas Ribossômicas/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiologia
17.
Aging Cell ; 20(9): e13443, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34363732

RESUMO

While insulin-like growth factor-1 (IGF-1) is a well-established modulator of aging and longevity in model organisms, its role in humans has been controversial. In this study, we used the UK Biobank (n = 440,185) to resolve previous ambiguities in the relationship between serum IGF-1 levels and clinical disease. We examined prospective associations of serum IGF-1 with mortality, dementia, vascular disease, diabetes, osteoporosis, and cancer, finding two generalized patterns: First, IGF-1 interacts with age to modify risk in a manner consistent with antagonistic pleiotropy; younger individuals with high IGF-1 are protected from disease, while older individuals with high IGF-1 are at increased risk for incident disease or death. Second, the association between IGF-1 and risk is generally U-shaped, indicating that both high and low levels of IGF-1 may be detrimental. With the exception of a more uniformly positive relationship between IGF-1 and cancer, these effects were remarkably consistent across a wide range of conditions, providing evidence for a unifying pathway that determines risk for most age-associated diseases. These data suggest that IGF-1 signaling could be harmful in older adults, who may actually benefit from the attenuation of biological growth pathways.


Assuntos
Pleiotropia Genética/genética , Fator de Crescimento Insulin-Like I/genética , Adulto , Fatores Etários , Estudos de Coortes , Feminino , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Pessoa de Meia-Idade , Transdução de Sinais/genética
18.
Br J Cancer ; 125(8): 1135-1145, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34341517

RESUMO

BACKGROUND: Despite a modest association between tobacco smoking and breast cancer risk reported by recent epidemiological studies, it is still equivocal whether smoking is causally related to breast cancer risk. METHODS: We applied Mendelian randomisation (MR) to evaluate a potential causal effect of cigarette smoking on breast cancer risk. Both individual-level data as well as summary statistics for 164 single-nucleotide polymorphisms (SNPs) reported in genome-wide association studies of lifetime smoking index (LSI) or cigarette per day (CPD) were used to obtain MR effect estimates. Data from 108,420 invasive breast cancer cases and 87,681 controls were used for the LSI analysis and for the CPD analysis conducted among ever-smokers from 26,147 cancer cases and 26,072 controls. Sensitivity analyses were conducted to address pleiotropy. RESULTS: Genetically predicted LSI was associated with increased breast cancer risk (OR 1.18 per SD, 95% CI: 1.07-1.30, P = 0.11 × 10-2), but there was no evidence of association for genetically predicted CPD (OR 1.02, 95% CI: 0.78-1.19, P = 0.85). The sensitivity analyses yielded similar results and showed no strong evidence of pleiotropic effect. CONCLUSION: Our MR study provides supportive evidence for a potential causal association with breast cancer risk for lifetime smoking exposure but not cigarettes per day among smokers.


Assuntos
Neoplasias da Mama/epidemiologia , Fumar Cigarros/epidemiologia , Polimorfismo de Nucleotídeo Único , Neoplasias da Mama/etiologia , Neoplasias da Mama/genética , Estudos de Casos e Controles , Fumar Cigarros/efeitos adversos , Fumar Cigarros/genética , Feminino , Pleiotropia Genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Técnicas de Genotipagem , Humanos , Análise da Randomização Mendeliana
19.
Genet Sel Evol ; 53(1): 58, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34238208

RESUMO

BACKGROUND: Imputation to whole-genome sequence is now possible in large sheep populations. It is therefore of interest to use this data in genome-wide association studies (GWAS) to investigate putative causal variants and genes that underpin economically important traits. Merino wool is globally sought after for luxury fabrics, but some key wool quality attributes are unfavourably correlated with the characteristic skin wrinkle of Merinos. In turn, skin wrinkle is strongly linked to susceptibility to "fly strike" (Cutaneous myiasis), which is a major welfare issue. Here, we use whole-genome sequence data in a multi-trait GWAS to identify pleiotropic putative causal variants and genes associated with changes in key wool traits and skin wrinkle. RESULTS: A stepwise conditional multi-trait GWAS (CM-GWAS) identified putative causal variants and related genes from 178 independent quantitative trait loci (QTL) of 16 wool and skin wrinkle traits, measured on up to 7218 Merino sheep with 31 million imputed whole-genome sequence (WGS) genotypes. Novel candidate gene findings included the MAT1A gene that encodes an enzyme involved in the sulphur metabolism pathway critical to production of wool proteins, and the ESRP1 gene. We also discovered a significant wrinkle variant upstream of the HAS2 gene, which in dogs is associated with the exaggerated skin folds in the Shar-Pei breed. CONCLUSIONS: The wool and skin wrinkle traits studied here appear to be highly polygenic with many putative candidate variants showing considerable pleiotropy. Our CM-GWAS identified many highly plausible candidate genes for wool traits as well as breech wrinkle and breech area wool cover.


Assuntos
Pleiotropia Genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Ovinos/genética , Animais , Hialuronan Sintases/genética , Metionina Adenosiltransferase/genética , Herança Multifatorial , Proteínas de Ligação a RNA/genética , Fenômenos Fisiológicos da Pele/genética , Fibra de Lã/normas
20.
Ann Hum Genet ; 85(6): 201-212, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34115876

RESUMO

Bone mineral density (BMD) and whole-body lean mass (WBLM) are two important phenotypes of osteoporosis and sarcopenia. Previous studies have shown that BMD and lean mass were phenotypically and genetically correlated. To identify the novel common genetic factors shared between BMD and WBLM, we performed the conditional false discovery rate (cFDR) analysis using summary data of the genome-wide association study of femoral neck BMD (n = 53,236) and WBLM (n = 38,292) from the Genetic Factors for Osteoporosis Consortium (GEFOS). We identified eight pleiotropic Single Nucleotide Polymorphism (SNPs) (PLCL1 rs11684176 and rs2880389, JAZF1 rs198, ADAMTSL3 rs10906982, RFTN2/MARS2 rs7340470, SH3GL3 rs1896797, ST7L rs10776755, ANKRD44/SF3B1 rs11888760) significantly associated with femoral neck BMD and WBLM (ccFDR < 0.05). Bayesian fine-mapping analysis showed that rs11888760, rs198, and rs1896797 were the possible functional variants in the ANKRD44/SF3B1, JAZF1i, and SH3GL3 loci, respectively. Functional annotation suggested that rs11888760 was likely to comprise a DNA regulatory element and linked to the expression of RFTN2 and PLCL1. PLCL1 showed differential expression in laryngeal posterior cricoarytenoid muscle between rats of 6 months and 30 months of age. Our findings, together with PLCL1's potential functional relevance to bone and skeletal muscle function, suggested that rs11888760 was the possible pleiotropic functional variants appearing to coregulate both bone and muscle metabolism through regulating the expression of PLCL1. The findings enhanced our knowledge of genetic associations between BMD and lean mass and provide a rationale for subsequent functional studies of the implicated genes in the pathophysiology of diseases, such as osteoporosis and sarcopenia.


Assuntos
Adiposidade/genética , Densidade Óssea/genética , Pleiotropia Genética , Fosfoinositídeo Fosfolipase C/genética , Animais , Teorema de Bayes , Estudo de Associação Genômica Ampla , Humanos , Osteoporose/genética , Polimorfismo de Nucleotídeo Único , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA