Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
1.
Technol Cancer Res Treat ; 23: 15330338241254060, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38752262

RESUMO

Objectives: This study aimed to build a comprehensive deep-learning model for the prediction of radiation pneumonitis using chest computed tomography (CT), clinical, dosimetric, and laboratory data. Introduction: Radiation therapy is an effective tool for treating patients with lung cancer. Despite its effectiveness, the risk of radiation pneumonitis limits its application. Although several studies have demonstrated models to predict radiation pneumonitis, no reliable model has been developed yet. Herein, we developed prediction models using pretreatment chest CT and various clinical data to assess the likelihood of radiation pneumonitis in lung cancer patients. Methods: This retrospective study analyzed 3-dimensional (3D) lung volume data from chest CT scans and 27 features including dosimetric, clinical, and laboratory data from 548 patients who were treated at our institution between 2010 and 2021. We developed a neural network, named MergeNet, which processes lung 3D CT, clinical, dosimetric, and laboratory data. The MergeNet integrates a convolutional neural network with subsequent fully connected layers. A support vector machine (SVM) and light gradient boosting machine (LGBM) model were also implemented for comparison. For comparison, the convolution-only neural network was implemented as well. Three-dimensional Resnet-10 network and 4-fold cross-validation were used. Results: Classification performance was quantified by using the area under the receiver operative characteristic curve (AUC) metrics. MergeNet showed the AUC of 0.689. SVM, LGBM, and convolution-only networks showed AUCs of 0.525, 0.541, and 0.550, respectively. Application of DeLong test to pairs of receiver operating characteristic curves respectively yielded P values of .001 for the MergeNet-SVM pair and 0.001 for the MergeNet-LGBM pair. Conclusion: The MergeNet model, which incorporates chest CT, clinical, dosimetric, and laboratory data, demonstrated superior performance compared to other models. However, since its prediction performance has not yet reached an efficient level for clinical application, further research is required. Contribution: This study showed that MergeNet may be an effective means to predict radiation pneumonitis. Various predictive factors can be used together for the radiation pneumonitis prediction task via the MergeNet.


Assuntos
Aprendizado Profundo , Neoplasias Pulmonares , Pneumonite por Radiação , Tomografia Computadorizada por Raios X , Humanos , Pneumonite por Radiação/etiologia , Pneumonite por Radiação/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Feminino , Masculino , Estudos Retrospectivos , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/diagnóstico por imagem , Idoso , Pessoa de Meia-Idade , Redes Neurais de Computação , Curva ROC , Dosagem Radioterapêutica , Adulto , Idoso de 80 Anos ou mais , Prognóstico , Máquina de Vetores de Suporte
2.
Radiother Oncol ; 195: 110266, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38582181

RESUMO

BACKGROUND: Pneumonitis is a well-described, potentially disabling, or fatal adverse effect associated with both immune checkpoint inhibitors (ICI) and thoracic radiotherapy. Accurate differentiation between checkpoint inhibitor pneumonitis (CIP) radiation pneumonitis (RP), and infective pneumonitis (IP) is crucial for swift, appropriate, and tailored management to achieve optimal patient outcomes. However, correct diagnosis is often challenging, owing to overlapping clinical presentations and radiological patterns. METHODS: In this multi-centre study of 455 patients, we used machine learning with radiomic features extracted from chest CT imaging to develop and validate five models to distinguish CIP and RP from COVID-19, non-COVID-19 infective pneumonitis, and each other. Model performance was compared to that of two radiologists. RESULTS: Models to distinguish RP from COVID-19, CIP from COVID-19 and CIP from non-COVID-19 IP out-performed radiologists (test set AUCs of 0.92 vs 0.8 and 0.8; 0.68 vs 0.43 and 0.4; 0.71 vs 0.55 and 0.63 respectively). Models to distinguish RP from non-COVID-19 IP and CIP from RP were not superior to radiologists but demonstrated modest performance, with test set AUCs of 0.81 and 0.8 respectively. The CIP vs RP model performed less well on patients with prior exposure to both ICI and radiotherapy (AUC 0.54), though the radiologists also had difficulty distinguishing this test cohort (AUC values 0.6 and 0.6). CONCLUSION: Our results demonstrate the potential utility of such tools as a second or concurrent reader to support oncologists, radiologists, and chest physicians in cases of diagnostic uncertainty. Further research is required for patients with exposure to both ICI and thoracic radiotherapy.


Assuntos
COVID-19 , Inibidores de Checkpoint Imunológico , Aprendizado de Máquina , Pneumonite por Radiação , Tomografia Computadorizada por Raios X , Humanos , Inibidores de Checkpoint Imunológico/efeitos adversos , Inibidores de Checkpoint Imunológico/uso terapêutico , Pneumonite por Radiação/etiologia , Pneumonite por Radiação/diagnóstico por imagem , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Diagnóstico Diferencial , Pneumonia/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/tratamento farmacológico , SARS-CoV-2
3.
J Nucl Med ; 65(4): 520-526, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38485270

RESUMO

Radiation pneumonitis (RP) that develops early (i.e., within 3 mo) (RPEarly) after completion of concurrent chemoradiation (cCRT) leads to treatment discontinuation and poorer survival for patients with stage III non-small cell lung cancer. Since no RPEarly risk model exists, we explored whether published RP models and pretreatment 18F-FDG PET/CT-derived features predict RPEarly Methods: One hundred sixty patients with stage III non-small cell lung cancer treated with cCRT and consolidative immunotherapy were analyzed for RPEarly Three published RP models that included the mean lung dose (MLD) and patient characteristics were examined. Pretreatment 18F-FDG PET/CT normal-lung SUV featured included the following: 10th percentile of SUV (SUVP10), 90th percentile of SUV (SUVP90), SUVmax, SUVmean, minimum SUV, and SD. Associations between models/features and RPEarly were assessed using area under the receiver-operating characteristic curve (AUC), P values, and the Hosmer-Lemeshow test (pHL). The cohort was randomly split, with similar RPEarly rates, into a 70%/30% derivation/internal validation subset. Results: Twenty (13%) patients developed RPEarly Predictors for RPEarly were MLD alone (AUC, 0.72; P = 0.02; pHL, 0.87), SUVP10, SUVP90, and SUVmean (AUC, 0.70-0.74; P = 0.003-0.006; pHL, 0.67-0.70). The combined MLD and SUVP90 model generalized in the validation subset and was deemed the final RPEarly model (RPEarly risk = 1/[1+e(- x )]; x = -6.08 + [0.17 × MLD] + [1.63 × SUVP90]). The final model refitted in the 160 patients indicated improvement over the published MLD-alone model (AUC, 0.77 vs. 0.72; P = 0.0001 vs. 0.02; pHL, 0.65 vs. 0.87). Conclusion: Patients at risk for RPEarly can be detected with high certainty by combining the normal lung's MLD and pretreatment 18F-FDG PET/CT SUVP90 This refined model can be used to identify patients at an elevated risk for premature immunotherapy discontinuation due to RPEarly and could allow for interventions to improve treatment outcomes.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Pneumonite por Radiação , Humanos , Carcinoma Pulmonar de Células não Pequenas/terapia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Pneumonite por Radiação/diagnóstico por imagem , Pneumonite por Radiação/etiologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Fluordesoxiglucose F18/uso terapêutico , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/tratamento farmacológico , Pulmão , Imunoterapia , Estudos Retrospectivos
4.
Ann Nucl Med ; 38(5): 360-368, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38407800

RESUMO

OBJECTIVE: In this study, the uptake characteristics of [18F]fibroblast activation protein inhibitor (FAPI) molecular imaging probe were investigated in acute radiation pneumonia and lung cancer xenografted mice before and after radiation to assess the future applicability of [18F]FAPI positron emission tomography/computed tomography (PET/CT) imaging in early radiotherapy response. METHODS: Initially, the biodistribution of [18F]FAPI tracer in vivo were studied in healthy mice at each time-point. A comparison of [18F]FAPI and [18F]fluorodeoxyglucose (FDG) PET/CT imaging efficacy in normal ICR, LLC tumor-bearing mice was evaluated. A radiation pneumonia model was then investigated using a gamma counter, small animal PET/CT, and autoradiography. The uptake properties of [18F]FAPI in lung cancer and acute radiation pneumonia were investigated using autoradiography and PET/CT imaging in mice. RESULTS: The tumor area was visible in [18F]FAPI imaging and the tracer was swiftly eliminated from normal tissues and organs. There was a significant increase of [18F]FDG absorption in lung tissue after radiotherapy compared to before radiotherapy, but no significant difference of [18F]FAPI uptake under the same condition. Furthermore, both the LLC tumor volume and the expression of FAP-ɑ decreased after thorax irradiation. Correspondingly, there was no notable [18F]FAPI uptake after irradiation, but there was an increase of [18F]FDG uptake in malignancies and lungs. CONCLUSIONS: The background uptake of [18F]FAPI is negligible. Moreover, the uptake of [18F]FAPI may not be affected by acute radiation pneumonitis compared to [18F]FDG, which may be used to more accurately evaluate early radiotherapy response of lung cancer with acute radiation pneumonia.


Assuntos
Neoplasias Pulmonares , Quinolinas , Pneumonite por Radiação , Animais , Camundongos , Camundongos Endogâmicos ICR , Pneumonite por Radiação/diagnóstico por imagem , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Distribuição Tecidual , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Modelos Animais de Doenças , Radioisótopos de Gálio
5.
Eur J Med Res ; 29(1): 126, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365822

RESUMO

OBJECTIVE: To investigate the value of dual-energy dual-source computed tomography (DSCT) in evaluating pulmonary perfusion changes before and after radiotherapy for esophageal cancer, and its clinical use in the early diagnosis of acute radiation pneumonia (ARP). METHODS: We selected 45 patients with pathologically confirmed esophageal cancer who received radiotherapy (total irradiation dose of 60 Gy). Dual-energy DSCT scans were performed before and after radiotherapy and the normalized iodine concentrations (NIC) in the lung fields of the areas irradiated with doses of > 20 Gy, 10-20 Gy, 5-10 Gy, and < 5 Gy were measured. We also checked for the occurrence of ARP in the patients, and the differences in NIC values and NIC reduction rates before and after radiotherapy were calculated and statistically analyzed. RESULTS: A total of 16 of the 45 patients developed ARP. The NIC values in the lung fields of all patients decreased at different degrees after radiotherapy, and the NIC values in the area where ARP developed, decreased significantly. The rate of NIC reduction and incidence rate of ARP increased gradually with the increasing irradiation dose, and the inter-group difference in NIC reduction rate was statistically significant (P < 0.05). Based on the receiver operating characteristic (ROC) curve analysis, the areas under the curves of NIC reduction rate versus ARP occurrence in the V5-10 Gy, V10-20 Gy, and V> 20 Gy groups were 0.780, 0.808, and 0.772, respectively. Sensitivity of diagnosis was 81.3%, 75.0%, and 68.8% and the specificity was 65.5%, 82.8%, and 79.3%, when taking 12.50%, 16.50%, and 26.0% as the diagnostic thresholds, respectively. The difference in NIC values in the lung fields of V<5 Gy before and after radiotherapy was not statistically significant (P > 0.05). CONCLUSION: The dual-energy DSCT could effectively evaluate pulmonary perfusion changes after radiotherapy for esophageal cancer, and the NIC reduction rate was useful as a reference index to predict ARP and provide further reference for decisions in clinical practice.


Assuntos
Lesão Pulmonar Aguda , Neoplasias Esofágicas , Iodo , Pneumonite por Radiação , Humanos , Pneumonite por Radiação/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Pulmão , Curva ROC , Neoplasias Esofágicas/diagnóstico por imagem , Neoplasias Esofágicas/radioterapia
6.
Radiother Oncol ; 190: 110047, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38070685

RESUMO

PURPOSE: This study aimed to combine clinical/dosimetric factors and handcrafted/deep learning radiomic features to establish a predictive model for symptomatic (grade ≥ 2) radiation pneumonitis (RP) in lung cancer patients who received immunotherapy followed by radiotherapy. MATERIALS AND METHODS: This study retrospectively collected data of 73 lung cancer patients with prior receipt of ICIs who underwent thoracic radiotherapy (TRT). Of these 73 patients, 41 (56.2 %) developed symptomatic grade ≥ 2 RP. RP was defined per multidisciplinary clinician consensus using CTCAE v5.0. Regions of interest (ROIs) (from radiotherapy planning CT images) utilized herein were gross tumor volume (GTV), planning tumor volume (PTV), and PTV-GTV. Clinical/dosimetric (mean lung dose and V5-V30) parameters were collected, and 107 handcrafted radiomic (HCR) features were extracted from each ROI. Deep learning-based radiomic (DLR) features were also extracted based on pre-trained 3D residual network models. HCR models, Fusion HCR model, Fusion HCR + ResNet models, and Fusion HCR + ResNet + Clinical models were built and compared using the receiver operating characteristic (ROC) curve with measurement of the area under the curve (AUC). Five-fold cross-validation was performed to avoid model overfitting. RESULTS: HCR models across various ROIs and the Fusion HCR model showed good predictive ability with AUCs from 0.740 to 0.808 and 0.740-0.802 in the training and testing cohorts, respectively. The addition of DLR features improved the effectiveness of HCR models (AUCs from 0.826 to 0.898 and 0.821-0.898 in both respective cohorts). The best performing prediction model (HCR + ResNet + Clinical) combined HCR & DLR features with 7 clinical/dosimetric characteristics and achieved an average AUC of 0.936 and 0.946 in both respective cohorts. CONCLUSIONS: In patients undergoing combined immunotherapy/RT for lung cancer, integrating clinical/dosimetric factors and handcrafted/deep learning radiomic features can offer a high predictive capacity for RP, and merits further prospective validation.


Assuntos
Neoplasias Pulmonares , Pneumonite por Radiação , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Pneumonite por Radiação/diagnóstico por imagem , Pneumonite por Radiação/etiologia , Estudos Retrospectivos , Radiômica , Dosagem Radioterapêutica
7.
Clin Nucl Med ; 48(10): e468-e469, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37566798

RESUMO

ABSTRACT: 18 F-FDG uptake in radiation pneumonitis is well documented; however, the same is less so for 18 F-floroestradiol (FES), which specifically binds to the estrogen receptors in vivo. We observed increased FES uptake in the right lung of an estrogen receptor positive breast cancer patient who had undergone right modified radical mastectomy followed by radiation therapy to chest wall. The possibility of FES uptake in radiation pneumonitis must therefore be kept in mind while interpreting FES PET.


Assuntos
Neoplasias da Mama , Pneumonite por Radiação , Humanos , Feminino , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/radioterapia , Neoplasias da Mama/metabolismo , Estradiol , Radioisótopos de Flúor , Pneumonite por Radiação/diagnóstico por imagem , Mastectomia , Tomografia por Emissão de Pósitrons
9.
Phys Eng Sci Med ; 46(2): 767-772, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36976438

RESUMO

Radiation pneumonitis (RP) is a serious side effect of radiotherapy in patients with locally advanced non-small-cell lung cancer (NSCLC). Image cropping reduces training noise and may improve classification accuracy. This study proposes a prediction model for RP grade ≥ 2 using a convolutional neural network (CNN) model with image cropping. The 3D computed tomography (CT) images cropped in the whole-body, normal lung (nLung), and nLung regions overlapping the region over 20 Gy (nLung∩20 Gy) used in treatment planning were used as the input data. The output classifies patients as RP grade < 2 or RP grade ≥ 2. The sensitivity, specificity, accuracy, and area under the curve (AUC) were evaluated using the receiver operating characteristic curve (ROC). The accuracy, specificity, sensitivity, and AUC were 53.9%, 80.0%, 25.5%, and 0.58, respectively, for the whole-body method, and 60.0%, 81.7%, 36.4%, and 0.64, respectively, for the nLung method. For the nLung∩20 Gy method, the accuracy, specificity, sensitivity, and AUC improved to 75.7%, 80.0%, 70.9%, and 0.84, respectively. The CNN model, in which the input image is segmented in the normal lung considering the dose distribution, can help predict an RP grade ≥ 2 for NSCLC patients after definitive radiotherapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Pneumonite por Radiação , Humanos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Pneumonite por Radiação/diagnóstico por imagem , Redes Neurais de Computação , Curva ROC
10.
Clin Nucl Med ; 48(5): 437-438, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36800243

RESUMO

ABSTRACT: A 42-year-old woman diagnosed with de-novo stage IV breast cancer underwent 18 F-fluoroestradiol (FES) PET/CT to evaluate the estrogen receptor status of metastatic lesions. The largest pulmonary nodule showed obvious FES uptake, consistent with pulmonary metastases from breast cancer. Interestingly, the images revealed a striking accumulation of FES in ground-glass attenuation in the left lobe of lung, suggestive of radiation pneumonitis.


Assuntos
Neoplasias da Mama , Pneumonite por Radiação , Feminino , Humanos , Adulto , Neoplasias da Mama/radioterapia , Neoplasias da Mama/patologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Estradiol , Pneumonite por Radiação/diagnóstico por imagem , Receptores de Estrogênio , Tomografia por Emissão de Pósitrons/métodos
11.
Radiother Oncol ; 182: 109581, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36842666

RESUMO

PURPOSE: To develop a deep learning model that combines CT and radiation dose (RD) images to predict the occurrence of radiation pneumonitis (RP) in lung cancer patients who received radical (chemo)radiotherapy. METHODS: CT, RD images and clinical parameters were obtained from 314 retrospectively-collected patients (training set) and 35 prospectively-collected patients (test-set-1) who were diagnosed with lung cancer and received radical radiotherapy in the dose range of 50 Gy and 70 Gy. Another 194 (60 Gy group, test-set-2) and 158 (74 Gy group, test-set-3) patients from the clinical trial RTOG 0617 were used for external validation. A ResNet architecture was used to develop a prediction model that combines CT and RD features. Thereafter, the CT and RD weights were adjusted by using 40 patients from test-set-2 or 3 to accommodate cohorts with different clinical settings or dose delivery patterns. Visual interpretation was implemented using a gradient-weighted class activation map (grad-CAM) to observe the area of model attention during the prediction process. To improve the usability, ready-to-use online software was developed. RESULTS: The discriminative ability of a baseline trained model had an AUC of 0.83 for test-set-1, 0.55 for test-set-2, and 0.63 for test-set-3. After adjusting CT and RD weights of the model using a subset of the RTOG-0617 subjects, the discriminatory power of test-set-2 and 3 improved to AUC 0.65 and AUC 0.70, respectively. Grad-CAM showed the regions of interest to the model that contribute to the prediction of RP. CONCLUSION: A novel deep learning approach combining CT and RD images can effectively and accurately predict the occurrence of RP, and this model can be adjusted easily to fit new cohorts.


Assuntos
Aprendizado Profundo , Neoplasias Pulmonares , Pneumonite por Radiação , Humanos , Pneumonite por Radiação/diagnóstico por imagem , Pneumonite por Radiação/etiologia , Estudos Retrospectivos , Neoplasias Pulmonares/radioterapia , Tomografia Computadorizada por Raios X/métodos , Doses de Radiação
12.
Phys Med ; 105: 102505, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36535238

RESUMO

PURPOSE: Radiation pneumonitis (RP) is dose-limiting toxicity for non-small-cell cancer (NSCLC). This study developed an RP prediction model by integrating dose-function features from computed four-dimensional computed tomography (4DCT) ventilation using the least absolute shrinkage and selection operator (LASSO). METHODS: Between 2013 and 2020, 126 NSCLC patients were included in this study who underwent a 4DCT scan to calculate ventilation images. We computed two sets of candidate dose-function features from (1) the percentage volume receiving > 20 Gy or the mean dose on the functioning zones determined with the lower cutoff percentile ventilation value, (2) the functioning zones determined with lower and upper cutoff percentile ventilation value using 4DCT ventilation images. An RP prediction model was developed by LASSO while simultaneously determining the regression coefficient and feature selection through fivefold cross-validation. RESULTS: We found 39.3 % of our patients had a ≥ grade 2 RP. The mean area under the curve (AUC) values for the developed models using clinical, dose-volume, and dose-function features with a lower cutoff were 0.791, and the mean AUC values with lower and upper cutoffs were 0.814. The relative regression coefficient (RRC) on dose-function features with upper and lower cutoffs revealed a relative impact of dose to each functioning zone to RP. RRCs were 0.52 for the mean dose on the functioning zone, with top 20 % of all functioning zone was two times greater than that of 0.19 for these with 60 %-80 % and 0.17 with 40 %-60 % (P < 0.01). CONCLUSIONS: The introduction of dose-function features computed from functioning zones with lower and upper cutoffs in a machine learning framework can improve RP prediction. The RRC given by LASSO using dose-function features allows for the quantification of the RP impact of dose on each functioning zones and having the potential to support treatment planning on functional image-guided radiotherapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Pneumonite por Radiação , Humanos , Pneumonite por Radiação/diagnóstico por imagem , Pneumonite por Radiação/etiologia , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Tomografia Computadorizada Quadridimensional/métodos , Pulmão , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/radioterapia
13.
Int J Radiat Oncol Biol Phys ; 115(3): 746-758, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36031028

RESUMO

PURPOSE: Radiation pneumonitis (RP) is one of the common side effects of radiation therapy in the thoracic region. Radiomics and dosiomics quantify information implicit within medical images and radiation therapy dose distributions. In this study we demonstrate the prognostic potential of radiomics, dosiomics, and clinical features for RP prediction. METHODS AND MATERIALS: Radiomics, dosiomics, dose-volume histogram (DVH) metrics, and clinical parameters were obtained on 314 retrospectively collected and 35 prospectively enrolled patients diagnosed with lung cancer between 2013 to 2019. A radiomics risk score (R score) and dosiomics risk score (D score), as well as a DVH-score, were calculated based on logistic regression after feature selection. Six models were built using different combinations of R score, D score, DVH score, and clinical parameters to evaluate their added prognostic power. Overoptimism was evaluated by bootstrap resampling from the training set, and the prospectively collected cohort was used as the external test set. Model calibration and decision-curve characteristics of the best-performing models were evaluated. For ease of further evaluation, nomograms were constructed for selected models. RESULTS: A model built by integrating all of the R score, D score, and clinical parameters had the best discriminative ability with areas under the curve of 0.793 (95% confidence interval [CI], 0.735-0.851), 0.774 (95% CI, 0.762-0.786), and 0.855 (95% CI, 0.719-0.990) in the training, bootstrapping, and external test sets, respectively. The calibration curve image showed good agreement between the predicted and actual values, with a slope of 1.21 and intercept of -0.04. The decision curve image showed a positive net benefit for the final model based on the nomogram. CONCLUSIONS: Radiomic and dosiomic features have the potential to assist with the prediction of RP, and the combination of radiomics, dosiomics, and clinical parameters led to the best prognostic model in the present study.


Assuntos
Neoplasias Pulmonares , Pneumonite por Radiação , Humanos , Pneumonite por Radiação/diagnóstico por imagem , Pneumonite por Radiação/etiologia , Estudos Retrospectivos , Estudos Prospectivos , Pulmão/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Nomogramas
14.
Front Immunol ; 13: 870842, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35558076

RESUMO

Background: The combination of immunotherapy and chemoradiotherapy has become the standard therapeutic strategy for patients with unresected locally advance-stage non-small cell lung cancer (NSCLC) and induced treatment-related adverse effects, particularly immune checkpoint inhibitor-related pneumonitis (CIP) and radiation pneumonitis (RP). The aim of this study is to differentiate between CIP and RP by pretreatment CT radiomics and clinical or radiological parameters. Methods: A total of 126 advance-stage NSCLC patients with pneumonitis were enrolled in this retrospective study and divided into the training dataset (n =88) and the validation dataset (n = 38). A total of 837 radiomics features were extracted from regions of interest based on the lung parenchyma window of CT images. A radiomics signature was constructed on the basis of the predictive features by the least absolute shrinkage and selection operator. A logistic regression was applied to develop a radiomics nomogram. Receiver operating characteristics curve and area under the curve (AUC) were applied to evaluate the performance of pneumonitis etiology identification. Results: There was no significant difference between the training and the validation datasets for any clinicopathological parameters in this study. The radiomics signature, named Rad-score, consisting of 11 selected radiomics features, has potential ability to differentiate between CIP and RP with the empirical and α-binormal-based AUCs of 0.891 and 0.896. These results were verified in the validation dataset with AUC = 0.901 and 0.874, respectively. The clinical and radiological parameters of bilateral changes (p < 0.001) and sharp border (p = 0.001) were associated with the identification of CIP and RP. The nomogram model showed good performance on discrimination in the training dataset (AUC = 0.953 and 0.950) and in the validation dataset (AUC = 0.947 and 0.936). Conclusions: CT-based radiomics features have potential values for differentiating between patients with CIP and patients with RP. The addition of bilateral changes and sharp border produced superior model performance on classifying, which could be a useful method to improve related clinical decision-making.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Pneumonia , Pneumonite por Radiação , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Humanos , Inibidores de Checkpoint Imunológico/efeitos adversos , Neoplasias Pulmonares/patologia , Nomogramas , Pneumonia/complicações , Pneumonite por Radiação/diagnóstico por imagem , Pneumonite por Radiação/etiologia , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos
15.
PLoS One ; 17(1): e0263292, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35100322

RESUMO

OBJECTIVES: We aimed to explore the synergistic combination of a topologically invariant Betti number (BN)-based signature and a biomarker for the accurate prediction of symptomatic (grade ≥2) radiation-induced pneumonitis (RP+) before stereotactic ablative radiotherapy (SABR) for lung cancer. METHODS: A total of 272 SABR cases with early-stage non-small cell lung cancer were chosen for this study. The occurrence of RP+ was predicted using a support vector machine (SVM) model trained with the combined features of the BN-based signature extracted from planning computed tomography (pCT) images and a pretreatment biomarker, serum Krebs von den Lungen-6 (BN+KL-6 model). In all, 242 (20 RP+ and 222 RP-(grade 1)) and 30 cases (8 RP+ and 22 RP-) were used for training and testing the model, respectively. The BN-based features were extracted from BN maps that characterize topologically invariant heterogeneous traits of potential RP+ lung regions on pCT images by applying histogram- and texture-based feature calculations to the maps. The SVM models were built to predict RP+ patients with a BN signature that was constructed based on the least absolute shrinkage and selection operator logistic regression model. The evaluation of the prediction models was performed based on the area under the receiver operating characteristic curves (AUCs) and accuracy in the test. The performance of the BN+KL-6 model was compared to the performance based on the BN, conventional original pCT, and wavelet decomposition (WD) models. RESULTS: The test AUCs obtained for the BN+KL-6, BN, pCT, and WD models were 0.825, 0.807, 0.642, and 0.545, respectively. The accuracies of the BN+KL-6, BN, pCT, and WD models were found to be 0.724, 0.708, 0.591, and 0.534, respectively. CONCLUSION: This study demonstrated the comprehensive performance of the BN+KL-6 model for the prediction of potential RP+ patients before SABR for lung cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Diagnóstico por Imagem , Pneumonite por Radiação/diagnóstico por imagem , Pneumonite por Radiação/radioterapia , Técnicas Estereotáxicas , Idoso , Idoso de 80 Anos ou mais , Área Sob a Curva , Feminino , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Curva ROC , Estudos Retrospectivos , Máquina de Vetores de Suporte
16.
Med Phys ; 49(3): 1547-1558, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35026041

RESUMO

PURPOSE: Consolidation immunotherapy after completion of chemoradiotherapy has become the standard of care for unresectable locally advanced non-small cell lung cancer and can induce potentially severe and life-threatening adverse events, including both immune checkpoint inhibitor-related pneumonitis (CIP) and radiation pneumonitis (RP), which are very challenging for radiologists to diagnose. Differentiating between CIP and RP has significant implications for clinical management such as the treatments for pneumonitis and the decision to continue or restart immunotherapy. The purpose of this study is to differentiate between CIP and RP by a CT radiomics approach. METHODS: We retrospectively collected the CT images and clinical information of patients with pneumonitis who received immune checkpoint inhibitor (ICI) only (n = 28), radiotherapy (RT) only (n = 31), and ICI+RT (n = 14). Three kinds of radiomic features (intensity histogram, gray-level co-occurrence matrix [GLCM] based, and bag-of-words [BoW] features) were extracted from CT images, which characterize tissue texture at different scales. Classification models, including logistic regression, random forest, and linear SVM, were first developed and tested in patients who received ICI or RT only with 10-fold cross-validation and further tested in patients who received ICI+RT using clinicians' diagnosis as a reference. RESULTS: Using 10-fold cross-validation, the classification models built on the intensity histogram features, GLCM-based features, and BoW features achieved an area under curve (AUC) of 0.765, 0.848, and 0.937, respectively. The best model was then applied to the patients receiving combination treatment, achieving an AUC of 0.896. CONCLUSIONS: This study demonstrates the promising potential of radiomic analysis of CT images for differentiating between CIP and RP in lung cancer, which could be a useful tool to attribute the cause of pneumonitis in patients who receive both ICI and RT.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Pneumonite por Radiação , Carcinoma Pulmonar de Células não Pequenas/complicações , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Humanos , Inibidores de Checkpoint Imunológico/efeitos adversos , Neoplasias Pulmonares/complicações , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Aprendizado de Máquina , Pneumonite por Radiação/diagnóstico por imagem , Pneumonite por Radiação/etiologia , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos
17.
J Nucl Med ; 63(7): 1075-1080, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34772794

RESUMO

Radiation pneumonitis is a rare but possibly fatal side effect of 90Y radioembolization. It may occur 1-6 mo after therapy, if a significant part of the 90Y microspheres shunts to the lungs. In current clinical practice, a predicted lung dose greater than 30 Gy is considered a criterion to exclude patients from treatment. However, contrasting findings regarding the occurrence of radiation pneumonitis and lung dose were previously reported in the literature. In this study, the relationship between the lung dose and the eventual occurrence of radiation pneumonitis after 90Y radioembolization was investigated. Methods: We retrospectively analyzed 317 90Y liver radioembolization procedures performed during an 8-y period (February 2012 to September 2020). We calculated the predicted lung mean dose (LMD) using 99mTc-MAA planar scintigraphy (LMDMAA) acquired during the planning phase and left LMD (LMDY-90) using the 90Y PET/CT acquired after the treatment. For the lung dose computation, we used the left lung as the representative lung volume, to compensate for scatter from the liver moving in the craniocaudal direction because of breathing and mainly affecting the right lung. Results: In total, 272 patients underwent 90Y procedures, of which 63% were performed with glass microspheres and 37% with resin microspheres. The median injected activity was 1,974 MBq (range, 242-9,538 MBq). The median LMDMAA was 3.5 Gy (range, 0.2-89.0 Gy). For 14 procedures, LMDMAA was more than 30 Gy. Median LMDY-90 was 1 Gy (range, 0.0-22.1 Gy). No patients had an LMDY-90 of more than 30 Gy. Of the 3 patients with an LMDY-90 of more than 12 Gy, 2 patients (one with an LMDY-90 of 22.1 Gy and an LMDMAA of 89 Gy; the other with an LMDY-90 of 17.7 Gy and an LMDMAA of 34.1 Gy) developed radiation pneumonitis and consequently died. The third patient, with an LMDY-90 of 18.4 Gy (LMDMAA, 29.1 Gy), died 2 mo after treatment, before the imaging evaluation, because of progressive disease. Conclusion: The occurrence of radiation pneumonitis as a consequence of a lung shunt after 90Y radioembolization is rare (<1%). No radiation pneumonitis developed in patients with a measured LMDY-90 lower than 12 Gy.


Assuntos
Embolização Terapêutica , Neoplasias Hepáticas , Pneumonia , Pneumonite por Radiação , Embolização Terapêutica/efeitos adversos , Embolização Terapêutica/métodos , Humanos , Incidência , Neoplasias Hepáticas/terapia , Pulmão/diagnóstico por imagem , Microesferas , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Pneumonite por Radiação/diagnóstico por imagem , Pneumonite por Radiação/epidemiologia , Pneumonite por Radiação/etiologia , Estudos Retrospectivos , Agregado de Albumina Marcado com Tecnécio Tc 99m , Radioisótopos de Ítrio/efeitos adversos
19.
In Vivo ; 35(6): 3441-3448, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34697180

RESUMO

BACKGROUND/AIM: It is important to identify radiation pneumonitis above Common Terminology Criteria for Adverse Events Grade 2 (G2) in order to safely continue durvalumab maintenance after chemoradiotherapy for advanced lung cancer. The aim of this study was to discover factors that predict pneumonitis above G2. PATIENTS AND METHODS: A follow-up computed tomography (CT) image was superimposed on the planning CT image using deformable image registration (DIR). The pneumonitis area was contoured on follow-up CT after DIR and the dose-volume histogram parameters of the contoured pneumonitis area were calculated. RESULTS: V5 (Percentage of total volume receiving ≥5 Gy) to V50 of pneumonitis were significantly lower in patients with G2 pneumonitis than in those with G1 pneumonitis. The pneumonitis V15 was the most significant. The group with pneumonitis V15 <87.10% had significantly more G2 pneumonitis than the group with pneumonitis V15 ≥87.10%. CONCLUSION: Pneumonitis V15 <87.10% was a risk factor for G2 pneumonitis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Pneumonia , Pneumonite por Radiação , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Quimiorradioterapia , Humanos , Neoplasias Pulmonares/radioterapia , Pneumonia/diagnóstico por imagem , Pneumonia/etiologia , Pneumonite por Radiação/diagnóstico por imagem , Pneumonite por Radiação/etiologia , Dosagem Radioterapêutica
20.
Sci Rep ; 11(1): 11509, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34075072

RESUMO

The differentiation of non-small cell lung cancer (NSCLC) and radiation pneumonitis (RP) is critically essential for selecting optimal clinical therapeutic strategies to manage post carbon-ion radiotherapy (CIRT) in patients with NSCLC. The aim of this study was to assess the ability of 18F-FDG PET/CT metabolic parameters and its textural image features to differentiate NSCLC from RP after CIRT to develop a differential diagnosis of malignancy and benign lesion. We retrospectively analyzed 18F-FDG PET/CT image data from 32 patients with histopathologically proven NSCLC who were scheduled to undergo CIRT and 31 patients diagnosed with RP after CIRT. The SUV parameters, metabolic tumor volume (MTV), total lesion glycolysis (TLG) as well as fifty-six texture parameters derived from seven matrices were determined using PETSTAT image-analysis software. Data were statistically compared between NSCLC and RP using Wilcoxon rank-sum tests. Diagnostic accuracy was assessed using receiver operating characteristics (ROC) curves. Several texture parameters significantly differed between NSCLC and RP (p < 0.05). The parameters that were high in areas under the ROC curves (AUC) were as follows: SUVmax, 0.64; GLRLM run percentage, 0.83 and NGTDM coarseness, 0.82. Diagnostic accuracy was improved using GLRLM run percentage or NGTDM coarseness compared with SUVmax (p < 0.01). The texture parameters of 18F-FDG uptake yielded excellent outcomes for differentiating NSCLC from radiation pneumonitis after CIRT, which outperformed SUV-based evaluation. In particular, GLRLM run percentage and NGTDM coarseness of 18F-FDG PET/CT images would be appropriate parameters that can offer high diagnostic accuracy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Fluordesoxiglucose F18/administração & dosagem , Radioterapia com Íons Pesados , Neoplasias Pulmonares , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Pneumonite por Radiação/diagnóstico por imagem , Idoso , Idoso de 80 Anos ou mais , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Feminino , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Masculino , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA