Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Exp Dermatol ; 28(4): 413-418, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30457678

RESUMO

Chemotherapy and radiotherapy are common modalities for cancer treatment. While targeting rapidly growing cancer cells, they also damage normal tissues and cause adverse effects. From the initial insult such as DNA double-strand break, production of reactive oxygen species (ROS) and a general stress response, there are complex regulatory mechanisms that control the actual tissue damage process. Besides apoptosis, a range of outcomes for the damaged cells are possible including cell cycle arrest, senescence, mitotic catastrophe, and inflammatory responses and fibrosis at the tissue level. Feather and hair are among the most actively proliferating (mini-)organs and are highly susceptible to both chemotherapy and radiotherapy damage, thus provide excellent, experimentally tractable model systems for dissecting how normal tissues respond to such injuries. Taking a comparative biology approach to investigate this has turned out to be particularly productive. Started in chicken feather and then extended to murine hair follicles, it was revealed that in addition to p53-mediated apoptosis, several other previously overlooked mechanisms are involved. Specifically, Shh, Wnt, mTOR, cytokine signalling and ROS-mediated degradation of adherens junctions have been implicated in the damage and/or reparative regeneration process. Moreover, we show here that inflammatory responses, which can be prominent upon histological examination of chemo- or radiotherapy-damaged hair follicle, may not be essential for the hair loss phenotype. These studies point to fundamental, evolutionarily conserved mechanisms in controlling tissue responses in vivo, and suggest novel strategies for the prevention and management of adverse effects that arise from chemo- or radiotherapy.


Assuntos
Alopecia/etiologia , Antineoplásicos/efeitos adversos , Plumas/efeitos dos fármacos , Plumas/efeitos da radiação , Folículo Piloso/efeitos dos fármacos , Folículo Piloso/efeitos da radiação , Radioterapia/efeitos adversos , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Diferenciação Celular/efeitos dos fármacos , Modelos Animais de Doenças , Epitélio/efeitos dos fármacos , Epitélio/metabolismo , Proteínas Hedgehog/metabolismo , Piroptose , Espécies Reativas de Oxigênio , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação
2.
Methods Mol Biol ; 1650: 299-307, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28809030

RESUMO

Chemo- and radiation therapy are the main modalities for cancer treatment. A major limiting factor is their toxicity to normal tissue, thus reducing the dose and duration of the therapy. The hair follicle, gastrointestinal tract, and hematopoietic system are among the target organs that often show side effects in cancer therapy . Although these organs are highly mitotic in common, the molecular mechanism of the damage remains unclear. The feather follicle is a fast-growing mini-organ, which allows observation and manipulation on each follicle individually. As a model system, the feather follicle is advantageous because of the following reasons: (1) its complex structure is regulated by a set of evolutionarily conserved molecular pathways, thus facilitating the effort to dissect the specific signaling events involved; (2) its morphology allows the continuity of normal-perturbed-normal structure in a single feather, thus "recording" the damaging effect of chemo- and radiation therapy; (3) further histological and molecular analysis of the damage response can be performed on each plucked feather; thus, it is not necessary to sacrifice the experimental animal. Here, we describe methods of applying the feather model to study the molecular mechanism of chemo- and radiation therapy-induced tissue damage.


Assuntos
Antineoplásicos/farmacologia , Plumas/patologia , Folículo Piloso/patologia , Radiação Ionizante , Animais , Galinhas , Plumas/efeitos dos fármacos , Plumas/efeitos da radiação , Folículo Piloso/efeitos dos fármacos , Folículo Piloso/efeitos da radiação
3.
Sci Rep ; 6: 22969, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26976674

RESUMO

Ionizing radiation has been shown to produce negative effects on organisms, although little is known about its ecological and evolutionary effects. As a study model, we isolated bacteria associated with feathers from barn swallows Hirundo rustica from three study areas around Chernobyl differing in background ionizing radiation levels and one control study site in Denmark. Each bacterial community was exposed to four different γ radiation doses ranging from 0.46 to 3.96 kGy to test whether chronic exposure to radiation had selected for resistant bacterial strains. Experimental radiation duration had an increasingly overall negative effect on the survival of all bacterial communities. After exposure to γ radiation, bacteria isolated from the site with intermediate background radiation levels survived better and produced more colonies than the bacterial communities from other study sites with higher or lower background radiation levels. Long-term effects of radiation in natural populations might be an important selective pressure on traits of bacteria that facilitate survival in certain environments. Our findings indicate the importance of further studies to understand the proximate mechanisms acting to buffer the negative effects of ionizing radiation in natural populations.


Assuntos
Bactérias/efeitos da radiação , Acidente Nuclear de Chernobyl , Plumas/efeitos da radiação , Radiação Ionizante , Animais , Bactérias/classificação , Bactérias/genética , Dinamarca , Relação Dose-Resposta à Radiação , Plumas/microbiologia , Feminino , Raios gama , Masculino , Viabilidade Microbiana/efeitos da radiação , Filogenia , RNA Ribossômico 16S/genética , Monitoramento de Radiação/métodos , Análise de Sequência de DNA , Ucrânia
4.
PLoS One ; 9(2): e89234, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24586618

RESUMO

Ionizing radiation (IR) is a common therapeutic agent in cancer therapy. It damages normal tissue and causes side effects including dermatitis and mucositis. Here we use the feather follicle as a model to investigate the mechanism of IR-induced tissue damage, because any perturbation of feather growth will be clearly recorded in its regular yet complex morphology. We find that IR induces defects in feather formation in a dose-dependent manner. No abnormality was observed at 5 Gy. A transient, reversible perturbation of feather growth was induced at 10 Gy, leading to defects in the feather structure. This perturbation became irreversible at 20 Gy. Molecular and cellular analysis revealed P53 activation, DNA damage and repair, cell cycle arrest and apoptosis in the pathobiology. IR also induces patterning defects in feather formation, with disrupted branching morphogenesis. This perturbation is mediated by cytokine production and Stat1 activation, as manipulation of cytokine levels or ectopic Stat1 over-expression also led to irregular feather branching. Furthermore, AG-490, a chemical inhibitor of Stat1 signaling, can partially rescue IR-induced tissue damage. Our results suggest that the feather follicle could serve as a useful model to address the in vivo impact of the many mechanisms of IR-induced tissue damage.


Assuntos
Apoptose/efeitos da radiação , Dano ao DNA/efeitos da radiação , Plumas/patologia , Plumas/efeitos da radiação , Radiação Ionizante , Proteína Supressora de Tumor p53/metabolismo , Animais , Ciclo Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Galinhas , Reparo do DNA/efeitos da radiação , Plumas/crescimento & desenvolvimento , Técnicas Imunoenzimáticas , Hibridização In Situ , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA