Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 525
Filtrar
1.
Biomed Pharmacother ; 174: 116583, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38626520

RESUMO

BACKGROUND: Primary membranous nephropathy (PMN) is an autoimmune glomerular disease. IL-6 is a potential therapeutic target for PMN. Previous clinical studies have demonstrated the effectiveness of Mahuang Fuzi and Shenzhuo Decoction (MFSD) in treating membranous nephropathy. However, the mechanism of action of MFSD remains unclear. METHODS: Serum IL-6 levels were measured in patients with PMN and healthy subjects. The passive Heymann nephritis (PHN) rat model was established, and high and low doses of MFSD were used for intervention to observe the repair effect of MFSD on renal pathological changes and podocyte injury. RNA-seq was used to screen the possible targets of MFSD, and the effect of MFSD targeting IL-6/STAT3 was further verified by combining the experimental results. Finally, the efficacy of tocilizumab in PHN rats was observed. RESULTS: Serum IL-6 levels were significantly higher in PMN patients than in healthy subjects. These levels significantly decreased in patients in remission after MFSD treatment. MFSD treatment improved laboratory indicators in PHN rats, as well as glomerular filtration barrier damage and podocyte marker protein expression. Renal transcriptome changes showed that MFSD-targeted differential genes were enriched in JAK/STAT and cytokine-related pathways. MFSD inhibits the IL6/STAT3 pathway in podocytes. Additionally, MFSD significantly reduced serum levels of IL-6 and other cytokines in PHN rats. However, treatment of PHN with tocilizumab did not achieve the expected effect. CONCLUSION: The IL-6/STAT3 signaling pathway is activated in podocytes of experimental membranous nephropathy. MFSD alleviates podocyte damage by inhibiting the IL-6/STAT3 pathway.


Assuntos
Anticorpos Monoclonais Humanizados , Medicamentos de Ervas Chinesas , Glomerulonefrite Membranosa , Interleucina-6 , Podócitos , Fator de Transcrição STAT3 , Transdução de Sinais , Glomerulonefrite Membranosa/tratamento farmacológico , Glomerulonefrite Membranosa/patologia , Glomerulonefrite Membranosa/metabolismo , Podócitos/efeitos dos fármacos , Podócitos/metabolismo , Podócitos/patologia , Fator de Transcrição STAT3/metabolismo , Animais , Interleucina-6/metabolismo , Interleucina-6/sangue , Medicamentos de Ervas Chinesas/farmacologia , Humanos , Masculino , Ratos , Transdução de Sinais/efeitos dos fármacos , Ratos Sprague-Dawley , Feminino , Pessoa de Meia-Idade , Modelos Animais de Doenças , Adulto
2.
J Endocrinol ; 261(3)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38552310

RESUMO

Diabetic nephropathy (DN) is one of the most frequent complications of diabetes. Early stages of DN are associated with hyperinsulinemia and progressive insulin resistance in insulin-sensitive cells, including podocytes. The diabetic environment induces pathological changes, especially in podocyte bioenergetics, which is tightly linked with mitochondrial dynamics. The regulatory role of insulin in mitochondrial morphology in podocytes has not been fully elucidated. Therefore, the main goal of the present study was to investigate effects of insulin on the regulation of mitochondrial dynamics and bioenergetics in human podocytes. Biochemical analyses were performed to assess oxidative phosphorylation efficiency by measuring the oxygen consumption rate (OCR) and glycolysis by measuring the extracellular acidification rate (ECAR). mRNA and protein expression were determined by real-time polymerase chain reaction and Western blot. The intracellular mitochondrial network was visualized by MitoTracker staining. All calculations were conducted using CellProfiler software. Short-term insulin exposure exerted inhibitory effects on various parameters of oxidative respiration and adenosine triphosphate production, and glycolysis flux was elevated. After a longer time of treating cells with insulin, an increase in mitochondrial size was observed, accompanied by a reduction of expression of the mitochondrial fission markers DRP1 and FIS1 and an increase in mitophagy. Overall, we identified a previously unknown role for insulin in the regulation of oxidative respiration and glycolysis and elucidated mitochondrial dynamics in human podocytes. The present results emphasize the importance of the duration of insulin stimulation for its metabolic and molecular effects, which should be considered in clinical and experimental studies of DN.


Assuntos
Metabolismo Energético , Glicólise , Insulina , Mitocôndrias , Dinâmica Mitocondrial , Podócitos , Podócitos/metabolismo , Podócitos/efeitos dos fármacos , Humanos , Dinâmica Mitocondrial/efeitos dos fármacos , Insulina/metabolismo , Insulina/farmacologia , Metabolismo Energético/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Dinaminas/metabolismo , Dinaminas/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Fosforilação Oxidativa/efeitos dos fármacos , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/genética , Mitofagia/efeitos dos fármacos , Linhagem Celular
3.
J Ethnopharmacol ; 293: 115246, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35398500

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Traditional Chinese medicine (TCM) has been applied to diabetic kidney disease (DKD). A large number of animal trials each year focus on TCM for DKD, but the evidence for these preclinical studies is not clear. AIM OF THE STUDY: The aim of this study was to study the therapeutic effect of Jiedu Tongluo Baoshen formula (JTBF) on DKD proteinuria and renal protection. At the same time, it is verified that JTBF can reduce podocyte injury by enhancing autophagy function, and then achieve the effect of proteinuria. MATERIALS AND METHODS: We use high performance liquid chromatography to detect and analyze the fingerprint of JTBF to find the chemical composition. Subsequently, we constructed a DKD rat model induced by high-fat diet and streptozocin (HFD + STZ). Urine and blood biochemical automatic analyzer were used to detect 24-h urine protein quantification (24 h-UP) and renal function. The renal pathological changes were observed by H&E and transmission electron microscopy (TEM), and the levels of autophagy-related proteins and mRNA in podocytes were detected by immunohistochemistry, RT-qPCR and Western Blot. The chemical composition of JTBF was screened from traditional Chinese medicine systems pharmacol (TCMSP) and PubChem databases, and the potential targets and associated pathways of JTBF were predicted using kyoto encyclopedia of genes and genomes (KEGG) and protein-protein interaction (PPI) network analysis in network pharmacology, and confirmed in animal experiments and histopathological methods. RESULTS: We discovered 77 active ingredients of JTBF. Through animal experiments, it was found that JTBF reduced 24 h-UP and promoted the expression of podocin, nephrin, and WT-1 in podocytes, thereby reducing podocyte damage. At the same time, JTBF activates the expression of podocyte autophagy-related proteins (beclin-1, LC3 and P62). Subsequently, through network pharmacology predictions, 208 compounds were obtained from JTBF, and phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) was a potential signal pathway. JTBF was obtained in DKD rat kidney tissue to inhibit the expression of PI3K, Akt and mTOR related proteins. CONCLUSIONS: JTBF enhance podocyte autophagy to reduce podocyte damage, thereby effectively treating DKD proteinuria and protecting kidney function.


Assuntos
Autofagia , Nefropatias Diabéticas , Medicamentos de Ervas Chinesas , Podócitos , Proteinúria , Animais , Proteínas Relacionadas à Autofagia/metabolismo , Diabetes Mellitus/metabolismo , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/patologia , Medicamentos de Ervas Chinesas/farmacologia , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Podócitos/efeitos dos fármacos , Proteinúria/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
4.
Acta Pharmacol Sin ; 43(1): 96-110, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34253875

RESUMO

Diabetic kidney disease (DKD) is one of the microvascular complications of diabetes mellitus and a major cause of end-stage renal disease with limited treatment options. Wogonin is a flavonoid derived from the root of Scutellaria baicalensis Georgi, which has shown a potent renoprotective effect. But the mechanisms of action in DKD are not fully elucidated. In this study, we investigated the effects of wogonin on glomerular podocytes in DKD using mouse podocyte clone 5 (MPC5) cells and diabetic mice model. MPC5 cells were treated with high glucose (30 mM). We showed that wogonin (4, 8, 16 µM) dose-dependently alleviated high glucose (HG)-induced MPC5 cell damage, accompanied by increased expression of WT-1, nephrin, and podocin proteins, and decreased expression of TNF-α, MCP-1, IL-1ß as well as phosphorylated p65. Furthermore, wogonin treatment significantly inhibited HG-induced apoptosis in MPC5 cells. Wogonin reversed HG-suppressed autophagy in MPC5 cells, evidenced by increased ATG7, LC3-II, and Beclin-1 protein, and decreased p62 protein. We demonstrated that wogonin directly bound to Bcl-2 in MPC5 cells. In HG-treated MPC5 cells, knockdown of Bcl-2 abolished the beneficial effects of wogonin, whereas overexpression of Bcl-2 mimicked the protective effects of wogonin. Interestingly, we found that the expression of Bcl-2 was significantly decreased in biopsy renal tissue of diabetic nephropathy patients. In vivo experiments were conducted in STZ-induced diabetic mice, which were administered wogonin (10, 20, 40 mg · kg-1 · d-1, i.g.) every other day for 12 weeks. We showed that wogonin administration significantly alleviated albuminuria, histopathological lesions, and p65 NF-κB-mediated renal inflammatory response. Wogonin administration dose-dependently inhibited podocyte apoptosis and promoted podocyte autophagy in STZ-induced diabetic mice. This study for the first time demonstrates a novel action of wogonin in mitigating glomerulopathy and podocytes injury by regulating Bcl-2-mediated crosstalk between autophagy and apoptosis. Wogonin may be a potential therapeutic drug against DKD.


Assuntos
Nefropatias Diabéticas/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Flavanonas/farmacologia , Glomérulos Renais/efeitos dos fármacos , Podócitos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/administração & dosagem , Flavanonas/administração & dosagem , Injeções Intraperitoneais , Glomérulos Renais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Podócitos/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Relação Estrutura-Atividade
5.
Am J Physiol Renal Physiol ; 322(2): F164-F174, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34894725

RESUMO

Interleukin (IL)-1 receptor type 1 (IL-1R1) activation triggers a proinflammatory signaling cascade that can exacerbate kidney injury. However, the functions of podocyte IL-1R1 in glomerular disease remain unclear. To study the role of IL-1R1 signaling in podocytes, we selectively ablated podocyte IL-1R1 in mice (PKO mice). We then subjected PKO mice and wild-type controls to two glomerular injury models: nephrotoxic serum (NTS)- and adriamycin-induced nephropathy. Surprisingly, we found that IL-1R1 activation in podocytes limited albuminuria and podocyte injury during NTS- and adriamycin-induced nephropathy. Moreover, deletion of IL-1R1 in podocytes drove podocyte apoptosis and glomerular injury through diminishing Akt activation. Activation of Akt signaling abrogated the differences in albuminuria and podocyte injury between wild-type and PKO mice during NTS. Thus, IL-1R1 signaling in podocytes limits susceptibility to glomerular injury via an Akt-dependent signaling pathway. These data identify an unexpected protective role for IL-1R1 signaling in podocytes in the pathogenesis of glomerular disease.NEW & NOTEWORTHY The present study establishes that activation of the receptor for interleukin-1 limits susceptibility to damage to the kidney glomerulus in preclinical mouse models by stimulating Akt signaling cascades inside the podocyte.


Assuntos
Glomerulonefrite/metabolismo , Podócitos/metabolismo , Proteinúria/metabolismo , Receptores Tipo I de Interleucina-1/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Modelos Animais de Doenças , Doxorrubicina , Glomerulonefrite/induzido quimicamente , Glomerulonefrite/patologia , Glomerulonefrite/prevenção & controle , Humanos , Interleucina-1beta/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Camundongos da Linhagem 129 , Camundongos Knockout , Podócitos/efeitos dos fármacos , Podócitos/patologia , Proteinúria/induzido quimicamente , Proteinúria/patologia , Proteinúria/prevenção & controle , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Tipo I de Interleucina-1/agonistas , Receptores Tipo I de Interleucina-1/genética , Transdução de Sinais
6.
Int J Biol Sci ; 17(15): 4396-4408, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34803506

RESUMO

Rationale: Focal segmental glomerulosclerosis (FSGS) is characterized by the dysfunction of "post-mitotic" podocytes. The reentry of podocytes in the cell cycle will ultimately result in cell death. Mitotic arrest deficient 2-like protein 2 (MAD2B), an inhibitor of anaphase-promoting complex (APC)/cyclosome, precisely controls the metaphase to anaphase transition and ordered cell cycle progression. However, the role of MAD2B in FSGS podocyte injury remains unknown. Methods: To explore MAD2B function in podocyte cell cycle reentry, we used conditional mutant mice lacking MAD2B selectively in podocytes in ADR-induced FSGS murine model. Additionally, KU-55933, a specific inhibitor of ataxia-telangiectasia mutated (ATM) was utilized in vivo and in vitro to explore the role of ATM in regulating MAD2B. Results: The expression of MAD2B in podocytes was dramatically increased in patients with FSGS and ADR-treated mice along with podocyte cell cycle reentry. Podocyte-specific knockout of MAD2B effectively attenuated proteinuria, podocyte injury, and prevented the aberrant cell cycle reentry. By bioinformatics analysis we revealed that ATM kinase is a key upstream regulator of MAD2B. Furthermore, inhibition of ATM kinase abolished MAD2B-driven cell cycle reentry and alleviated podocyte impairment in FSGS murine model. In vitro studies by site-directed mutagenesis and immunoprecipitation we revealed ATM phosphorylated MAD2B and consequently hampered the ubiquitination of MAD2B in a phosphorylation-dependent manner. Conclusions: ATM kinase-MAD2B axis importantly contributes to the cell cycle reentry of podocytes, which is a novel pathogenic mechanism of FSGS, and may shed light on the development of its therapeutic approaches.


Assuntos
Glomerulosclerose Segmentar e Focal/induzido quimicamente , Glomerulosclerose Segmentar e Focal/metabolismo , Proteínas Mad2/metabolismo , Morfolinas/farmacologia , Podócitos/metabolismo , Pironas/farmacologia , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Biópsia , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/fisiologia , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Glomerulosclerose Segmentar e Focal/patologia , Humanos , Proteínas Mad2/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Podócitos/efeitos dos fármacos
7.
Cells ; 10(11)2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34831108

RESUMO

Apoptosis is a programmed cell death involved in embryogenesis and tissue homeostasis under physiological conditions. However, abnormalities in the process of apoptosis are implicated in the pathogenesis of various diseases. The human microbiota may release products that induce apoptosis of host cells. We recently identified a novel microbiome-derived peptide called corisin that worsens lung fibrosis by inducing apoptosis of lung epithelial cells. We hypothesized that corisin and a corisin-like peptide might also induce apoptosis of cells from different tissues. We cultured podocytes, renal tubular epithelial cells, keratinocytes, retinal and intestinal cells treated with corisin and evaluated apoptosis by flow cytometry and Western blotting. Although at different grades, flow cytometry analysis and Western blotting showed that corisin and a corisin-like peptide induced apoptosis of podocytes, keratinocytes, tubular epithelial cells, retinal, and intestinal cells. In addition, we found that corisin synergistically enhances the proapoptotic activity of transforming growth factor-ß1 on podocytes. In conclusion, these results suggest that corisin and corisin-like peptides may play a role in the pathogenesis of disease in different organs by promoting apoptosis of parenchymal cells.


Assuntos
Apoptose , Microbiota , Especificidade de Órgãos , Peptídeos/farmacologia , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Linhagem Celular Tumoral , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Células HaCaT , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/patologia , Microbiota/efeitos dos fármacos , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , Especificidade de Órgãos/efeitos dos fármacos , Podócitos/efeitos dos fármacos , Podócitos/patologia , Espécies Reativas de Oxigênio/metabolismo , Retina/patologia , Fator de Crescimento Transformador beta1/metabolismo
8.
Eur J Pharmacol ; 913: 174616, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34780752

RESUMO

High fructose has been reported to drive glomerular podocyte oxidative stress and then induce podocyte foot process effacement in vivo, which could be partly regarded as podocyte hypermotility in vitro. Atractylodin possesses anti-oxidative effect. The aim of this study was to explore whether atractylodin prevented against fructose-induced podocyte hypermotility via anti-oxidative property. In fructose-exposed conditionally immortalized human podocytes, we found that atractylodin inhibited podocyte hypermotility, and up-regulated slit diaphragm proteins podocin and nephrin, and cytoskeleton protein CD2-associated protein (CD2AP), α-Actinin-4 and synaptopodin expression, which were consistent with its anti-oxidative activity evidenced by up-regulation of catalase (CAT) and superoxide dismutase (SOD) 1 expression, and reduction of reactive oxygen species (ROS) production. Atractylodin also significantly suppressed expression of transient receptor potential channels 6 (TRPC6) and phosphorylated Ca2+/calmodulin-dependent protein kinase IV (CaMK4) in cultured podocytes with fructose exposure. Additionally, in fructose-exposed podocytes, CaMK4 siRNA up-regulated synaptopodin and reduced podocyte hypermotility, whereas, silencing of TRPC6 by siRNA decreased p-CaMK4 expression, inhibited podocyte hypermotility, showing TRPC6/p-CaMK4 signaling activation in podocyte hypermotility under fructose condition. Just like atractylodin, antioxidant N-acetyl-L-cysteine (NAC) could inhibit TRPC6/p-CaMK4 signaling activation to reduce fructose-induced podocytes hypermotility. These results first demonstrated that the anti-oxidative property of atractylodin may contribute to the suppression of podocyte hypermotility via inhibiting TRPC6/p-CaMK4 signaling and restoring synaptopodin expression abnormality.


Assuntos
Antioxidantes/farmacologia , Frutose/efeitos adversos , Furanos/farmacologia , Podócitos/efeitos dos fármacos , Edulcorantes/efeitos adversos , Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina/metabolismo , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Humanos , Proteínas dos Microfilamentos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fosforilação , Podócitos/fisiologia , Proteólise/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Canal de Cátion TRPC6/antagonistas & inibidores , Canal de Cátion TRPC6/metabolismo
9.
Biomed Pharmacother ; 144: 112349, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34700229

RESUMO

Membranous nephropathy (MN) is the most common cause of nephrotic syndrome in adults without diabetes. Primary MN has been associated with circulating antibodies against native podocyte antigens, including phospholipase A2 receptor (PLA2R); however, precision therapy targeting the signaling cascade of PLA2R activation is lacking. Both PLA2R and the mammalian target of rapamycin (mTOR) exist in podocytes, but the interplay between these two proteins and their roles in MN warrants further exploration. This study aimed to investigate the crosstalk between PLA2R activation and mTOR signaling in a human podocyte cell line. We demonstrated that podocyte apoptosis was induced by Group IB secretory phospholipase A2 (sPLA2IB) in a concentration- and time-dependent manner via upregulation of phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), and mTOR, and inhibited by rapamycin or LY294002. Furthermore, aberrant activation of the PI3K/AKT/mTOR pathway triggers both extrinsic (caspase-8 and caspase-3) and intrinsic (Bcl-2-associated X protein [BAX], B-cell lymphoma 2 [BCL-2], cytochrome c, caspase-9, and caspase-3) apoptotic cascades in podocytes. The therapeutic implications of our findings are that strategies to reduce PLA2R activation and PI3K/AKT/mTOR pathway inhibition in PLA2R-activated podocytes help protect podocytes from apoptosis. The therapeutic potential of rapamycin shown in this study provides cellular evidence supporting the repurposing of rapamycin for MN treatment.


Assuntos
Apoptose/efeitos dos fármacos , Glomerulonefrite Membranosa/tratamento farmacológico , Inibidores de MTOR/farmacologia , Fosfatidilinositol 3-Quinase/metabolismo , Podócitos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores da Fosfolipase A2/metabolismo , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular , Ativação Enzimática , Glomerulonefrite Membranosa/enzimologia , Glomerulonefrite Membranosa/patologia , Humanos , Podócitos/enzimologia , Podócitos/patologia , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
10.
FASEB J ; 35(10): e21912, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34533842

RESUMO

High salt diet (HSD) is a hallmark of blood pressure elevations, weight gain and diabetes onset in the metabolic syndrome. In kidney, compensatory mechanisms are activated to balance salt turnover and maintain homeostasis. Data on the long-term effects of HSD with respect to tubular cell functions and kidney architecture that exclude confounding indirect blood pressure effects are scarce. Additionally we focus on cold shock Y-box binding protein-1 as a tubular cell protective factor. A HSD model (4% NaCl in chow; 1% NaCl in water) was compared to normal salt diet (NSD, standard chow) over 16 months using wild type mice and an inducible conditional whole body knockout for cold shock Y-box binding protein-1 (BL6J/N, Ybx1). HSD induced no difference in blood pressure over 16 months, comparing NSD/HSD and Ybx1 wild type/knockout. Nevertheless, marked phenotypic changes were detected. Glucosuria and subnephrotic albuminuria ensued in wild type animals under HSD, which subsided in Ybx1-deficient animals. At the same time megalin receptors were upregulated. The sodium-glucose cotransporter-2 (SGLT2) was completely downregulated in wild type HSD animals that developed glucosuria. In Ybx1 knockouts, expression of AQP1 and SGLT2 was maintained under HSD; proximal tubular widening and glomerular tubularization developed. Concurrently, amino aciduria of neutral and hydrophobic amino acids was seen. In vitro translation confirmed that YB-1 translationally represses Sglt2 transcripts. Our data reveal profound effects of HSD primarily within glomeruli and proximal tubular segments. YB-1 is regulated by HSD and orchestrates HSD-dependent changes; notably, sets reabsorption thresholds for amino acids, proteins and glucose.


Assuntos
Resposta ao Choque Frio/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Túbulos Renais Proximais/efeitos dos fármacos , Sódio na Dieta/farmacologia , Transportador 2 de Glucose-Sódio/genética , Fatores de Transcrição/metabolismo , Animais , Pressão Sanguínea/efeitos dos fármacos , Feminino , Túbulos Renais Proximais/citologia , Leucócitos/citologia , Macrófagos/citologia , Masculino , Fenótipo , Podócitos/efeitos dos fármacos , Renina/biossíntese , Renina/metabolismo , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Regulação para Cima/efeitos dos fármacos
11.
Molecules ; 26(18)2021 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-34577005

RESUMO

Vanadium has a good therapeutic potential, as several biological effects, but few side effects, have been demonstrated. Evidence suggests that vanadium compounds could represent a new class of non-platinum, metal antitumor agents. In the present study, we aimed to characterize the antiproliferative activities of fluorescent vanadyl complexes with acetylacetonate derivates bearing asymmetric substitutions on the ß-dicarbonyl moiety on different cell lines. The effects of fluorescent vanadyl complexes on proliferation and cell cycle modulation in different cell lines were detected by ATP content using the CellTiter-Glo Luminescent Assay and flow cytometry, respectively. Western blotting was performed to assess the modulation of mitogen-activated protein kinases (MAPKs) and relevant proteins. Confocal microscopy revealed that complexes were mainly localized in the cytoplasm, with a diffuse distribution, as in podocyte or a more aggregate conformation, as in the other cell lines. The effects of complexes on cell cycle were studied by cytofluorimetry and Western blot analysis, suggesting that the inhibition of proliferation could be correlated with a block in the G2/M phase of cell cycle and an increase in cdc2 phosphorylation. Complexes modulated mitogen-activated protein kinases (MAPKs) activation in a cell-dependent manner, but MAPK modulation can only partly explain the antiproliferative activity of these complexes. All together our results demonstrate that antiproliferative effects mediated by these compounds are cell type-dependent and involve the cdc2 and MAPKs pathway.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Hidroxibutiratos/química , Pentanonas/química , Compostos de Vanádio/química , Compostos de Vanádio/farmacologia , Transporte Biológico , Proteína Quinase CDC2/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Corantes Fluorescentes , Humanos , Concentração Inibidora 50 , Microscopia Confocal , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação/efeitos dos fármacos , Podócitos/efeitos dos fármacos , Podócitos/ultraestrutura , Inibidores de Proteínas Quinases/farmacologia
12.
Bol. latinoam. Caribe plantas med. aromát ; 20(5): 515-523, sept. 2021. ilus
Artigo em Inglês | LILACS | ID: biblio-1369061

RESUMO

To explore a new underlying molecular mechanism of Huangkui Extract Powder (HKEP) in the alleviation of diabetic nephropathy (DN). Murine immortalized podocytes were divided into (i) normal glucose (NG, 5.6 mM), (ii) NG + HKEP (0.45 g/L), (iii) HG, and (iv) HG + HKEP (0.45 g/L) groups. MTT assay and flow cytometry were used to detect the podocyte proliferation, apoptosis and cell cycle. Cell viability was inhibited, and apoptosis increased in(iii) HG group compared with (i) NG group (p<0.05). mRNA and protein expression of nephrin and podocin significantly decreased in (iii) HG group compared with (i) NG group (p<0.05). When compared with (iii) HG group, (iv) HG + HKEP group had higher cell viability, lower apoptotic rate and higher mRNA and protein expression of nephrin and podocin (p<0.05). HKEP can attenuate HG-induced podocyte damage, which may be one of the mechanisms of HKEP for attenuating DN.


Explorar un nuevo mecanismo molecular subyacente del extracto del polvo de Huangkui (HKEP) en el alivio de la nefropatía diabética (ND). Los podocitos murinos inmortalizados se dividieron en (i) grupos de glucosa normal (NG, 5,6 mM), (ii) NG + HKEP (0,45 g/L), (iii) HG y (iv) HG + HKEP (0,45 g/L). Se utilizaron el ensayo MTT y la citometría de flujo para detectar la proliferación de podocitos, la apoptosis y el ciclo celular. La viabilidad celular se inhibió y la apoptosis aumentó en el grupo (iii) HG en comparación con el grupo (i) NG (p<0,05). La expresión de ARNm y proteínas de nefrina y podocina disminuyó significativamente en el grupo (iii) HG en comparación con el grupo (i) NG (p<0,05). En comparación con el grupo (iii) HG, el grupo (iv) HG + HKEP tuvo una mayor viabilidad celular, una tasa de apoptosis más baja y una expresión de ARNm y proteínas más altas de nefrina y podocina (p<0,05). HKEP puede atenuar el daño de los podocitos inducido por HG, que puede ser uno de los mecanismos de HKEP para atenuar la DN.


Assuntos
Extratos Vegetais/administração & dosagem , Nefropatias Diabéticas/tratamento farmacológico , Podócitos/efeitos dos fármacos , Pós , Extratos Vegetais/genética , Ciclo Celular , Western Blotting , Apoptose/efeitos dos fármacos , Técnicas de Cultura de Células , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Glucose
13.
Cells ; 10(7)2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34359843

RESUMO

Glomerulonephritis are renal inflammatory processes characterized by increased permeability of the Glomerular Filtration Barrier (GFB) with consequent hematuria and proteinuria. Glomerular endothelial cells (GEC) and podocytes are part of the GFB and contribute to the maintenance of its structural and functional integrity through the release of paracrine mediators. Activation of the complement cascade and pro-inflammatory cytokines (CK) such as Tumor Necrosis Factor α (TNF-α) and Interleukin-6 (IL-6) can alter GFB function, causing acute glomerular injury and progression toward chronic kidney disease. Endothelial Progenitor Cells (EPC) are bone-marrow-derived hematopoietic stem cells circulating in peripheral blood and able to induce angiogenesis and to repair injured endothelium by releasing paracrine mediators including Extracellular Vesicles (EVs), microparticles involved in intercellular communication by transferring proteins, lipids, and genetic material (mRNA, microRNA, lncRNA) to target cells. We have previously demonstrated that EPC-derived EVs activate an angiogenic program in quiescent endothelial cells and renoprotection in different experimental models. The aim of the present study was to evaluate in vitro the protective effect of EPC-derived EVs on GECs and podocytes cultured in detrimental conditions with CKs (TNF-α/IL-6) and the complement protein C5a. EVs were internalized in both GECs and podocytes mainly through a L-selectin-based mechanism. In GECs, EVs enhanced the formation of capillary-like structures and cell migration by modulating gene expression and inducing the release of growth factors such as VEGF-A and HGF. In the presence of CKs, and C5a, EPC-derived EVs protected GECs from apoptosis by decreasing oxidative stress and prevented leukocyte adhesion by inhibiting the expression of adhesion molecules (ICAM-1, VCAM-1, E-selectin). On podocytes, EVs inhibited apoptosis and prevented nephrin shedding induced by CKs and C5a. In a co-culture model of GECs/podocytes that mimicked GFB, EPC-derived EVs protected cell function and permeselectivity from inflammatory-mediated damage. Moreover, RNase pre-treatment of EVs abrogated their protective effects, suggesting the crucial role of RNA transfer from EVs to damaged glomerular cells. In conclusion, EPC-derived EVs preserved GFB integrity from complement- and cytokine-induced damage, suggesting their potential role as therapeutic agents for drug-resistant glomerulonephritis.


Assuntos
Complemento C5a/farmacologia , Células Progenitoras Endoteliais/efeitos dos fármacos , Vesículas Extracelulares/metabolismo , Interleucina-6/farmacologia , Podócitos/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Técnicas de Cocultura , Células Progenitoras Endoteliais/citologia , Células Progenitoras Endoteliais/metabolismo , Vesículas Extracelulares/química , Regulação da Expressão Gênica , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Selectina L/genética , Selectina L/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Neovascularização Fisiológica/genética , Comunicação Parácrina/efeitos dos fármacos , Podócitos/citologia , Podócitos/metabolismo , Cultura Primária de Células , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
14.
Toxicol Ind Health ; 37(9): 555-563, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34452584

RESUMO

Current research suggests that cadmium (Cd) exposure may be associated with the progression of diabetic nephropathy; however, the details of this relationship are insufficiently understood. The present study investigated the effects of elevated glucose on Cd-induced toxicity to glomerular cells using in vitro and in vivo models, and it demonstrated that Cd exposure and the hyperglycemia of diabetes acting together increased the risk of developing glomerular nephrosis. In vitro, human podocytes were exposed to a DMEM low-glucose media without (control), or with Cd (as CdCl2), or a high-glucose media plus Cd. The CCK-8, ROS, apoptosis, and mitochondrial transmembrane potential (ΔΨm) assays showed that human podocytes exposed to Cd in a high-glucose media had greater degrees of injury compared with cells treated with Cd at low (euglycemic)-glucose levels. In vivo, diabetic hyperglycemia was induced by streptozotocin in 8-week-old male C57BL/6 mice to which either CdCl2 or saline (control) was intraperitoneally injected twice weekly for 24 weeks. Compared with euglycemic saline-treated controls, the diabetic mice exposed to Cd demonstrated decreased body weight and increased blood urea nitrogen levels along with histopathological renal architecture changes including collagen fiber accumulation. The results of this study supported the hypothesis that hyperglycemia plus Cd exposure increases the risk of damage to glomerular podocytes compared with Cd exposure in euglycemia.


Assuntos
Glicemia/metabolismo , Cádmio/farmacologia , Rim/efeitos dos fármacos , Podócitos/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Nitrogênio da Ureia Sanguínea , Peso Corporal , Linhagem Celular , Diabetes Mellitus Experimental , Humanos , Hiperglicemia/fisiopatologia , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo , Estreptozocina/farmacologia
15.
Biomed Pharmacother ; 142: 111907, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34339916

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Huangqi Guizhi Wuwu Decoction(HQGZWWD) is a Traditional Chinese Medicine formula from Synopsis of Golden Chamber used to treat blood arthralgia. According to the principle that the same treatment can be used for different diseases, HQGZWWD has proven effective for IgA nephropathy (IgAN) associated with spleen and kidney yang deficiency. AIM OF THE STUDY: In this study, we investigated the mechanism by which HQGZWWD alleviates proteinuria and protects renal function in rats with IgAN by regulating the AT1R/Nephrin/c-Abl pathway. METHODS: Rats were randomly divided into six groups: control, IgAN model, IgAN model treated with low-dose HQGZWWD, IgAN model treated with medium-dose HQGZWWD, IgAN model treated with high-dose HQGZWWD, and IgAN model treated with valsartan. IgAN was induced using bovine γ-globulin. We evaluated the mediating effects of HQGZWWD on podocyte cytoskeletal proteins, the AT1R/Nephrin/c-Abl pathway, upstream tumor necrosis factor-α (TNF-α), and TNF-α receptor-1 (TNFR1). RESULTS: The IgAN rats displayed proteinuria, IgA deposition in the mesangial region, and podocyte cytoskeletal protein damage. The expression of TNF-α, TNFR1, AT1R, and c-Abl was increased in the IgAN rat kidney, whereas the expression of nephrin, podocin, ACTN4, and phosphorylated nephrin (p-nephrin) was reduced. HQGZWWD treatment significantly alleviated podocyte cytoskeletal protein damage in the IgAN rats, upregulated the expression of nephrin, podocin, and ACTN4, and the colocalized expression of F-actin and nephrin. This study demonstrates that HQGZWWD attenuates podocyte cytoskeletal protein damage by regulating the AT1R-nephrin- c-Abl pathway, upregulating the expression of p-nephrin, and downregulating the expression of AT1R and c-Abl. CONCLUSIONS: These results indicate that HQGZWWD attenuates podocyte cytoskeletal protein damage in IgAN rats by regulating the AT1R/Nephrin/c-Abl pathway, providing a potential therapeutic approach for IgAN.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Glomerulonefrite por IGA/tratamento farmacológico , Proteínas de Membrana/metabolismo , Substâncias Protetoras/farmacologia , Proteínas Proto-Oncogênicas c-abl/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Actinina/genética , Actinina/metabolismo , Actinas/metabolismo , Animais , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/uso terapêutico , Glomerulonefrite por IGA/metabolismo , Glomerulonefrite por IGA/patologia , Glomerulonefrite por IGA/fisiopatologia , Imunoglobulina A/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Proteínas de Membrana/genética , Podócitos/efeitos dos fármacos , Substâncias Protetoras/química , Substâncias Protetoras/uso terapêutico , Proteinúria/metabolismo , Ratos Sprague-Dawley , Receptor Tipo 1 de Angiotensina/genética , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
16.
Toxicol Appl Pharmacol ; 429: 115683, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34411582

RESUMO

Unfractionated heparin (UFH) is a widely used anticoagulant that possess numerous properties including anti-inflammatory, anti-viral, anti-angiogenesis, and anti-metastatic effects. The effect of this drug was evaluated on the podocyte, an important actor of the glomerular filtration. Using a functional approach, we demonstrate that heparin treatment leads to a functional podocyte perturbation characterized by the increase of podocyte monolayer permeability. This effect is enhanced with time of exposure. Proteomic study reveals that heparin down regulate focal adhesion and cytoskeletal protein expressions as well as the synthesis of glomerular basement membrane components. This study clearly demonstrates that UFH may affect podocyte function by altering cytoskeleton organization, cell-cell contacts and cell attachment.


Assuntos
Anticoagulantes/toxicidade , Heparina/toxicidade , Podócitos/efeitos dos fármacos , Proteoma/efeitos dos fármacos , Proteômica , Linhagem Celular , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Citoesqueleto/patologia , Adesões Focais/efeitos dos fármacos , Adesões Focais/metabolismo , Adesões Focais/patologia , Taxa de Filtração Glomerular/efeitos dos fármacos , Humanos , Permeabilidade , Fenótipo , Podócitos/metabolismo , Podócitos/patologia , Fatores de Tempo
17.
Int J Mol Med ; 48(2)2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34278447

RESUMO

Diabetic nephropathy (DN) is a primary cause of end­stage renal disease. Despite the beneficial effects of astragaloside IV (AS)­IV on renal disease, the underlying mechanism of its protective effects against DN has not been fully determined. The aims of the present study were to assess the effects of AS­IV against DN in db/db mice and to explore the mechanism of AS­IV involving the NLR family pyrin domain containing 3 (NLRP3), caspase­1 and interleukin (IL)­1ß pathways. The 8­week­old db/db mice received 40 mg/kg AS­IV once a day for 12 weeks via intragastric administration. Cultured mouse podocytes were used to further confirm the underlying mechanism in vitro. AS­IV effectively reduced weight gain, hyperglycemia and the serum triacylglycerol concentration in db/db mice. AS­IV also reduced urinary albumin excretion, urinary albumin­to­creatinine ratio and creatinine clearance rate, as well as improved renal structural changes, accompanied by the upregulation of the podocyte markers podocin and synaptopodin. AS­IV significantly inhibited the expression levels of NLRP3, caspase­1 and IL­1ß in the renal cortex, and reduced the serum levels of tumor necrosis factor (TNF)­α and monocyte chemoattractant protein­1. In high glucose­induced podocytes, AS­IV significantly improved the expression levels of NLRP3, pro­caspase­1 and caspase­1, and inhibited the cell viability decrease in a dose­dependent manner, while NLRP3 overexpression eliminated the effect of AS­IV on podocyte injury and the inhibition of the NLRP3 and caspase­1 pathways. The data obtained from in vivo and in vitro experiments demonstrated that AS­IV ameliorated renal functions and podocyte injury and delayed the development of DN in db/db mice via anti­NLRP3 inflammasome­mediated inflammation.


Assuntos
Nefropatias Diabéticas/prevenção & controle , Inflamassomos/metabolismo , Inflamação/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Saponinas/farmacologia , Triterpenos/farmacologia , Animais , Caspase 1/genética , Caspase 1/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamassomos/genética , Inflamação/genética , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Córtex Renal/efeitos dos fármacos , Córtex Renal/metabolismo , Córtex Renal/ultraestrutura , Masculino , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Obesidade/complicações , Obesidade/genética , Podócitos/citologia , Podócitos/efeitos dos fármacos , Podócitos/metabolismo
18.
Biochem Pharmacol ; 192: 114687, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34274355

RESUMO

Podocytes and their foot processes form an important cellular layer of the glomerular barrier involved in regulating glomerular permeability. Disturbances in podocyte function play a central role in the development of proteinuria in diabetic nephropathy. The retraction of podocyte foot processes forming a slit diaphragm is a common feature of proteinuria. Metformin is an oral antidiabetic agent of the biguanide class that is widely recommended for the treatment of high blood glucose in patients with type 2 diabetes mellitus. In addition to lowering glucose, several recent studies have reported potential beneficial effects of metformin on diabetic kidney function. Furthermore, a key molecule of the antidiabetic mechanism of action of metformin is adenosine 5'-monophospate-activated protein kinase (AMPK), as the metformin-induced activation of AMPK is well documented. The present review summarizes current knowledge on the protective effects of metformin against pathological changes in podocytes that are induced by hyperglycemia.


Assuntos
Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/metabolismo , Hipoglicemiantes/uso terapêutico , Metformina/uso terapêutico , Podócitos/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Humanos , Hipoglicemiantes/farmacologia , Insulina/metabolismo , Metformina/farmacologia , Podócitos/efeitos dos fármacos , Resultado do Tratamento
19.
SLAS Discov ; 26(9): 1225-1237, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34218698

RESUMO

High-throughput phenotypic screening is a key driver for the identification of novel chemical matter in drug discovery for challenging targets, especially for those with an unclear mechanism of pathology. For toxic or gain-of-function proteins, small-molecule suppressors are a targeting/therapeutic strategy that has been successfully applied. As with other high-throughput screens, the screening strategy and proper assays are critical for successfully identifying selective suppressors of the target of interest. We executed a small-molecule suppressor screen to identify compounds that specifically reduce apolipoprotein L1 (APOL1) protein levels, a genetically validated target associated with increased risk of chronic kidney disease. To enable this study, we developed homogeneous time-resolved fluorescence (HTRF) assays to measure intracellular APOL1 and apolipoprotein L2 (APOL2) protein levels and miniaturized them to 1536-well format. The APOL1 HTRF assay served as the primary assay, and the APOL2 and a commercially available p53 HTRF assay were applied as counterscreens. Cell viability was also measured with CellTiter-Glo to assess the cytotoxicity of compounds. From a 310,000-compound screening library, we identified 1490 confirmed primary hits with 12 different profiles. One hundred fifty-three hits selectively reduced APOL1 in 786-O, a renal cell adenocarcinoma cell line. Thirty-one of these selective suppressors also reduced APOL1 levels in conditionally immortalized human podocytes. The activity and specificity of seven resynthesized compounds were validated in both 786-O and podocytes.


Assuntos
Apolipoproteína L1/antagonistas & inibidores , Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala , Podócitos/efeitos dos fármacos , Podócitos/metabolismo , Humanos , Bibliotecas de Moléculas Pequenas
20.
Commun Biol ; 4(1): 675, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34083716

RESUMO

Elucidating transcription mediated by the glucocorticoid receptor (GR) is crucial for understanding the role of glucocorticoids (GCs) in the treatment of diseases. Podocyte is a useful model for studying GR regulation because GCs are the primary medication for podocytopathy. In this study, we integrated data from transcriptome, transcription factor binding, histone modification, and genome topology. Our data reveals that the GR binds and activates selective regulatory elements in podocyte. The 3D interactome captured by HiChIP facilitates the identification of remote targets of GR. We found that GR in podocyte is enriched at transcriptional interaction hubs and super-enhancers. We further demonstrate that the target gene of the top GR-associated super-enhancer is indispensable to the effective functioning of GC in podocyte. Our findings provided insights into the mechanisms underlying the protective effect of GCs on podocyte, and demonstrate the importance of considering transcriptional interactions in order to fine-map regulatory networks of GR.


Assuntos
Cromatina/metabolismo , Citoesqueleto/metabolismo , Podócitos/metabolismo , Receptores de Glucocorticoides/metabolismo , Transcrição Gênica , Células A549 , Sítios de Ligação/genética , Linhagem Celular , Células Cultivadas , Cromatina/genética , Sequenciamento de Cromatina por Imunoprecipitação/métodos , Glucocorticoides/farmacologia , Células HeLa , Humanos , Células K562 , Células MCF-7 , Podócitos/citologia , Podócitos/efeitos dos fármacos , Ligação Proteica , Receptores de Glucocorticoides/genética , Elementos Reguladores de Transcrição/genética , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA