Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Sci Rep ; 14(1): 17810, 2024 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090163

RESUMO

Elymus nutans Griseb. (E. nutans), a pioneer plant for the restoration of high quality pasture and vegetation, is widely used to establish artificial grasslands and ecologically restore arid and salinized soils. To investigate the effects of drought stress and salt stress on the physiology and endogenous hormones of E. nutans seedlings, this experiment configured the same environmental water potential (0 (CK), - 0.04, - 0.14, - 0.29, - 0.49, - 0.73, and - 1.02 MPa) of PEG-6000 and NaCl stress to investigate the effects of drought stress and salt stress, respectively, on E. nutans seedlings under the same environmental water potential. The results showed that although the physiological indices and endogenous hormones of the E. nutans seedlings responded differently to drought stress and salt stress under the same environmental water potential, the physiological indices of E. nutans shoots and roots were comprehensively evaluated using the genus function method, and the physiological indices of the E. nutans seedlings under the same environmental water potential exhibited better salt tolerance than drought tolerance. The changes in endogenous hormones of the E. nutans seedlings under drought stress were analyzed to find that treatment with gibberellic acid (GA3), gibberellin A7 (GA7), 6-benzyladenine (6-BA), 6-(y,y-dimethylallylaminopurine) (2.IP), trans-zeatin (TZ), kinetin (KT), dihydrozeatin (DHZ), indole acetic acid (IAA), and 2,6-dichloroisonicotininc acid (INA) was more effective than those under drought stress. By analyzing the amplitude of changes in the endogenous hormones in E. nutans seedlings, the amplitude of changes in the contents of GA3, GA7, 6-BA, 2.IP, TZ, KT, DHZ, IAA, isopentenyl adenosine (IPA), indole-3-butyric acid (IBA), naphthalene acetic acid (NAA), and abscisic acid was larger in drought stress compared with salt stress, which could be because the endogenous hormones are important for the drought tolerance of E. nutans itself. The amplitude of the changes in the contents of DHZ, TZR, salicylic acid, and jasmonic acid was larger in salt stress compared with drought stress. Changes in the content of melatonin were larger in salt stress compared with drought stress, which could indicate that endogenous hormones and substances are important for the salt tolerance of E. nutans itself.


Assuntos
Secas , Reguladores de Crescimento de Plantas , Estresse Salino , Plântula , Plântula/fisiologia , Plântula/efeitos dos fármacos , Plântula/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Estresse Fisiológico , Raízes de Plantas/fisiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Tolerância ao Sal , Ácidos Indolacéticos/metabolismo , Poaceae/fisiologia , Poaceae/efeitos dos fármacos , Poaceae/metabolismo
2.
Sci Total Environ ; 926: 171605, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38461991

RESUMO

Iron-bound organic carbon (OC-FeR) is important for the stability of soil organic carbon (SOC) in salt marshes, and the Spartina alterniflora invasion reshaped local salt marshes and changed the SOC pool. To evaluate the effects of S. alterniflora invasion on the contribution of OC-FeR to SOC, we determined the OC-FeR content and soil characteristics in the 0-50 cm soil profile along the vegetation sequence, including mudflats (MF), S. alterniflora marshes established in 2003 (SA03) and 1989 (SA89), the ecotone of S. alterniflora and Phragmites australis (SE), S. salsa marsh (SS), and P. australis marsh (PA). The SOC content was 6.55-17.5 mg g-1 in the S. alterniflora marshes. Reactive iron oxides (Fed, Feo, Fep) accumulated significantly in the S. alterniflora and P. australis salt marshes. PA and S. alterniflora marshes had higher DOC contents of 0.28-0.77 mg g-1. The OC-FeR content in the 0-50 cm soil profile in these ecosystems ranged from 0.3 to 3.29 mg g-1, with a contribution to the SOC content (fOC-FeR) of approximately 11 %, which was highest in SA03 (16.3 % ~ 18.8 %), followed by SA89, SE, and PA. In addition, the molar ratios of OC-FeR to Fed were <1, indicating that the iron oxides were associated with SOC through sorption more than coprecipitation. According to the structural equation model, SOC, DOC and iron oxides were the direct driving factors of OC-FeR formation, while the vegetation zone indirectly functioned by regulating organic C inputs, iron oxide formation, and pH. This study suggested that S. alterniflora invasion promotes iron-bound organic carbon accumulation by increasing organic C inputs and regulating iron oxide formation in salt marshes, but such promotion will degenerate with development duration.


Assuntos
Compostos Férricos , Solo , Áreas Alagadas , Solo/química , Ecossistema , Carbono/análise , Ferro , Espécies Introduzidas , Poaceae/fisiologia , Óxidos , China
3.
J Exp Bot ; 75(11): 3612-3623, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38511472

RESUMO

Desiccation tolerance evolved recurrently across diverse plant lineages to enable survival in water-limited conditions. Many resurrection plants are polyploid, and several groups have hypothesized that polyploidy contributed to the evolution of desiccation tolerance. However, due to the vast phylogenetic distance between resurrection plant lineages, the rarity of desiccation tolerance, and the prevalence of polyploidy in plants, this hypothesis has been difficult to test. Here, we surveyed natural variation in morphological, reproductive, and desiccation tolerance traits across several cytotypes of a single species to test for links between polyploidy and increased resilience. We sampled multiple natural populations of the resurrection grass Microchloa caffra across an environmental gradient ranging from mesic to xeric in South Africa. We describe two distinct ecotypes of M. caffra that occupy different extremes of the environmental gradient and exhibit consistent differences in ploidy, morphological, reproductive, and desiccation tolerance traits in both field and common growth conditions. Interestingly, plants with more polyploid genomes exhibited consistently higher recovery from desiccation, were less reproductive, and were larger than plants with smaller genomes and lower ploidy. These data indicate that selective pressures in increasingly xeric sites may play a role in maintaining and increasing desiccation tolerance and are mediated by changes in ploidy.


Assuntos
Poaceae , Poliploidia , Poaceae/genética , Poaceae/fisiologia , África do Sul , Dessecação , Adaptação Fisiológica/genética
4.
Environ Sci Pollut Res Int ; 31(10): 14775-14790, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38280165

RESUMO

Spartina alterniflora, an invasive plant widely distributed in China's coastal regions, has had a significant impact on the stability of wetland ecosystems and elemental biogeochemical cycles. The invasion of S. alterniflora has been found to lead to the accumulation of sulfides in the soil. The cycling of sulfur and iron in the soil is closely interconnected. Coastal estuarine wetlands are influenced by both freshwater in rivers and seawater tides, as well as the frequent variations in redox conditions caused by tidal fluctuations, which makes the cycling of sulfur and iron in the soil invaded by S. alterniflora more intricate. In this study, field surveys and laboratory experiments were conducted to explore the effects of S. alterniflora invasion and hydrological changes on the cycling of sulfur and iron as well as related functional microorganisms in the soil. The invasion of S. alterniflora showed an increase in soil reduced inorganic sulfur (RIS) components in both high and low marshes of Jiuduansha wetland, with higher content observed in summer and autumn. The tidal simulation experiments revealed abundant sulfate in seawater tidal conditions could promote the formation of acid volatile sulfides (AVS) in the soil of low marshes invaded by S. alterniflora and ensuring the continuous increase in AVS content. Diffusive gradients in-thin-films (DGT) technology indicated the existence of high-concentration soluble S2- enrichment zones in the soil of low marshes invaded by S. alterniflora, which may be related to S. alterniflora root exudates. Tidal action increased the relative abundance of sulfur-reducing bacteria (SRB) in the soil of low marshes, and under the influence of seawater tidal action, SRB exhibited higher relative abundance. However, S. alterniflora might inhibit the activity of iron-reducing bacteria (FeRB) in the soil of low marshes. In conclusion, S. alterniflora may enhance the sulfate reduction rate and promote the formation of free sulfides in tidal salt marsh ecosystems by releasing root exudates that stimulate the activity of SRB, while concurrently inhibiting the activity of FeRB and reducing their competition with SRB. This effect is particularly pronounced in low marshes under seawater tidal conditions. Thus, S. alterniflora is capable of rapidly invading tidal salt marshes by utilizing sulfides effectively.


Assuntos
Microbiota , Bactérias Redutoras de Enxofre , Áreas Alagadas , Solo/química , Espécies Introduzidas , Poaceae/fisiologia , Enxofre , Sulfatos , Sulfetos , China
5.
Environ Sci Pollut Res Int ; 30(22): 62461-62469, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36943572

RESUMO

High biomass energy plants are a promising alternative to hyperaccumulators for the remediation of heavy metals (HMs). Arundo donax L. (A. donax) is a rapidly growing rhizomatous grass with high biomass production. However, the feasibility of using A. donax for the phytoremediation of combined mercury (Hg) and cadmium (Cd) pollution under neutral conditions is unclear. In this study, a hydroponic experiment was performed to investigate the impact of Hg-Cd stress on the growth and physiological properties of A. donax and HMs accumulation and transformation. Either single Hg or Cd stress slightly enhanced stem height, fresh biomass, and chlorophyll content, whereas combined Hg-Cd stress reduced these parameters. Furthermore, combined Hg-Cd stress increased the leaf content of malondialdehyde in A. donax, indicating that the combined pollution aggravated oxidative stress in A. donax. Hg volatilization was observed during the 10-day experiment, implying that a portion of the Hg2+ was transformed into Hg0 by A. donax. The bioaccumulation factor (BAF) values of A. donax were far greater than 1 for both Hg and Cd, whereas the translocation factor (TF) values were less than 1, indicating that phytovolatilization and phytostabilization rather than phytoextraction contributed to the remediation of Hg and Cd by A. donax. The solution pH decreased at the beginning of the experiment, suggesting that acidic root exudates of A. donax facilitated the accumulation and transformation of Hg under neutral conditions. Overall, the effects of Cd on Hg accumulation and transformation by A. donax followed the rule of "low promotion and high inhibition." This study demonstrates that A. donax is a potential candidate for the phytoremediation of combined Hg-Cd pollution under neutral conditions.


Assuntos
Mercúrio , Metais Pesados , Poluentes do Solo , Cádmio/análise , Mercúrio/análise , Poluentes do Solo/análise , Metais Pesados/análise , Poaceae/fisiologia , Biodegradação Ambiental , Raízes de Plantas/química
6.
Plant Sci ; 325: 111488, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36206962

RESUMO

Among abiotic stressors, drought and enhanced ultraviolet radiation (UV) received a lot of attention, because of their potential to impair plant growth. Since drought and UV induce partially similar protective mechanisms, we tested the hypothesis that UV ameliorates the effect of reduced water availability (WA) in selected grass (Holcus mollis and Agrostis capillaris) and forb species (Hypericum maculatum and Rumex acetosa). During 2011-2014, an outdoor manipulation experiment was conducted on a mountain grassland ecosystem (Beskydy Mts; Czech Republic). Lamellar shelters were used to pass (WAamb) or exclude (WA-) incident precipitation in order to simulate reduced water availability (WA). In addition, the lamellas were made from acrylics either transmitting (UVamb) or blocking (UV-) incident UV. Generally, both UV exposure and reduced WA enhanced epidermal UV-screening, while exposure to both factors resulted in less than additive interactions. Although UV radiation increased epidermal UV-screening rather in the grass (up to 29 % in A. capillaris) than forb (up to 12 % in H. maculatum) species and rather in well-watered than reduced WA plants, such acclimation response did not result in significant alleviation of reduced WA effects on gas exchange and morphological parameters. The study contributes to a better understanding of plant responses to complex environmental conditions and will help for successful modelling forecasts of future climate change impacts.


Assuntos
Secas , Poaceae , Poaceae/fisiologia , Raios Ultravioleta , Pradaria , Ecossistema , Água/fisiologia , Plantas/efeitos da radiação
7.
Molecules ; 26(5)2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33800104

RESUMO

Imperata cylindrica is a medicinal plant native to southwestern Asia and the tropical and subtropical zones. To date, 72 chemical constituents have been isolated and identified from I. cylindrica Among these compounds, saponins, flavonoids, phenols, and glycosides are the major constituents. Investigations of pharmacological activities of I. cylindrica revealed that this edible medicinal herb exhibits a wide range of therapeutic potential including immunomodulatory, antibacterial, antitumor, anti-inflammatory, and liver protection activities both in vivo and in vitro. The purpose of this review is to provide an overview of I. cylindrica studies until 2019. This article also intends to review advances in the botanical, phytochemical, and pharmacological studies and industrial applications of I. cylindrica, which will provide a useful bibliography for further investigations and applications of I. cylindrica in medicines and foods.


Assuntos
Extratos Vegetais/farmacologia , Poaceae/química , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Diuréticos/química , Diuréticos/farmacologia , Humanos , Patentes como Assunto , Extratos Vegetais/química , Plantas Medicinais/química , Poaceae/fisiologia
8.
Photosynth Res ; 149(1-2): 171-185, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33534052

RESUMO

Alternative electron fluxes such as the cyclic electron flux (CEF) around photosystem I (PSI) and Mehler reaction (Me) are essential for efficient photosynthesis because they generate additional ATP and protect both photosystems against photoinhibition. The capacity for Me can be estimated by measuring O2 exchange rate under varying irradiance and CO2 concentration. In this study, mass spectrometric measurements of O2 exchange were made using leaves of representative species of C3 and C4 grasses grown under natural light (control; PAR ~ 800 µmol quanta m-2 s-1) and shade (~ 300 µmol quanta m-2 s-1), and in representative species of gymnosperm, liverwort and fern grown under natural light. For all control grown plants measured at high CO2, O2 uptake rates were similar between the light and dark, and the ratio of Rubisco oxygenation to carboxylation (Vo/Vc) was low, which suggests little potential for Me, and that O2 uptake was mainly due to photorespiration or mitochondrial respiration under these conditions. Low CO2 stimulated O2 uptake in the light, Vo/Vc and Me in all species. The C3 species had similar Vo/Vc, but Me was highest in the grass and lowest in the fern. Among the C4 grasses, shade increased O2 uptake in the light, Vo/Vc and the assimilation quotient (AQ), particularly at low CO2, whilst Me was only substantial at low CO2 where it may contribute 20-50% of maximum electron flow under high light.


Assuntos
Adaptação Ocular/fisiologia , Dióxido de Carbono/metabolismo , Transporte de Elétrons/fisiologia , Oxigênio/metabolismo , Fotossíntese/fisiologia , Luz Solar/efeitos adversos , Produtos Agrícolas/fisiologia , Cycadopsida/fisiologia , Ginkgo biloba/fisiologia , Marchantia/fisiologia , Folhas de Planta/metabolismo , Poaceae/fisiologia , Polypodium/fisiologia , Zea mays/fisiologia
9.
Ecotoxicol Environ Saf ; 213: 112023, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33578096

RESUMO

Arbuscular mycorrhizal fungi (AMF) play an important role in improving plant tolerance and accumulation of zinc (Zn) and cadmium (Cd). The growth, physiology and absorption of elements and transport in Phragmites australis (P. australis) were investigated under Zn and Cd stress to identify the transport mechanisms of toxic trace elements (TE) under the influence of AMF. Thus, AMF were observed to alleviate the toxic effects of Zn and Cd on P. australis by increasing plant biomass and through different regulatory patterns under different TE concentrations. The activities of superoxide dismutase (SOD) and ascorbate peroxidase (APX) increased under Zn stress, and the activities of SOD, catalase (CAT), peroxidase (POD), and APX significantly increased under high concentrations of Cd. AMF differ in their strategies of regulating the transport of different metals under TE stress. Under Zn stress, the concentration of Zn in P. australis decreased by 10-57%, and the effect on Zn translocation factor (TFZn) was concentration-dependent. AMF increased the TFZn under low concentration stress, but decreased under high concentration stress. Under Cd stress, the concentration of Cd increased by as much as 17-40%, and the TFCd decreased. AMF were also found to change the interaction of Zn×Cd. In the absence of AMF, Cd exposure decreased the Zn concentrations in P. australis at Zn100 mg/L and Zn300 mg/L, while it increased the contents of Zn at Zn700 mg/L. The opposite trend was observed following treatment with AMF. However, regardless of the concentration of Cd, the addition of Zn decreased the concentration of Cd in both treatments in both the presence and absence of AMF. Under different TE stress conditions, the regulation of metal elements by AMF in host plants does not follow a single strategy but a trade-off between different trends of transportations. The findings of our study are important for applying AMF-P. australis systems in the phytoremediation of Zn-Cd co-contaminated ecosystems.


Assuntos
Micorrizas/fisiologia , Poaceae/fisiologia , Poluentes do Solo/toxicidade , Biodegradação Ambiental , Biomassa , Cádmio/metabolismo , Cádmio/toxicidade , Ecossistema , Raízes de Plantas/efeitos dos fármacos , Plantas/efeitos dos fármacos , Poaceae/efeitos dos fármacos , Poaceae/microbiologia , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Oligoelementos/metabolismo , Oligoelementos/toxicidade , Zinco/farmacologia
10.
Ecotoxicol Environ Saf ; 209: 111816, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33360213

RESUMO

As a non-essential heavy metal, cadmium (Cd) is toxic to plants. In the last 15 years, over 70 transcriptome studies have been published to decipher the molecular response mechanism against Cd stress in different plants. To extract generalization results from transcriptomic data across different plants and obtain some hub genes that respond to Cd stress, we carried out a meta-analysis of 32 published datasets. Cluster analysis revealed that plant species played a more decisive role than the media used and exposure time in the transcriptome patterns of plant roots response to Cd. The datasets from a Gramineae-like (GL) group were closer in clustering. 838 DEGs were commonly Cd-regulated in at least nine of 18 GL datasets. Gene ontology and KEGG pathway analyses revealed that oxidative stress-related terms and lignin synthesis-related terms were significantly enriched. Mapman analysis revealed that these common DEGs were mainly involved in regulation, cellular response, secondary metabolism, transport, cell wall and lipid metabolism. In Oryza sativa, 15 DEGs were up-regulated in at least four of five HM (As, Cr, Cd, Hg and Pb) groups, such as Os10g0517500 (methionine gamma-lyase) and Os01g0159800 (bHLH107). Moreover, our datasets can be used to retrieve log2FC value of specific genes across 29 studies (48 datasets), which provides data reference for the subsequent selection of HM-related genes. Our results provide the basis for further understanding of Cd tolerance mechanisms in plants.


Assuntos
Cádmio/toxicidade , Poaceae/fisiologia , Poluentes do Solo/toxicidade , Estresse Fisiológico/genética , Transcriptoma/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Metais Pesados/metabolismo , Oryza/metabolismo , Raízes de Plantas/metabolismo , Poaceae/metabolismo , Metabolismo Secundário
11.
Proc Biol Sci ; 287(1938): 20201960, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33171085

RESUMO

C4 photosynthesis evolved multiple times independently in angiosperms, but most origins are relatively old so that the early events linked to photosynthetic diversification are blurred. The grass Alloteropsis semialata is an exception, as this species encompasses C4 and non-C4 populations. Using phylogenomics and population genomics, we infer the history of dispersal and secondary gene flow before, during and after photosynthetic divergence in A. semialata. We further analyse the genome composition of individuals with varied ploidy levels to establish the origins of polyploids in this species. Detailed organelle phylogenies indicate limited seed dispersal within the mountainous region of origin and the emergence of a C4 lineage after dispersal to warmer areas of lower elevation. Nuclear genome analyses highlight repeated secondary gene flow. In particular, the nuclear genome associated with the C4 phenotype was swept into a distantly related maternal lineage probably via unidirectional pollen flow. Multiple intraspecific allopolyploidy events mediated additional secondary genetic exchanges between photosynthetic types. Overall, our results show that limited dispersal and isolation allowed lineage divergence, with photosynthetic innovation happening after migration to new environments, and pollen-mediated gene flow led to the rapid spread of the derived C4 physiology away from its region of origin.


Assuntos
Evolução Biológica , Poaceae/fisiologia , Carbono , Fluxo Gênico , Genoma , Organelas , Fenótipo , Fotossíntese/fisiologia , Filogenia , Poliploidia
12.
Sci Rep ; 10(1): 18913, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33144613

RESUMO

Zoysia matrella [L.] Merr. is a widely cultivated warm-season turf grass in subtropical and tropical areas. Dwarf varieties of Z. matrella are attractive to growers because they often reduce lawn mowing frequencies. In this study, we describe a dwarf mutant of Z. matrella induced from the 60Co-γ-irradiated calluses. We conducted morphological test and physiological, biochemical and transcriptional analyses to reveal the dwarfing mechanism in the mutant. Phenotypically, the dwarf mutant showed shorter stems, wider leaves, lower canopy height, and a darker green color than the wild type (WT) control under the greenhouse conditions. Physiologically, we found that the phenotypic changes of the dwarf mutant were associated with the physiological responses in catalase, guaiacol peroxidase, superoxide dismutase, soluble protein, lignin, chlorophyll, and electric conductivity. Of the four endogenous hormones measured in leaves, both indole-3-acetic acid and abscisic acid contents were decreased in the mutant, whereas the contents of gibberellin and brassinosteroid showed no difference between the mutant and the WT control. A transcriptomic comparison between the dwarf mutant and the WT leaves revealed 360 differentially-expressed genes (DEGs), including 62 up-regulated and 298 down-regulated unigenes. The major DEGs related to auxin transportation (e.g., PIN-FORMED1) and cell wall development (i.e., CELLULOSE SYNTHASE1) and expansin homologous genes were all down-regulated, indicating their potential contribution to the phenotypic changes observed in the dwarf mutant. Overall, the results provide information to facilitate a better understanding of the dwarfing mechanism in grasses at physiological and transcript levels. In addition, the results suggest that manipulation of auxin biosynthetic pathway genes can be an effective approach for dwarfing breeding of turf grasses.


Assuntos
Redes Reguladoras de Genes/efeitos da radiação , Mutação , Poaceae/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Fenótipo , Melhoramento Vegetal , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/efeitos da radiação , Poaceae/efeitos da radiação , Estações do Ano
13.
Plant Cell Environ ; 43(8): 1862-1878, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32400900

RESUMO

Global changes can interact to affect photosynthesis and thus ecosystem carbon capture, yet few multi-factor field studies exist to examine such interactions. Here, we evaluate leaf gas exchange responses of five perennial grassland species from four functional groups to individual and interactive global changes in an open-air experiment in Minnesota, USA, including elevated CO2 (eCO2 ), warming, reduced rainfall and increased soil nitrogen supply. All four factors influenced leaf net photosynthesis and/or stomatal conductance, but almost all effects were context-dependent, i.e. they differed among species, varied with levels of other treatments and/or depended on environmental conditions. Firstly, the response of photosynthesis to eCO2 depended on species and nitrogen, became more positive as vapour pressure deficit increased and, for a C4 grass and a legume, was more positive under reduced rainfall. Secondly, reduced rainfall increased photosynthesis in three functionally distinct species, potentially via acclimation to low soil moisture. Thirdly, warming had positive, neutral or negative effects on photosynthesis depending on species and rainfall. Overall, our results show that interactions among global changes and environmental conditions may complicate predictions based on simple theoretical expectations of main effects, and that the factors and interactions influencing photosynthesis vary among herbaceous species.


Assuntos
Dióxido de Carbono , Nitrogênio/metabolismo , Folhas de Planta/fisiologia , Poaceae/fisiologia , Dióxido de Carbono/metabolismo , Ecossistema , Aquecimento Global , Pradaria , Minnesota , Chuva , Solo/química , Temperatura
14.
Planta ; 251(5): 99, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32318830

RESUMO

MAIN CONCLUSION: Overexpression ofPeVQ28in Arabidopsis regulated the expression of salt/ABA-responsive genes and indicated thatPeVQ28may affect the ABA synthesis induced by stress in plants by regulating salt tolerance. Plant-specific VQ proteins, which contain a conserved short FxxhVQxhTG amino acid sequence motif, play an important role in abiotic stress responses, but their functions have not been previously studied in Moso bamboo (Phyllostachys edulis). In this study, real-time quantitative PCR analysis indicated that expression of PeVQ28 was induced by salt and abscisic acid stresses. A subcellular localization experiment showed that PeVQ28 was localized in the nuclei of tobacco leaf cells. Yeast two-hybrid and bimolecular fluorescence complementation analyses indicated that PeVQ28 and WRKY83 interactions occurred in the nucleus. The PeVQ28-overexpressing Arabidopsis lines showed increased resistance to salt stress and enhanced sensitivity to ABA. Compared with wild-type plants under salt stress, PeVQ28-transgenic plants had lower malondialdehyde and higher proline contents, which might enhance stress tolerance. Overexpression of PeVQ28 in Arabidopsis enhanced expression of salt- and ABA-responsive genes. These results suggest that PeVQ28 functions in the positive regulation of salt tolerance mediated by an ABA-dependent signaling pathway.


Assuntos
Ácido Abscísico/metabolismo , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Poaceae/genética , Prolina/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Expressão Gênica , Malondialdeído/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Poaceae/fisiologia , Estresse Salino , Tolerância ao Sal , Transdução de Sinais , Especificidade da Espécie , Estresse Fisiológico , Técnicas do Sistema de Duplo-Híbrido
15.
Sci Rep ; 10(1): 6942, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32332777

RESUMO

Changing climatic scenarios affect plant growth and consequences are more malicious in drought conditions. This study was performed for better understanding of tolerance mechanisms under prevailing drought stress and succeeding recovery in Axonopus compressus by exogenously applied abscisic acid (ABA) and glycine betaine (GB). Three A. compressus accessions (A-38, A-58 and A-59) were subjected to well-watered (100% field capacity) and drought (40% field capacity) conditions. Two weeks later, plants were recovered from drought by re-watering. Water (control), GB, ABA and their combination were foliar applied on plants under drought twice a week until recovery. Drought stress decreased photosynthetic pigments and increased reactive oxygen species, lipid peroxidation, osmolytes and antioxidants in all accessions of A. compressus. Nonetheless, exogenous ABA and GB alone or in combination improved drought tolerance in all accessions which was maintained even after recovery. Maximum decrease in hydrogen peroxide and malondialdehyde, and increase in soluble sugars, proteins, proline, phenolics and chlorophyll contents, and superoxide dismutase, catalase, peroxidase and ascorbate peroxidase activity was recorded when GB was applied alone under drought. Order of improvement in drought tolerance among accessions was A-58 > A-59 > A-38. In conclusion, improved drought tolerance mechanisms by ABA and GB in A. compressus were retained even after recovery.


Assuntos
Ácido Abscísico/metabolismo , Adaptação Fisiológica , Betaína/metabolismo , Secas , Poaceae/fisiologia , Estresse Fisiológico , Antioxidantes/metabolismo , Catalase/metabolismo , Membrana Celular/metabolismo , Peroxidação de Lipídeos , Peroxidase/metabolismo , Fotossíntese , Pigmentos Biológicos/metabolismo , Poaceae/enzimologia , Prolina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
16.
Food Chem ; 318: 126483, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32126468

RESUMO

In this study, the antioxidant activity of germinating Chinese wild rice was found to decline initially, after which it increased. The largest difference in antioxidant activity was observed between the 36-h (G36) and the 120-h germination (G120) stage. We further assessed the dynamic changes in metabolites, phenolic acids, flavonoids, and phenolic biosynthetic genes in germinating Chinese wild rice. Ultra-high performance liquid chromatography-triple quadrupole mass spectrometry revealed that 315 metabolites were up-regulated and 28 were down-regulated between G36 and G120. Levels of p-hydroxybenzoic acid, p-hydroxybenzaldehyde, vanillin, p-coumaric acid, ferulic acid, and epigallocatechin increased significantly during germination. Gene expression of four phenylalanine ammonia-lyases, one 4-coumarate-CoA ligase, one cinnamoyl-CoA reductase, two cinnamyl alcohol dehydrogenases, one chalcone synthase, and one chalcone isomerase was significantly higher at G120 than at G36 and promoted phenolics accumulation. This study elucidated the biochemical mechanisms involved in antioxidant activity and phenolic profile changes during Chinese wild rice germination.


Assuntos
Antioxidantes/metabolismo , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Fenóis/metabolismo , Proteínas de Plantas/genética , Poaceae/fisiologia , Aciltransferases/genética , Cromatografia Líquida de Alta Pressão , Coenzima A Ligases/genética , Germinação , Hidroxibenzoatos/metabolismo , Liases Intramoleculares/genética , Espectrometria de Massas , Oxirredutases/genética , Fenilalanina Amônia-Liase/genética , Poaceae/química , Poaceae/genética , Sementes/química , Sementes/genética , Sementes/fisiologia
17.
Environ Pollut ; 257: 113558, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31708284

RESUMO

A soil heavy metal decontamination system was developed based on the immobilization of bioavailable metal fraction by iron-biochar nano-complex (BC@Fe3O4) and the uptake by Chromium (Cr) hyperaccumulator Leersia hexandra (L. hexandra) under the assistance of metal resistant microbe consortium (MC). In this system, L. hexandra was able to accumulate 485.1-785.0 mg kg-1 in root and 147.5-297.2 mg kg-1 of Cr in its aerial part. With MC assistance, more Cr could be translocated to the aerial part of L. hexandra, which dramatically improved its remediation potential. Meanwhile, BC@Fe3O4 application decreased bioavailable Cr in soil and reduced soil toxicity, which contributed to soil microbial community adaption and L. hexandra performance under high level of Cr concentration (elevated microbial activity, decreased plant stress response, enhanced L. hexandra growth and accumulation) without negative influence on accumulation efficiency. Moreover, details of the possible mechanistic insight into metal removal were discussed, which indicated a negative correlation of the extractable Cr with soil microecology and hyperaccumulator performance. Furthermore, the resistant bacteria successfully altered soil microbial community, enhanced its diversity, which was in favor of the soil quality improvement.


Assuntos
Biodegradação Ambiental , Cromo/toxicidade , Consórcios Microbianos/fisiologia , Poluentes do Solo/toxicidade , Bactérias , Carvão Vegetal , Inativação Metabólica , Ferro , Metais Pesados , Poaceae/fisiologia , Solo
18.
Arq. bras. med. vet. zootec. (Online) ; 71(5): 1703-1711, set.-out. 2019. tab, graf
Artigo em Português | VETINDEX, LILACS | ID: biblio-1038652

RESUMO

Este trabalho teve como objetivo avaliar o valor nutritivo e a força de cisalhamento da cultivar de Urochloa brizantha (syn Brachiaria brizantha) cv Xaraés submetida a três intensidades luminosas e quatro cortes. O experimento foi conduzido na FMVZ - Unesp de Botucatu, com delineamento experimental em blocos ao acaso, sendo os tratamentos: luminosidade natural, redução de 30% e 60% de luz, com quatro cortes e três repetições. As análises realizadas foram: composição bromatológica, digestibilidade e a força de cisalhamento. Não houve diferença na digestibilidade entre os tratamentos em nenhum dos cortes, mas a qualidade forrageira foi influenciada pelos níveis de intensidade de luz, tendo o tratamento com 60% de redução de luminosidade apresentado maiores concentrações de proteína bruta e cinzas, menores teores de fibra em detergente neutro, hemicelulose, celulose e força de cisalhamento. Em relação aos cortes estudados, o primeiro teve o menor intervalo de corte e produziu forragem com qualidade superior em comparação ao último, pois obteve menor teor de fibra em detergente ácido, lignina, hemicelulose, celulose e consequente menor força de cisalhamento. Portanto, a redução de 60% de luminosidade é benéfica à qualidade e à força de cisalhamento da cultivar Xaraés.(AU)


This study aimed to evaluate the nutritive value and shear strength of the Xaraés grass (Urochloa brizantha) under the three intensities of light and four cuts. The experiment was conducted at FMVZ - UNESP, Botucatu, with a randomized block design, with the following treatments: natural luminosity, 30% and 60% light reduction, with four cuts and three replications. The analyzes were bromatological composition, digestibility, and shearing strength. There was no difference in digestibility between the treatments in any of the cuts, forage quality was influenced by the light intensity levels, and the treatment with 60% of light reduction produced higher concentrations of crude protein and ash, lower levels of neutral detergent fiber, hemicellulose, cellulose and shear strength. According to the studied cuts, the first one had the lowest cut interval and produced superior forage compared with the last one, as it obtained lower fiber content in acid detergent, lignin, hemicellulose, cellulose and consequent lower shear force. Therefore, the reduction of 60% of luminosity is beneficial to the quality and shear force of the Xaraés palisade grass.(AU)


Assuntos
Pastagens/análise , Pastagens/métodos , Análise de Alimentos/métodos , Poaceae/crescimento & desenvolvimento , Poaceae/fisiologia , Luz
19.
Ecotoxicology ; 28(9): 1063-1074, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31531801

RESUMO

The oil industry has inherent risks of spills or leaks due to natural or anthropogenic causes, which cause alterations in the soil and damage to the plant. An experiment was carried to investigate the effect of oil on the growth, biomass production, biosynthesis of crude protein of Leersia hexandra grass and the remove of oil from the soil. The results showed different responses by L. hexandra depending on the age, low concentrations of oil induced a significant increase in stolon length, in relative growth rate, in dry matter production and in the biosynthesis of crude protein. The same parameters decreased at high concentrations of oil. However, at the end of the evaluation period of 180 days, high concentrations of oil induced a significant increase in the number of young plants and secondary roots, the terminal third of the main root and root dry matter. The dose response curves had the shape of an inverted U, showing that at days 15, 45, 90 and 180, in stolon length, aerial dry matter production, crude protein (day 90) and young plants (days 45 and 90) exhibited a typical biphasic response. The increase in oil concentration correlated with increases in young plants, number of secondary roots, number of roots at the middle, terminal third and root dry matter. After 180 days exposure the rhizosphere of L. hexandra a total oil removal of oil of 76.7 ± 4 was achieved; 61.7, 51, 44.6, 38 and 52% in soils that initially contained 7.9, 54, 102, 126, 145 and 238 g oil.


Assuntos
Hormese/fisiologia , Poluição por Petróleo/efeitos adversos , Poaceae/fisiologia , Rizosfera , Poluentes do Solo/efeitos adversos , Biodegradação Ambiental , Argila , México , Solo/química , Estresse Fisiológico
20.
Philos Trans R Soc Lond B Biol Sci ; 374(1777): 20180245, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-31154975

RESUMO

The selection of desirable traits in crops during domestication has been well studied. Many crops share a suite of modified phenotypic characteristics collectively known as the domestication syndrome. In this sense, crops have convergently evolved. Previous work has demonstrated that, at least in some instances, convergence for domestication traits has been achieved through parallel molecular means. However, both demography and selection during domestication may have placed limits on evolutionary potential and reduced opportunities for convergent adaptation during post-domestication migration to new environments. Here we review current knowledge regarding trait convergence in the cereal grasses and consider whether the complexity and dynamism of cereal genomes (e.g., transposable elements, polyploidy, genome size) helped these species overcome potential limitations owing to domestication and achieve broad subsequent adaptation, in many cases through parallel means. This article is part of the theme issue 'Convergent evolution in the genomics era: new insights and directions'.


Assuntos
Evolução Biológica , Produtos Agrícolas/genética , Poaceae/genética , Adaptação Fisiológica , Produtos Agrícolas/fisiologia , Tamanho do Genoma , Genoma de Planta , Poaceae/fisiologia , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA