Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 269
Filtrar
1.
Water Sci Technol ; 89(9): 2523-2537, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38747965

RESUMO

Miscanthus sacchariflorus is previously demonstrated to be a potential candidate for remediation of cadmium (Cd) pollution. To explore its resistance strategy to Cd, a hydroponic experiment was conducted to determine the variations of photosynthetic activity in leaves and physiological response in roots of this plant. Results showed that the root of M. sacchariflorus was the primary location for Cd accumulation. The bioconcentration factor in the roots and rhizomes was >1, and the translocation factor from underground to aboveground was <1. Throughout the experimental period, treatment with 0.06 mM Cd2+ did not significantly alter the contents of chlorophyll a, chlorophyll b, or carotenoid. By contrast, treatment with 0.15 and 0.30 mM Cd2+ decreased the contents of chlorophyll a, chlorophyll b, and carotenoid; caused the deformation of the chlorophyll fluorescence transient curve; reduced the photochemical efficiency of photosystem II; and increased the contents of non-protein thiols, total flavone, and total phenol. These results indicate that M. sacchariflorus has good adaptability to 0.06 mM Cd2+. Moreover, the accumulation of the non-protein thiols, total flavone, and total phenol in roots may promote the chelation of Cd2+, thus alleviating Cd toxicity. This study provides theoretical support for using M. sacchariflorus to remediate Cd-polluted wetlands.


Assuntos
Cádmio , Fotossíntese , Poaceae , Compostos de Sulfidrila , Cádmio/toxicidade , Cádmio/metabolismo , Fotossíntese/efeitos dos fármacos , Poaceae/metabolismo , Poaceae/efeitos dos fármacos , Compostos de Sulfidrila/metabolismo , Clorofila/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Biodegradação Ambiental
2.
PLoS One ; 19(5): e0302940, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38748679

RESUMO

Miscanthus lutarioriparia is a promising energy crop that is used for abandoned mine soil phytoremediation because of its high biomass yield and strong tolerance to heavy metals. However, the biological mechanism of heavy metal resistance is limited, especially for applications in the soil restoration of mining areas. Here, through the investigation of soil cadmium(Cd) in different mining areas and soil potted under Cd stress, the adsorption capacity of Miscanthus lutarioriparia was analyzed. The physiological and transcriptional effects of Cd stress on M. lutarioriparia leaves and roots under hydroponic conditions were analyzed. The results showed that M. lutarioriparia could reduce the Cd content in mining soil by 29.82%. Moreover, different Cd varieties have different Cd adsorption capacities in soils with higher Cd concentration. The highest cadmium concentrations in the aboveground and belowground parts of the plants were 185.65 mg/kg and 186.8 mg/kg, respectively. The total chlorophyll content, superoxide dismutase and catalase activities all showed a trend of increasing first and then decreasing. In total, 24,372 differentially expressed genes were obtained, including 7735 unique to leaves, 7725 unique to roots, and 8912 unique to leaves and roots, which showed differences in gene expression between leaves and roots. These genes were predominantly involved in plant hormone signal transduction, glutathione metabolism, flavonoid biosynthesis, ABC transporters, photosynthesis and the metal ion transport pathway. In addition, the number of upregulated genes was greater than the number of downregulated genes at different stress intervals, which indicated that M. lutarioriparia adapted to Cd stress mainly through positive regulation. These results lay a solid foundation for breeding excellent Cd resistant M. lutarioriparia and other plants. The results also have an important theoretical significance for further understanding the detoxification mechanism of Cd stress and the remediation of heavy metal pollution in mining soil.


Assuntos
Cádmio , Regulação da Expressão Gênica de Plantas , Poaceae , Poluentes do Solo , Cádmio/toxicidade , Cádmio/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo , Poaceae/genética , Poaceae/efeitos dos fármacos , Poaceae/metabolismo , Perfilação da Expressão Gênica , Biodegradação Ambiental , Folhas de Planta/metabolismo , Folhas de Planta/genética , Folhas de Planta/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Transcriptoma , Solo/química , Estresse Fisiológico , Mineração
3.
Microbiol Spectr ; 12(4): e0257423, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38488391

RESUMO

The clavicipitaceous fungus Epichloë gansuensis forms symbiotic associations with drunken horse grass (Achnatherum inebrians), providing biotic and abiotic stress protection to its host. However, it is unclear how E. gansuensis affects the assembly of host plant-associated bacterial communities after ammonium nitrogen (NH4+-N) treatment. We examined the shoot- and root-associated bacterial microbiota and root metabolites of A. inebrians when infected (I) or uninfected (F) with E. gansuensis endophyte. The results showed more pronounced NH4+-N-induced microbial and metabolic changes in the endophyte-infected plants compared to the endophyte-free plants. E. gansuensis significantly altered bacterial community composition and ß-diversity in shoots and roots and increased bacterial α-diversity under NH4+-N treatment. The relative abundance of 117 and 157 root metabolites significantly changed with E. gansuensis infection under water and NH4+-N treatment compared to endophyte-free plants. Root bacterial community composition was significantly related to the abundance of the top 30 metabolites [variable importance in the projection (VIP) > 2 and VIP > 3] contributing to differences between I and F plants, especially alkaloids. The correlation network between root microbiome and metabolites was complex. Microorganisms in the Proteobacteria and Firmicutes phyla were significantly associated with the R00693 metabolic reaction of cysteine and methionine metabolism. Co-metabolism network analysis revealed common metabolites between host plants and microorganisms.IMPORTANCEOur results suggest that the effect of endophyte infection is sensitive to nitrogen availability. Endophyte symbiosis altered the composition of shoot and root bacterial communities, increasing bacterial diversity. There was also a change in the class and relative abundance of metabolites. We found a complex co-occurrence network between root microorganisms and metabolites, with some metabolites shared between the host plant and its microbiome. The precise ecological function of the metabolites produced in response to endophyte infection remains unknown. However, some of these compounds may facilitate plant-microbe symbiosis by increasing the uptake of beneficial soil bacteria into plant tissues. Overall, these findings advance our understanding of the interactions between the microbiome, metabolome, and endophyte symbiosis in grasses. The results provide critical insight into the mechanisms by which the plant microbiome responds to nutrient stress in the presence of fungal endophytes.


Assuntos
Endófitos , Epichloe , Endófitos/fisiologia , Epichloe/metabolismo , Nitrogênio/metabolismo , Poaceae/metabolismo , Poaceae/microbiologia , Simbiose , Bactérias
4.
Sci Total Environ ; 923: 171458, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38438035

RESUMO

Endophytic fungi (Trichoderma harzianum (TH) and Paecilomyces lilacinus (PL)) showed potential in phytoremediation for soils contaminated with potentially toxic elements (PTEs (Cd and As)). However, their efficiency is limited, which can be enhanced with the assistance of biochar. This study sought to investigate the effects of TH at two application rates (T1: 4.5 g m-2; T2: 9 g m-2), PL at two application rates (P1: 4.5 g m-2; P2: 9 g m-2), in conjunction with biochar (BC) at 750 g m-2 on the phytoremediation of PTEs by Miscanthus sinensis (M. sinensis). The results showed that the integration of endophytic fungi with biochar notably enhanced the accumulation of Cd and As in M. sinensis by 59.60 %-114.38 % and 49.91 %-134.60 %, respectively. The treatments T2BC and P2BC emerged as the most effective. Specifically, the P2BC treatment significantly enhanced the soil quality index (SQI > 0.55) across all examined soil layers, markedly improving the overall soil condition. It was observed that T2BC treatment could elevate the SQI to 0.56 at the 0-15 cm depth. The combined amendment shifted the primary influences on plant PTEs accumulation from fungal diversity and soil nutrients to bacterial diversity and the availability of soil PTEs. Characteristic microorganisms identified under the combined treatments were RB41 and Pezizaceae, indicating an increase in both bacterial and fungal diversity. This combination altered the soil microbial community, influencing key metabolic pathways. The combined application of PL and biochar was superior to the TH and biochar combination for the phytoremediation of M. sinensis. This approach not only enhanced the phytoremediation potential but also positively impacted soil health and microbial community, suggesting that the synergistic use of endophytic fungi and biochar is an effective strategy for improving the condition of alkaline soils contaminated with PTEs.


Assuntos
Arsênio , Poluentes do Solo , Cádmio/análise , Biodegradação Ambiental , Solo , Poluentes do Solo/análise , Poaceae/metabolismo , Carvão Vegetal , Bactérias/metabolismo , Fungos/metabolismo
5.
Cells ; 13(5)2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38474409

RESUMO

Up to a third of the world's population suffers from allergies, yet the effectiveness of available preventative measures remains, at large, poor. Consequently, the development of successful prophylactic strategies for the induction of tolerance against allergens is crucial. In proof-of-concept studies, our laboratory has previously shown that the transfer of autologous hematopoietic stem cells (HSC) or autologous B cells expressing a major grass pollen allergen, Phl p 5, induces robust tolerance in mice. However, eventual clinical translation would require safe allergen expression without the need for retroviral transduction. Therefore, we aimed to chemically couple Phl p 5 to the surface of leukocytes and tested their ability to induce tolerance. Phl p 5 was coupled by two separate techniques, either by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) or by linkage via a lipophilic anchor, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-poly(ethylene glycol)-maleimide (DSPE-PEG-Mal). The effectiveness was assessed in fresh and cultured Phl p 5-coupled cells by flow cytometry, image cytometry, and immunofluorescence microscopy. Chemical coupling of Phl p 5 using EDC was robust but was followed by rapid apoptosis. DSPE-PEG-Mal-mediated linkage was also strong, but antigen levels declined due to antigen internalization. Cells coupled with Phl p 5 by either method were transferred into autologous mice. While administration of EDC-coupled splenocytes together with short course immunosuppression initially reduced Phl p 5-specific antibody levels to a moderate degree, both methods did not induce sustained tolerance towards Phl p 5 upon several subcutaneous immunizations with the allergen. Overall, our results demonstrate the successful chemical linkage of an allergen to leukocytes using two separate techniques, eliminating the risks of genetic modifications. More durable surface expression still needs to be achieved for use in prophylactic cell therapy protocols.


Assuntos
Alérgenos , Hipersensibilidade , Camundongos , Animais , Imunoglobulina E/metabolismo , Pólen , Poaceae/metabolismo
6.
J Hazard Mater ; 466: 133578, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38306837

RESUMO

Phytoremediation is widely considered as a cost-effective method for managing heavy metal soil pollution. Leersia hexandra Swartz shows a promising potential for the remediation of heavy metals pollution, including chromium (Cr), copper (Cu), and nickel (Ni). It is vital to understand the physiological and biochemical responses of L. hexandra to Ni stress to elucidate the mechanisms underlying Ni tolerance and accumulation. Here, we examined the metabolic and transcriptomic responses of L. hexandra exposed to 40 mg/L Ni for 24 h and 14 d. After 24-h Ni stress, gene expression of glutathione metabolic cycle (GSTF1, GSTU1 and MDAR4) and superoxide dismutase (SODCC2) was significantly increased in plant leaves. Furthermore, after 14-d Ni stress, the ascorbate peroxidase (APX7), superoxide dismutase (SODCP and SOD1), and catalase (CAT) gene expression was significantly upregulated, but that of glutathione metabolic cycle (EMB2360, GSTU1, GSTU6, GSH2, GPX6, and MDAR2) was downregulated. After 24-h Ni stress, the differentially expressed metabolites (DEMs) were mainly flavonoids (45%) and flavones (20%). However, after 14-d Ni stress, the DEMs were mainly carbohydrates and their derivatives (34%), amino acids and derivatives (15%), and organic acids and derivatives (8%). Results suggest that L. hexandra adopt distinct time-dependent antioxidant and metal detoxification strategies likely associated with intracellular reduction-oxidation balance. Novel insights into the molecular mechanisms responsible for Ni tolerance in plants are presented.


Assuntos
Metais Pesados , Poluentes do Solo , Níquel/toxicidade , Antioxidantes/metabolismo , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo , Metais Pesados/toxicidade , Metais Pesados/metabolismo , Poaceae/metabolismo , Glutationa/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Mecanismos de Defesa
7.
Sci Total Environ ; 912: 168990, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38043805

RESUMO

The present study involved the isolation of two cadmium (Cd) and chromium (Cr) resistant strains, identified as Staphylococcus cohnii L1-N1 and Bacillus cereus CKN12, from heavy metal contaminated soils. S. cohnii L1-N1 exhibited a reduction of 24.4 % in Cr6+ and an adsorption rate of 6.43 % for Cd over a period of 5 days. These results were achieved under optimal conditions of pH (7.0), temperature (35 °C), shaking speed (200 rpm), and inoculum volume (8 %). B. cereus strain CKN12 exhibited complete reduction of Cr6+ within a span of 48 h, while it demonstrated a 57.3 % adsorption capacity for Cd over a period of 120 h. These results were achieved under conditions of optimal pH (8.0), temperature (40 °C), shaking speed (150 rpm), and inoculum volume (2-3 %). Additionally, microcharacterization and ICP-MS analysis revealed that Cr and Cd were accumulated on the cell surface, whereas Cr6+ was mainly reduced extracellularly. Subsequently, a series of pot experiments were conducted to provide evidence that the inclusion of S. cohnii L1-N1 or B. cereus CKN12 into the system resulted in a notable enhancement in both the plant height and biomass of king grass. In particular, it was observed that the presence of S. cohnii L1-N1 or B. cereus CKN12 in king grass led to a significant reduction in the levels of Cd and Cr in the soils (36.0 % and 27.8 %, or 72.9 % and 47.4 %, respectively). Thus, the results of this study indicate that the combined use of two bacterial strains can effectively aid in the remediation of tropical soils contaminated with moderate to light levels of Cd and Cr.


Assuntos
Metais Pesados , Poluentes do Solo , Cádmio/análise , Cromo/análise , Poaceae/metabolismo , Biodegradação Ambiental , Poluentes do Solo/análise , Metais Pesados/análise , Solo/química
8.
J Dairy Sci ; 107(4): 2066-2086, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37863298

RESUMO

Our goal was to investigate the effect of diets containing baleages harvested from alfalfa-grass or red clover-grass mixture on production performance, ruminal fermentation and microbiota taxa relative abundance, milk fatty acid profile, and nutrient utilization in dairy cows. Twenty Jersey cows (18 multiparous and 2 primiparous) averaging (mean ± SD) 148 ± 45.2 days in milk and 483 ± 65.4 kg of body weight in the beginning of the study were used in a randomized complete block design with repeated measures over time. The experiment lasted 9 wk, with a 2 wk covariate period followed by 7 wk of data and sample collection (wk 4 and 7 used in the statistical analyses). Cows were fed diets containing (dry matter basis) 35% of a concentrate mash and the following forage sources: (1) 65% second- and third-cut (32.5% each) alfalfa-grass mixture baleages (ALF) or (2) 65% second- and third-cut (32.5% each) red clover-grass mixture baleages (RC). Diets did not affect dry matter intake, milk yield, and concentrations of milk fat and true protein. In contrast, milk fat yield tended to decrease and energy-corrected milk yield decreased with feeding RC versus ALF. The apparent total-tract digestibilities of dry matter, organic matter, and ash-free neutral detergent fiber, milk proportions of trans-10 18:1, cis-9,cis-12,cis-15 18:3, and total n-3 fatty acids, ruminal molar proportion of acetate, and plasma concentrations of Leu, Phe, and Val all increased in RC versus ALF. Diet × week interactions were found for several parameters, most notably ruminal molar proportions of propionate and butyrate, ruminal NH3-N, milk urea N, plasma urea N, and plasma His concentrations, urinary N excretion, enteric CH4 production, and all energy efficiency variables. Specifically, ruminal NH3-N and plasma urea N concentrations, urinary excretion of N, and CH4 production decreased in cows fed RC in wk 4 but not in wk 7. Milk urea N concentration decreased and that of plasma His increased with feeding RC during wk 4 and 7, although the magnitude of treatments difference varied between the sampling periods. Efficiency of energy utilization calculated as milk energy/metabolizable energy decreased and that of tissue energy/ME increased in RC versus ALF cows in wk 4, suggesting that ME was portioned toward tissue and not milk in the RC diet. Interactions were also observed for the relative abundance of the rumen bacterial phyla Verrucomicrobiota and Fibrobacterota, with cows offered RC showing greater values than those receiving ALF in wk 4 but no differences in wk 7. Several diet × week interactions were detected in the present study implying short-term treatment responses and warranting further investigations.


Assuntos
Leite , Trifolium , Feminino , Bovinos , Animais , Leite/metabolismo , Poaceae/metabolismo , Medicago sativa/metabolismo , Trifolium/metabolismo , Lactação/fisiologia , Fermentação , Dieta/veterinária , Ácidos Graxos/metabolismo , Nutrientes , Ureia/metabolismo , Rúmen/metabolismo , Digestão , Zea mays/metabolismo
9.
BMC Plant Biol ; 23(1): 636, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38072924

RESUMO

BACKGROUND: Commercial cultivars of perennial ryegrass infected with selected Epichloë fungal endophytes are highly desirable in certain pastures as the resulting mutualistic association has the capacity to confer agronomic benefits (such as invertebrate pest deterrence) largely due to fungal produced secondary metabolites (e.g., alkaloids). In this study, we investigated T2 segregating populations derived from two independent transformation events expressing diacylglycerol acyltransferase (DGAT) and cysteine oleosin (CO) genes designed to increase foliar lipid and biomass accumulation. These populations were either infected with Epichloë festucae var. lolii strain AR1 or Epichloë sp. LpTG-3 strain AR37 to examine relationships between the introduced trait and the endophytic association. Here we report on experiments designed to investigate if expression of the DGAT + CO trait in foliar tissues of perennial ryegrass could negatively impact the grass-endophyte association and vice versa. Both endophyte and plant characters were measured under controlled environment and field conditions. RESULTS: Expected relative increases in total fatty acids of 17-58% accrued as a result of DGAT + CO expression with no significant difference between the endophyte-infected and non-infected progeny. Hyphal growth in association with DGAT + CO expression appeared normal when compared to control plants in a growth chamber. There was no significant difference in mycelial biomass for both strains AR1 and AR37, however, Epichloë-derived alkaloid concentrations were significantly lower on some occasions in the DGAT + CO plants compared to the corresponding null-segregant progenies, although these remained within the reported range for bioactivity. CONCLUSIONS: These results suggest that the mutualistic association formed between perennial ryegrass and selected Epichloë strains does not influence expression of the host DGAT + CO technology, but that endophyte performance may be reduced under some circumstances. Further investigation will now be required to determine the preferred genetic backgrounds for introgression of the DGAT + CO trait in combination with selected endophyte strains, as grass host genetics is a major determinant to the success of the grass-endophyte association in this species.


Assuntos
Alcaloides , Epichloe , Lolium , Endófitos/metabolismo , Lolium/genética , Epichloe/genética , Epichloe/metabolismo , Simbiose , Poaceae/metabolismo , Alcaloides/metabolismo , Lipídeos
10.
Proc Natl Acad Sci U S A ; 120(42): e2307981120, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37812727

RESUMO

Benzoxazinoids (BXDs) form a class of indole-derived specialized plant metabolites with broad antimicrobial and antifeedant properties. Unlike most specialized metabolites, which are typically lineage-specific, BXDs occur sporadically in a number of distantly related plant orders. This observation suggests that BXD biosynthesis arose independently numerous times in the plant kingdom. However, although decades of research in the grasses have led to the elucidation of the BXD pathway in the monocots, the biosynthesis of BXDs in eudicots is unknown. Here, we used a metabolomic and transcriptomic-guided approach, in combination with pathway reconstitution in Nicotiana benthamiana, to identify and characterize the BXD biosynthetic pathways from both Aphelandra squarrosa and Lamium galeobdolon, two phylogenetically distant eudicot species. We show that BXD biosynthesis in A. squarrosa and L. galeobdolon utilize a dual-function flavin-containing monooxygenase in place of two distinct cytochrome P450s, as is the case in the grasses. In addition, we identified evolutionarily unrelated cytochrome P450s, a 2-oxoglutarate-dependent dioxygenase, a UDP-glucosyltransferase, and a methyltransferase that were also recruited into these BXD biosynthetic pathways. Our findings constitute the discovery of BXD pathways in eudicots. Moreover, the biosynthetic enzymes of these pathways clearly demonstrate that BXDs independently arose in the plant kingdom at least three times. The heterogeneous pool of identified BXD enzymes represents a remarkable example of metabolic plasticity, in which BXDs are synthesized according to a similar chemical logic, but with an entirely different set of metabolic enzymes.


Assuntos
Magnoliopsida , Magnoliopsida/metabolismo , Benzoxazinas/metabolismo , Poaceae/metabolismo , Redes e Vias Metabólicas/genética , Plantas/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo
11.
Ecotoxicol Environ Saf ; 263: 115281, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37499387

RESUMO

As a gas signal molecule, hydrogen sulfide (H2S) can participate in many physiological and biochemical processes such as seed germination and photosynthesis regulation. In order to explore the regulatory effect of H2S on the growth of Miscanthus sacchariflorus under Cd stress and to provide sufficient theoretical basis for the complex action of H2S and energy plants to remediate soil pollution. In this experiment, the effects of different concentrations of H2S (10, 25, 50, 100, 300, 400, 500 µmol·L-1 (µM)) pretreatment on the growth index, lipid peroxidation degree, chlorophyll (Chl) content, osmoregulation substance content, antioxidant enzyme activity and non-enzymatic antioxidant content of M. sacchariflorus under Cd stress (50 µM) were studied. The results showed that under Cd stress, the reactive oxygen species (ROS) content in the body of M. sacchariflorus was unbalanced, and the growth were severely inhibited, the activities of antioxidant enzymes, such as catalase (CAT) and superoxide dismutase (SOD) significantly decreased, and the content of osmoregulation substance, ascorbic acid (AsA) and glutathione (GSH) significantly increased. With the increase of H2S concentration, its effect on resisting Cd stress can be shown as "low concentration promotes, high concentration inhibits". When the concentration of H2S ≤ 300 µM, although there was no significant difference in Cd content compared with Cd treatment alone, it can regulate the activities of peroxidase (POD), SOD, glutathione reductase (GR) and monodehydroascorbate reductase (MDHAR), increase the content of osmoregulation substances, oxidized glutathione (GSSG), and the transformation rate of AsA and dehydroascorbic acid (DHA) to reduce the oxidative damage and improve the growth and photosynthetic indicators of plants; when the concentration of H2S ≥ 400 µM, Cd content in the ground and root decreased significantly, but the transport factor increased significantly, the growth status of M. sacchariflorus were more severely inhibited by the combined stress of H2S and Cd. In this experiment, it was found that the concentration of H2S pretreatment ≤ 300 µM could regulate the growth of M. sacchariflorus under Cd stress to normal level, and when the treatment concentration was 50 µM, the effect was the best. It will provide a new idea for the treatment of contaminated soil by energy plants.


Assuntos
Antioxidantes , Sulfeto de Hidrogênio , Antioxidantes/metabolismo , Cádmio/toxicidade , Plântula , Sulfeto de Hidrogênio/farmacologia , Ácido Ascórbico/farmacologia , Glutationa/metabolismo , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Poaceae/metabolismo , Peróxido de Hidrogênio/farmacologia
12.
Ecotoxicol Environ Saf ; 263: 115263, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37473705

RESUMO

The excessive use of chemical herbicides has resulted in evolution of herbicide-resistant weeds. Cytochrome P450 monooxygenases (P450s) are vital detoxification enzymes for herbicide-resistant weeds. Herein, we confirmed a resistant (R) Polypogon fugax population showing resistance to quizalofop-p-ethyl, acetolactate synthase (ALS)-inhibiting herbicide pyroxsulam, and several other ACCase (acetyl-CoA carboxylase)-inhibiting herbicides. Molecular analysis revealed no target-site gene mutations in the R population. Foliar spraying with malathion clearly reversed the quizalofop-p-ethyl phytotoxicity. Higher level of quizalofop-p-ethyl degradation was confirmed in the R population using HPLC analysis. Subsequently, RNA-Seq transcriptome analysis indicated that the overexpression of CYP89A2 gene appeared to be responsible for reducing quizalofop-p-ethyl phytotoxicity. The molecular docking results supported a metabolic effect of CYP89A2 protein on most herbicides tested. Furthermore, we found that low doses of herbicides stimulated the rhizosphere enzyme activities in P. fugax and the increase of rhizosphere dehydrogenase of R population may be related to its resistance mechanism. In summary, our research has shown that metabolic herbicide resistance mediated by CYP89A2, contributes to quizalofop-p-ethyl resistance in P. fugax.


Assuntos
Herbicidas , Herbicidas/toxicidade , Simulação de Acoplamento Molecular , Rizosfera , Poaceae/metabolismo , Resistência a Herbicidas/genética , Proteínas de Plantas/metabolismo
13.
Int J Biol Macromol ; 243: 125264, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37302635

RESUMO

Valine-glutamine motif-containing (VQ) proteins are transcriptional cofactors widely involved in plant growth, development, and response to various stresses. Although the VQ family has been genome-wide identified in some species, but the knowledge regarding duplication-driven functionalization of VQ genes among evolutionarily related species is still lacking. Here, 952 VQ genes have been identified from 16 species, emphasizing seven Triticeae species including the bread wheat. Comprehensive phylogenetic and syntenic analyses allow us to establish the orthologous relationship of VQ genes from rice (Oryza sativa) to bread wheat (Triticum aestivum). The evolutionary analysis revealed that whole-genome duplication (WGD) drives the expansion of OsVQs, while TaVQs expansion is associated with a recent burst of gene duplication (RBGD). We also analyzed the motif composition and molecular properties of TaVQ proteins, enriched biological functions, and expression patterns of TaVQs. We demonstrate that WGD-derived TaVQs have become divergent in both protein motif composition and expression pattern, while RBGD-derived TaVQs tend to adopt specific expression patterns, suggesting their functionalization in certain biological processes or in response to specific stresses. Furthermore, some RBGD-derived TaVQs are found to be associated with salt tolerance. Several of the identified salt-related TaVQ proteins were located in the cytoplasm and nucleus and their salt-responsive expression patterns were validated by qPCR analysis. Yeast-based functional experiments confirmed that TaVQ27 may be a new regulator to salt response and regulation. Overall, this study lays the foundation for further functional validation of VQ family members within the Triticeae species.


Assuntos
Oryza , Triticum , Triticum/genética , Triticum/metabolismo , Duplicação Gênica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma , Poaceae/metabolismo , Oryza/metabolismo , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética
14.
Eur J Pharmacol ; 950: 175771, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37146709

RESUMO

Imperata cylindrica, a medicinal plant used in Traditional Chinese Medicine, has been used to treat chronic kidney disease. Extracts of I. cylindrica display anti-inflammatory, immunomodulatory, and anti-fibrotic properties. However, the active components of the extracts and their protective mechanisms have not been fully elucidated. In this study, we explored the ability of cylindrin, the main active compound extracted from I. cylindrica, to protect against renal fibrosis and to investigate the potential mechanisms involved. At high doses, cylindrin exerted protective effects against folic acid-induced kidney fibrosis in mice. Bioinformatic analysis predicted the LXR-α/PI3K/AKT pathway as a target of regulation by cylindrin. This was supported by our in vitro and in vivo results showing that cylindrin significantly downregulated the expression of LXR-α and phosphorylated PI3K/AKT in M2 macrophages and mouse renal tissues. Furthermore, high-dose cylindrin inhibited M2 polarization of IL-4-stimulated macrophages in vitro. Our results suggest that cylindrin alleviates renal fibrosis by attenuating M2 macrophage polarization through inhibition of the PI3K/AKT pathway via downregulation of LXR-α.


Assuntos
Nefropatias , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Poaceae/metabolismo , Macrófagos/metabolismo , Fibrose
15.
J Hazard Mater ; 452: 131318, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37011447

RESUMO

To clarify how phosphorus (P) influences arbuscular mycorrhizal fungi (AMF) interactions with host plants, we measured the effects of variation in environmental P levels and AMF colonization on photosynthesis, element absorption, ultrastructure, antioxidant capacity, and transcription mechanisms in Phragmites australis (P. australis) under cadmium (Cd) stress. AMF maintained photosynthetic stability, element balance, subcellular integrity and enhanced antioxidant capacity by upregulating antioxidant gene expression. Specifically, AMF overcame Cd-induced stomatal limitation, and mycorrhizal dependence peaked in the high Cd-moderate P treatment (156.08%). Antioxidants and compatible solutes responded to P-level changes: the primary driving forces of removing reactive oxygen species (ROS) and maintaining osmotic balance were superoxide dismutase, catalase, and sugars at limited P levels and total polyphenol, flavonoid, peroxidase, and proline at abundant P levels, we refer to this phenomenon as "functional link." AMF and phosphorus enhanced Cd tolerance in P. australis, but the regulation of AMF was P-dependent. Phosphorus prevented increases in total glutathione content and AMF-induced GSH/GSSG ratio (reduced to oxidized glutathione ratio) by inhibiting the expression of assimilatory sulfate reduction and glutathione reductase genes. The AMF-induced flavonoid synthesis pathway was regulated by P, and AMF activated Cd-tolerance mechanisms by inducing P-dependent signaling.


Assuntos
Antioxidantes , Micorrizas , Antioxidantes/metabolismo , Cádmio/metabolismo , Fósforo/metabolismo , Micorrizas/metabolismo , Fotossíntese , Poaceae/metabolismo , Glutationa/metabolismo , Raízes de Plantas/metabolismo
16.
Toxins (Basel) ; 15(4)2023 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-37104180

RESUMO

Labdane-related diterpenoids, momilactones A and B were isolated and identified in rice husks in 1973 and later found in rice leaves, straws, roots, root exudate, other several Poaceae species and the moss species Calohypnum plumiforme. The functions of momilactones in rice are well documented. Momilactones in rice plants suppressed the growth of fungal pathogens, indicating the defense function against pathogen attacks. Rice plants also inhibited the growth of adjacent competitive plants through the root secretion of momilactones into their rhizosphere due to the potent growth-inhibitory activity of momilactones, indicating a function in allelopathy. Momilactone-deficient mutants of rice lost their tolerance to pathogens and allelopathic activity, which verifies the involvement of momilactones in both functions. Momilactones also showed pharmacological functions such as anti-leukemia and anti-diabetic activities. Momilactones are synthesized from geranylgeranyl diphosphate through cyclization steps, and the biosynthetic gene cluster is located on chromosome 4 of the rice genome. Pathogen attacks, biotic elicitors such as chitosan and cantharidin, and abiotic elicitors such as UV irradiation and CuCl2 elevated momilactone production through jasmonic acid-dependent and independent signaling pathways. Rice allelopathy was also elevated by jasmonic acid, UV irradiation and nutrient deficiency due to nutrient competition with neighboring plants with the increased production and secretion of momilactones. Rice allelopathic activity and the secretion of momilactones into the rice rhizosphere were also induced by either nearby Echinochloa crus-galli plants or their root exudates. Certain compounds from Echinochloa crus-galli may stimulate the production and secretion of momilactones. This article focuses on the functions, biosynthesis and induction of momilactones and their occurrence in plant species.


Assuntos
Diterpenos , Echinochloa , Oryza , Poaceae/metabolismo , Plantas/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Echinochloa/metabolismo , Diterpenos/farmacologia , Diterpenos/metabolismo
17.
Environ Pollut ; 327: 121608, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37044257

RESUMO

Microbial co-metabolism is crucial for the efficient biodegradation of polycyclic aromatic hydrocarbons (PAHs); however, their intrinsic mechanisms remain unclear. To explore the co-metabolic degradation of PAHs, root organic acids (ROAs) (phenolic ROAs: caffeic acid [CA] and ferulic acid [FA]; non-phenolic ROAs: oxalic acid [OA]) were exogenously added as co-metabolic substrates under high (HFe) and low (LFe) iron levels in this study. The results demonstrated that more than 90% of PAHs were eliminated from the rhizosphere of Phragmites australis. OA can promote the enrichment of unrelated degrading bacteria and non-specific dioxygenases. FA with a monohydroxy structure can activate hydroxylase; however, it relies on phytosiderophores released by plants (such as OA) to adapt to stress. Therefore, non-specific co-metabolism occurred in these units. The best performance for PAH removal was observed in the HFe-CA unit because: (a) HFe concentrations enriched the Fe-reducing and denitrifying bacteria and promoted the rate-limiting degradation for PAHs as the enzyme cofactor; (b) CA with a dihydroxyl structure enriched the related degrading bacteria, stimulated specific dioxygenase, and activated Fe to concentrate around the rhizosphere simultaneously to perform the specific co-metabolism. Understanding the co-metabolic degradation of PAHs will help improve the efficacy of rhizosphere-mediated remediation.


Assuntos
Dioxigenases , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Hidrocarbonetos Policíclicos Aromáticos/análise , Rizosfera , Ferro/metabolismo , Poaceae/metabolismo , Biodegradação Ambiental , Bactérias/metabolismo , Dioxigenases/metabolismo , Compostos Orgânicos/metabolismo , Ácidos , Poluentes do Solo/metabolismo , Microbiologia do Solo
18.
Sci Total Environ ; 877: 162915, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36933713

RESUMO

Moso bamboo (Phyllostachys heterocycla cv. Pubescens) is well known for its high capacity to sequester atmospheric carbon, which has a unique role to play in combating global warming. Many Moso bamboo forests are gradually degrading due to rising labor costs and falling prices for bamboo timber. However, the mechanisms of carbon sequestration of Moso bamboo forest ecosystems in response to degradation are unclear. In this study, a space-for-time substitution approach was used to select Moso bamboo forest plots with the same origin and similar stand types, but different years of degradation, and four degradation sequences, continuous management (CK), 2 years of degradation (D-I), 6 years of degradation (D-II) and 10 years of degradation (D-III). A total of 16 survey sample plots were established based on the local management history files. After a 12-month monitoring, the response characteristics of soil greenhouse gases (GHG) emissions, vegetation, and soil organic carbon sequestration in different degradation sequences were evaluated to reveal the differences in the ecosystem carbon sequestration. The results indicated that under D-I, D-II, and D-III, the global warming potential (GWP) of soil GHG emissions decreased by 10.84 %, 17.75 %, and 31.02 %, while soil organic carbon (SOC) sequestration increased by 2.82 %, 18.11 %, and 4.68 %, and vegetation carbon sequestration decreased by 17.30 %, 33.49 %, and 44.76 %, respectively. In conclusion, compared to CK, the ecosystem carbon sequestration was reduced by 13.79 %, 22.42 %, and 30.31 %, respectively. This suggests that degradation reduces soil GHG emissions but weakens the ecosystem carbon sequestration capability. Therefore, in the background of global warming and the strategic goal of carbon neutrality, restorative management of degraded Moso bamboo forests is critically needed to improve the carbon sequestration potential of the ecosystem.


Assuntos
Ecossistema , Gases de Efeito Estufa , Sequestro de Carbono , Gases de Efeito Estufa/metabolismo , Carbono/análise , Solo , Poaceae/metabolismo , China
19.
Int J Biol Macromol ; 229: 943-951, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36621735

RESUMO

Cymbopogon is an important aromatic and medicinal grass with several species of ethnopharmaceutical importance. The genus is extremely rich in secondary metabolites, monoterpenes like geraniol and citral being principal constituents, also used as biomarker for classification and identification of Cymbopogon chemotypes. In the light of this, present study involved RNA sequencing and comparison of expression profiles of four contrasting Cymbopogon species namely C. flexuosus var. Chirharit (citral rich and frost resistant), C. martinii var. PRC-1 (geraniol rich), C. pendulus var. Praman (the most stable and citral-rich genotype), and Jamrosa (a hybrid of C. nardus var. confertiflorus × C. jwarancusa (rich in geraniol and geranyl acetate). The transcriptome profiles revealed marked differences in gene expression patterns of 28 differentially expressed genes (DEGs) of terpenoid metabolic pathways between the four Cymbopogon sp. The major DEGs were Carotenoid Cleavage Dioxygenases (CCD), Aspartate aminotransferase (ASP amino), Mevalonate E-4 hydroxy, AKR, GGPS, FDPS, and AAT. In addition, few TFs related to different regulatory pathways were also identified. The gene expression profiles of DEGs were correlated to the EO yield and their monoterpene compositions. Overall, the PRC-1 (C. martinii) shows distinguished gene expression profiles from all other genotypes. Thus, the transcriptome sequence database expanded our understanding of terpenoid metabolism and its molecular regulation in Cymbopogon species. Additionally, this data also serves as an important source of knowledge for enhancing oil yield and quality in Cymbopogon and closely related taxa. KEY MESSAGE: Unfolding the new secretes surrounding EO biosynthesis and regulation in four contrasting Cymbopogon species.


Assuntos
Cymbopogon , Óleos Voláteis , Óleos Voláteis/metabolismo , Cymbopogon/genética , Cymbopogon/metabolismo , Terpenos/metabolismo , Monoterpenos/metabolismo , Poaceae/metabolismo , Redes e Vias Metabólicas
20.
Int J Mol Sci ; 23(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36232880

RESUMO

Tillering is a key factor that determines the reproductive yields of centipedegrass, which is an important perennial warm-season turfgrass. However, the regulatory mechanism of tillering in perennial plants is poorly understood, especially in perennial turfgrasses. In this study, we created and characterised a cold plasma-mutagenised centipedegrass mutant, mtn1 (more tillering number 1). Phenotypic analysis showed that the mtn1 mutant exhibited high tillering, short internodes, long seeds and a heavy 1000-seed weight. Then, a comparative transcriptomic analysis of the mtn1 mutant and wild-type was performed to explore the molecular mechanisms of centipedegrass tillering. The results revealed that plant hormone signalling pathways, as well as starch and sucrose metabolism, might play important roles in centipedegrass tillering. Hormone and soluble sugar content measurements and exogenous treatment results validated that plant hormones and sugars play important roles in centipedegrass tiller development. In particular, the overexpression of the auxin transporter ATP-binding cassette B 11 (EoABCB11) in Arabidopsis resulted in more branches. Single nucleotide polymorphisms (SNPs) were also identified, which will provide a useful resource for molecular marker-assisted breeding in centipedegrass. According to the physiological characteristics and transcriptional expression levels of the related genes, the regulatory mechanism of centipedegrass tillering was systematically revealed. This research provides a new breeding resource for further studies into the molecular mechanism that regulates tillering in perennial plants and for breeding high-tillering centipedegrass varieties.


Assuntos
Arabidopsis , Gases em Plasma , Trifosfato de Adenosina/metabolismo , Arabidopsis/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Hormônios/metabolismo , Ácidos Indolacéticos/metabolismo , Melhoramento Vegetal , Reguladores de Crescimento de Plantas/metabolismo , Gases em Plasma/metabolismo , Poaceae/metabolismo , Amido/metabolismo , Sacarose/metabolismo , Açúcares/metabolismo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA