Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.757
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
FASEB J ; 38(9): e23638, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38713098

RESUMO

Diabetic retinopathy (DR) is associated with ocular inflammation leading to retinal barrier breakdown, vascular leakage, macular edema, and vision loss. DR is not only a microvascular disease but also involves retinal neurodegeneration, demonstrating that pathological changes associated with neuroinflammation precede microvascular injury in early DR. Macrophage activation plays a central role in neuroinflammation. During DR, the inflammatory response depends on the polarization of retinal macrophages, triggering pro-inflammatory (M1) or anti-inflammatory (M2) activity. This study aimed to determine the role of macrophages in vascular leakage through the tight junction complexes of retinal pigment epithelium, which is the outer blood-retinal barrier (BRB). Furthermore, we aimed to assess whether interleukin-10 (IL-10), a representative M2-inducer, can decrease inflammatory macrophages and alleviate outer-BRB disruption. We found that modulation of macrophage polarization affects the structural and functional integrity of ARPE-19 cells in a co-culture system under high-glucose conditions. Furthermore, we demonstrated that intravitreal IL-10 injection induces an increase in the ratio of anti-inflammatory macrophages and effectively suppresses outer-BRB disruption and vascular leakage in a mouse model of early-stage streptozotocin-induced diabetes. Our results suggest that modulation of macrophage polarization by IL-10 administration during early-stage DR has a promising protective effect against outer-BRB disruption and vascular leakage. This finding provides valuable insights for early intervention in DR.


Assuntos
Barreira Hematorretiniana , Diabetes Mellitus Experimental , Retinopatia Diabética , Interleucina-10 , Macrófagos , Camundongos Endogâmicos C57BL , Animais , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Barreira Hematorretiniana/metabolismo , Barreira Hematorretiniana/patologia , Interleucina-10/metabolismo , Camundongos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/metabolismo , Masculino , Humanos , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Estreptozocina , Ativação de Macrófagos/efeitos dos fármacos , Modelos Animais de Doenças , Polaridade Celular/efeitos dos fármacos
2.
J Neuroinflammation ; 21(1): 115, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698374

RESUMO

BACKGROUND: Macrophages play a pivotal role in the regulation of Japanese encephalitis (JE), a severe neuroinflammation in the central nervous system (CNS) following infection with JE virus (JEV). Macrophages are known for their heterogeneity, polarizing into M1 or M2 phenotypes in the context of various immunopathological diseases. A comprehensive understanding of macrophage polarization and its relevance to JE progression holds significant promise for advancing JE control and therapeutic strategies. METHODS: To elucidate the role of NADPH oxidase-derived reactive oxygen species (ROS) in JE progression, we assessed viral load, M1 macrophage accumulation, and cytokine production in WT and NADPH oxidase 2 (NOX2)-deficient mice using murine JE model. Additionally, we employed bone marrow (BM) cell-derived macrophages to delineate ROS-mediated regulation of macrophage polarization by ROS following JEV infection. RESULTS: NOX2-deficient mice exhibited increased resistance to JE progression rather than heightened susceptibility, driven by the regulation of macrophage polarization. These mice displayed reduced viral loads in peripheral lymphoid tissues and the CNS, along with diminished infiltration of inflammatory cells into the CNS, thereby resulting in attenuated neuroinflammation. Additionally, NOX2-deficient mice exhibited enhanced JEV-specific Th1 CD4 + and CD8 + T cell responses and increased accumulation of M1 macrophages producing IL-12p40 and iNOS in peripheral lymphoid and inflamed extraneural tissues. Mechanistic investigations revealed that NOX2-deficient macrophages displayed a more pronounced differentiation into M1 phenotypes in response to JEV infection, thereby leading to the suppression of viral replication. Importantly, the administration of H2O2 generated by NOX2 was shown to inhibit M1 macrophage polarization. Finally, oral administration of the ROS scavenger, butylated hydroxyanisole (BHA), bolstered resistance to JE progression and reduced viral loads in both extraneural tissues and the CNS, along with facilitated accumulation of M1 macrophages. CONCLUSION: In light of our results, it is suggested that ROS generated by NOX2 play a role in undermining the control of JEV replication within peripheral extraneural tissues, primarily by suppressing M1 macrophage polarization. Subsequently, this leads to an augmentation in the viral load invading the CNS, thereby facilitating JE progression. Hence, our findings ultimately underscore the significance of ROS-mediated macrophage polarization in the context of JE progression initiated JEV infection.


Assuntos
Macrófagos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Oxidase 2 , Animais , Camundongos , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/virologia , NADPH Oxidase 2/metabolismo , NADPH Oxidase 2/genética , Encefalite Japonesa/imunologia , Espécies Reativas de Oxigênio/metabolismo , Vírus da Encefalite Japonesa (Espécie) , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/virologia , Polaridade Celular/efeitos dos fármacos , Polaridade Celular/fisiologia
3.
J Cell Mol Med ; 28(9): e18350, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38700030

RESUMO

Mechanical force induces hypoxia in the pulpal area by compressing the apical blood vessels of the pulp, triggering pulpal inflammation during orthodontic tooth movement. However, this inflammation tends to be restorable. Macrophages are recognized as pivotal immunoreactive cells in the dental pulp. Whether they are involved in the resolution of pulpal inflammation in orthodontic teeth remains unclear. In this study, we investigated macrophage polarization and its effects during orthodontic tooth movement. It was demonstrated that macrophages within the dental pulp polarized to M2 type and actively participated in the process of pulpal inflammation resolution. Inflammatory reactions were generated and vascularization occurred in the pulp during orthodontic tooth movement. Macrophages in orthodontic pulp show a tendency to polarize towards M2 type as a result of pulpal hypoxia. Furthermore, by blocking M2 polarization, we found that macrophage M2 polarization inhibits dental pulp-secreting inflammatory factors and enhances VEGF production. In conclusion, our findings suggest that macrophages promote pulpal inflammation resolution by enhancing M2 polarization and maintaining dental health during orthodontic tooth movement.


Assuntos
Polpa Dentária , Inflamação , Macrófagos , Técnicas de Movimentação Dentária , Polpa Dentária/metabolismo , Polpa Dentária/patologia , Animais , Macrófagos/metabolismo , Inflamação/patologia , Inflamação/metabolismo , Camundongos , Polaridade Celular , Masculino , Fator A de Crescimento do Endotélio Vascular/metabolismo , Pulpite/patologia , Pulpite/metabolismo , Ativação de Macrófagos
4.
Sci Rep ; 14(1): 10433, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714696

RESUMO

Toxoplasma gondii (T. gondii) is a protozoan parasite that infects approximately one-third of the global human population, often leading to chronic infection. While acute T. gondii infection can cause neural damage in the central nervous system and result in toxoplasmic encephalitis, the consequences of T. gondii chronic infection (TCI) are generally asymptomatic. However, emerging evidence suggests that TCI may be linked to behavioral changes or mental disorders in hosts. Astrocyte polarization, particularly the A1 subtype associated with neuronal apoptosis, has been identified in various neurodegenerative diseases. Nevertheless, the role of astrocyte polarization in TCI still needs to be better understood. This study aimed to establish a mouse model of chronic TCI and examine the transcription and expression levels of glial fibrillary acidic protein (GFAP), C3, C1q, IL-1α, and TNF-α in the brain tissues of the mice. Quantitative real-time PCR (qRT-PCR), enzyme-linked immunosorbent assay, and Western blotting were employed to assess these levels. Additionally, the expression level of the A1 astrocyte-specific marker C3 was evaluated using indirect fluorescent assay (IFA). In mice with TCI, the transcriptional and expression levels of the inflammatory factors C1q, IL-1α, and TNF-α followed an up-down-up pattern, although they remained elevated compared to the control group. These findings suggest a potential association between astrocyte polarization towards the A1 subtype and synchronized changes in these three inflammatory mediators. Furthermore, immunofluorescence assay (IFA) revealed a significant increase in the A1 astrocytes (GFAP+C3+) proportion in TCI mice. This study provides evidence that TCI can induce astrocyte polarization, a biological process that may be influenced by changes in the levels of three inflammatory factors: C1q, IL-1α, and TNF-α. Additionally, the release of neurotoxic substances by A1 astrocytes may be associated with the development of TCI.


Assuntos
Astrócitos , Encéfalo , Toxoplasma , Animais , Astrócitos/metabolismo , Astrócitos/parasitologia , Astrócitos/patologia , Camundongos , Toxoplasma/patogenicidade , Toxoplasma/fisiologia , Encéfalo/parasitologia , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Doença Crônica , Polaridade Celular , Proteína Glial Fibrilar Ácida/metabolismo , Proteína Glial Fibrilar Ácida/genética , Toxoplasmose/metabolismo , Toxoplasmose/parasitologia , Toxoplasmose/patologia , Fator de Necrose Tumoral alfa/metabolismo , Toxoplasmose Cerebral/parasitologia , Toxoplasmose Cerebral/patologia , Toxoplasmose Cerebral/metabolismo
5.
PLoS One ; 19(5): e0303875, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38776331

RESUMO

BACKGROUND: It is amply demonstrated that cigarette smoke (CS) has a high impact on lung tumor progression worsening lung cancer patient prognosis and response to therapies. Alteration of immune cell types and functions in smokers' lungs have been strictly related with smoke detrimental effects. However, the role of CS in dictating an inflammatory or immunosuppressive lung microenvironment still needs to be elucidated. Here, we investigated the effect of in vitro exposure to cigarette smoke extract (CSE) focusing on macrophages. METHODS: Immortalized murine macrophages RAW 264.7 cells were cultured in the presence of CS extract and their polarization has been assessed by Real-time PCR and cytofluorimetric analysis, viability has been assessed by SRB assay and 3D-cultures and activation by exposure to Poly(I:C). Moreover, interaction with Lewis lung carcinoma (LLC1) murine cell models in the presence of CS extract were analyzed by confocal microscopy. RESULTS: Obtained results indicate that CS induces macrophages polarization towards the M2 phenotype and M2-phenotype macrophages are resistant to the CS toxic activity. Moreover, CS impairs TLR3-mediated M2-M1 phenotype shift thus contributing to the M2 enrichment in lung smokers. CONCLUSIONS: These findings indicate that, in lung cancer microenvironment of smokers, CS can contribute to the M2-phenotype macrophages prevalence by different mechanisms, ultimately, driving an anti-inflammatory, likely immunosuppressive, microenvironment in lung cancer smokers.


Assuntos
Neoplasias Pulmonares , Macrófagos , Microambiente Tumoral , Animais , Camundongos , Neoplasias Pulmonares/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/imunologia , Microambiente Tumoral/efeitos dos fármacos , Células RAW 264.7 , Sobrevivência Celular/efeitos dos fármacos , Ativação de Macrófagos/efeitos dos fármacos , Fumaça/efeitos adversos , Polaridade Celular/efeitos dos fármacos , Humanos , Carcinoma Pulmonar de Lewis/patologia , Carcinoma Pulmonar de Lewis/imunologia
6.
Respir Res ; 25(1): 198, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720340

RESUMO

BACKGROUND: The association between tuberculous fibrosis and lung cancer development has been reported by some epidemiological and experimental studies; however, its underlying mechanisms remain unclear, and the role of macrophage (MФ) polarization in cancer progression is unknown. The aim of the present study was to investigate the role of M2 Arg-1+ MФ in tuberculous pleurisy-assisted tumorigenicity in vitro and in vivo. METHODS: The interactions between tuberculous pleural effusion (TPE)-induced M2 Arg-1+ MФ and A549 lung cancer cells were evaluated. A murine model injected with cancer cells 2 weeks after Mycobacterium bovis bacillus Calmette-Guérin pleural infection was used to validate the involvement of tuberculous fibrosis to tumor invasion. RESULTS: Increased CXCL9 and CXCL10 levels of TPE induced M2 Arg-1+ MФ polarization of murine bone marrow-derived MФ. TPE-induced M2 Arg-1+ MФ polarization facilitated lung cancer proliferation via autophagy signaling and E-cadherin signaling in vitro. An inhibitor of arginase-1 targeting M2 Arg-1+ MФ both in vitro and in vivo significantly reduced tuberculous fibrosis-induced metastatic potential of lung cancer and decreased autophagy signaling and E-cadherin expression. CONCLUSION: Tuberculous pleural fibrosis induces M2 Arg-1+ polarization, and M2 Arg-1+ MФ contribute to lung cancer metastasis via autophagy and E-cadherin signaling. Therefore, M2 Arg-1+ tumor associated MФ may be a novel therapeutic target for tuberculous fibrosis-induced lung cancer progression.


Assuntos
Arginase , Autofagia , Progressão da Doença , Neoplasias Pulmonares , Macrófagos , Transdução de Sinais , Animais , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/microbiologia , Humanos , Camundongos , Autofagia/fisiologia , Arginase/metabolismo , Transdução de Sinais/fisiologia , Macrófagos/metabolismo , Macrófagos/patologia , Tuberculose Pleural/patologia , Tuberculose Pleural/metabolismo , Células A549 , Camundongos Endogâmicos C57BL , Derrame Pleural/metabolismo , Derrame Pleural/patologia , Polaridade Celular/fisiologia
7.
Cell Mol Life Sci ; 81(1): 229, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780787

RESUMO

RNA modifications are essential for the establishment of cellular identity. Although increasing evidence indicates that RNA modifications regulate the innate immune response, their role in monocyte-to-macrophage differentiation and polarisation is unclear. While m6A has been widely studied, other RNA modifications, including 5 hmC, remain poorly characterised. We profiled m6A and 5 hmC epitranscriptomes, transcriptomes, translatomes and proteomes of monocytes and macrophages at rest and pro- and anti-inflammatory states. Transcriptome-wide mapping of m6A and 5 hmC reveals enrichment of m6A and/or 5 hmC on specific categories of transcripts essential for macrophage differentiation. Our analyses indicate that m6A and 5 hmC modifications are present in transcripts with critical functions in pro- and anti-inflammatory macrophages. Notably, we also discover the co-occurrence of m6A and 5 hmC on alternatively-spliced isoforms and/or opposing ends of the untranslated regions (UTR) of mRNAs with key roles in macrophage biology. In specific examples, RNA 5 hmC controls the decay of transcripts independently of m6A. This study provides (i) a comprehensive dataset to interrogate the role of RNA modifications in a plastic system (ii) a resource for exploring different layers of gene expression regulation in the context of human monocyte-to-macrophage differentiation and polarisation, (iii) new insights into RNA modifications as central regulators of effector cells in innate immunity.


Assuntos
Diferenciação Celular , Macrófagos , Monócitos , Transcriptoma , Macrófagos/metabolismo , Macrófagos/citologia , Macrófagos/imunologia , Diferenciação Celular/genética , Humanos , Monócitos/metabolismo , Monócitos/citologia , Regulação da Expressão Gênica , Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Polaridade Celular/genética , RNA/genética , RNA/metabolismo , Adenosina/metabolismo
8.
Arthritis Res Ther ; 26(1): 101, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745331

RESUMO

BACKGROUND: The purpose of this study was to investigate the role of macrophage polarization in the pathogenesis of primary Sjogren's syndrome (pSS). METHODS: Peripheral venous blood samples were collected from 30 patients with pSS and 30 healthy controls. Minor salivary gland samples were abtainted from 10 of these patients and 10 non-pSS controls whose minor salivary gland didn't fulfill the classification criteria for pSS. Enzyme-linked immuno sorbent assay was used to examine the serum concentration of M1/M2 macrophage related cytokines (TNF-a, IL-6, IL-23, IL-4, IL-10 and TGF-ß). Flow cytometry was used to examine the numbers of CD86+ M1 macrophages and CD206+ M2 macrophages in peripheral blood mononuclear cells (PBMCs). Immunofluorescence was used to test the infiltration of macrophages in minor salivary glands. RESULTS: This study observed a significant increase in pSS patients both in the numbers of M1 macrophages in peripheral blood and serum levels of M1-related pro-inflammatory cytokines (IL-6, IL-23 and TNF-α). Conversely, M2 macrophages were downregulated in the peripheral blood of pSS patients. Similarly, in the minor salivary glands of pSS patients, the expression of M1 macrophages was increased, and that of M2 macrophages was decreased. Furthermore, a significantly positive correlation was found between the proportions of M1 macrophages in PBMCs and serum levels of IgG and RF. CONCLUSIONS: This study reveals the presence of an significant imbalance in M1/M2 macrophages in pSS patients. The M1 polarization of macrophages may play an central role in the pathogenesis of pSS.


Assuntos
Citocinas , Macrófagos , Síndrome de Sjogren , Síndrome de Sjogren/imunologia , Síndrome de Sjogren/sangue , Síndrome de Sjogren/patologia , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Feminino , Pessoa de Meia-Idade , Citocinas/sangue , Citocinas/metabolismo , Masculino , Adulto , Citometria de Fluxo , Idoso , Polaridade Celular , Ensaio de Imunoadsorção Enzimática , Ativação de Macrófagos/imunologia , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/imunologia
9.
J Transl Med ; 22(1): 475, 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38764033

RESUMO

PURPOSE: To analyze the role of and mechanism underlying obstructive sleep apnea (OSA)-derived exosomes in inducing non-alcoholic fatty liver (NAFLD). METHODS: The role of OSA-derived exosomes was analyzed in inducing hepatocyte fat accumulation in mice models both in vivo and in vitro. RESULTS: OSA-derived exosomes caused fat accumulation and macrophage activation in the liver tissue. These exosomes promoted fat accumulation; steatosis was more noticeable in the presence of macrophages. Macrophages could internalize OSA-derived exosomes, which promoted macrophage polarization to the M1 type. Moreover, it inhibited sirtuin-3 (SIRT3)/AMP-activated protein kinase (AMPK) and autophagy and promoted the activation of nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasomes. The use of 3-methyladenine (3-MA) to inhibit autophagy blocked NLRP3 inflammasome activation and inhibited the M1 polarization of macrophages. miR-421 targeting inhibited SIRT3 protein expression in the macrophages. miR-421 was significantly increased in OSA-derived exosomes. Additionally, miR-421 levels were increased in OSA + NAFLD mice- and patient-derived exosomes. In the liver tissues of OSA and OSA + NAFLD mice, miR-421 displayed similar co-localization with the macrophages. Intermittent hypoxia-induced hepatocytes deliver miR-421 to the macrophages via exosomes to inhibit SIRT3, thereby participating in macrophage M1 polarization. After OSA and NAFLD modeling in miR-421-/- mice, liver steatosis and M1 polarization were significantly reduced. Additionally, in the case of miR-421 knockout, the inhibitory effects of OSA-derived exosomes on SIRT3 and autophagy were significantly alleviated. Furthermore, their effects on liver steatosis and macrophage M1 polarization were significantly reduced. CONCLUSIONS: OSA promotes the delivery of miR-421 from the hepatocytes to macrophages. Additionally, it promotes M1 polarization by regulating the SIRT3/AMPK-autophagy pathway, thereby causing NAFLD.


Assuntos
Autofagia , Polaridade Celular , Exossomos , Macrófagos , Camundongos Endogâmicos C57BL , MicroRNAs , Hepatopatia Gordurosa não Alcoólica , Sirtuína 3 , Apneia Obstrutiva do Sono , Exossomos/metabolismo , Animais , Sirtuína 3/metabolismo , Sirtuína 3/genética , MicroRNAs/metabolismo , MicroRNAs/genética , Macrófagos/metabolismo , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Humanos , Apneia Obstrutiva do Sono/complicações , Apneia Obstrutiva do Sono/metabolismo , Masculino , Camundongos , Hepatócitos/metabolismo , Hepatócitos/patologia , Inflamassomos/metabolismo , Sequência de Bases , Fígado/patologia , Fígado/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
10.
Cell Rep Med ; 5(5): 101533, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38744278

RESUMO

Brain metastases (BrMs) are the leading cause of death in patients with solid cancers. BrMs exhibit a highly immunosuppressive milieu and poor response to immunotherapies; however, the underlying mechanism remains largely unclear. Here, we show that upregulation of HSP47 in tumor cells drives metastatic colonization and outgrowth in the brain by creating an immunosuppressive microenvironment. HSP47-mediated collagen deposition in the metastatic niche promotes microglial polarization to the M2 phenotype via the α2ß1 integrin/nuclear factor κB pathway, which upregulates the anti-inflammatory cytokines and represses CD8+ T cell anti-tumor responses. Depletion of microglia reverses HSP47-induced inactivation of CD8+ T cells and abolishes BrM. Col003, an inhibitor disrupting HSP47-collagen association restores an anti-tumor immunity and enhances the efficacy of anti-PD-L1 immunotherapy in BrM-bearing mice. Our study supports that HSP47 is a critical determinant of M2 microglial polarization and immunosuppression and that blocking the HSP47-collagen axis represents a promising therapeutic strategy against brain metastatic tumors.


Assuntos
Neoplasias Encefálicas , Linfócitos T CD8-Positivos , Colágeno , Proteínas de Choque Térmico HSP47 , Microglia , Animais , Microglia/metabolismo , Microglia/efeitos dos fármacos , Microglia/imunologia , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Colágeno/metabolismo , Camundongos , Proteínas de Choque Térmico HSP47/metabolismo , Proteínas de Choque Térmico HSP47/genética , Linhagem Celular Tumoral , Humanos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Microambiente Tumoral/imunologia , Camundongos Endogâmicos C57BL , Polaridade Celular/efeitos dos fármacos , Feminino , NF-kappa B/metabolismo
11.
Mol Med ; 30(1): 59, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745316

RESUMO

Microglial activation and polarization play a central role in poststroke inflammation and neuronal damage. Modulating microglial polarization from pro-inflammatory to anti-inflammatory phenotype is a promising therapeutic strategy for the treatment of cerebral ischemia. Polyphyllin I (PPI), a steroidal saponin, shows multiple bioactivities in various diseases, but the potential function of PPI in cerebral ischemia is not elucidated yet. In our study, the influence of PPI on cerebral ischemia-reperfusion injury was evaluated. Mouse middle cerebral artery occlusion (MCAO) model and oxygen-glucose deprivation and reoxygenation (OGD/R) model were constructed to mimic cerebral ischemia-reperfusion injury in vivo and in vitro. TTC staining, TUNEL staining, RT-qPCR, ELISA, flow cytometry, western blot, immunofluorescence, hanging wire test, rotarod test and foot-fault test, open-field test and Morris water maze test were performed in our study. We found that PPI alleviated cerebral ischemia-reperfusion injury and neuroinflammation, and improved functional recovery of mice after MCAO. PPI modulated microglial polarization towards anti-inflammatory M2 phenotype in MCAO mice in vivo and post OGD/R in vitro. Besides, PPI promoted autophagy via suppressing Akt/mTOR signaling in microglia, while inhibition of autophagy abrogated the effect of PPI on M2 microglial polarization after OGD/R. Furthermore, PPI facilitated autophagy-mediated ROS clearance to inhibit NLRP3 inflammasome activation in microglia, and NLRP3 inflammasome reactivation by nigericin abolished the effect of PPI on M2 microglia polarization. In conclusion, PPI alleviated post-stroke neuroinflammation and tissue damage via increasing autophagy-mediated M2 microglial polarization. Our data suggested that PPI had potential for ischemic stroke treatment.


Assuntos
Autofagia , Modelos Animais de Doenças , Microglia , Doenças Neuroinflamatórias , Traumatismo por Reperfusão , Animais , Microglia/efeitos dos fármacos , Microglia/metabolismo , Camundongos , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/etiologia , Autofagia/efeitos dos fármacos , Masculino , Doenças Neuroinflamatórias/etiologia , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Diosgenina/análogos & derivados , Diosgenina/farmacologia , Diosgenina/uso terapêutico , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Transdução de Sinais/efeitos dos fármacos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Serina-Treonina Quinases TOR/metabolismo , Camundongos Endogâmicos C57BL , Polaridade Celular/efeitos dos fármacos
12.
Cell Commun Signal ; 22(1): 271, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750493

RESUMO

BACKGROUND: Macrophages are key inflammatory immune cells that orchestrate the initiation and progression of autoimmune diseases. The characters of macrophage in diseases are determined by its phenotype in response to the local microenvironment. Ficolins have been confirmed as crucial contributors to autoimmune diseases, with Ficolin-2 being particularly elevated in patients with autoimmune diseases. However, whether Ficolin-A stimulates macrophage polarization is still poorly understood. METHODS: We investigated the transcriptomic expression profile of murine bone marrow-derived macrophages (BMDMs) stimulated with Ficolin-A using RNA-sequencing. To further confirm a distinct phenotype activated by Ficolin-A, quantitative RT-PCR and Luminex assay were performed in this study. Additionally, we assessed the activation of underlying cell signaling pathways triggered by Ficolin-A. Finally, the impact of Ficolin-A on macrophages were investigated in vivo through building Collagen-induced arthritis (CIA) and Dextran Sulfate Sodium Salt (DSS)-induced colitis mouse models with Fcna-/- mice. RESULTS: Ficolin-A activated macrophages into a pro-inflammatory phenotype distinct to LPS-, IFN-γ- and IFN-γ + LPS-induced phenotypes. The transcriptomic profile induced by Ficolin-A was primarily characterized by upregulation of interleukins, chemokines, iNOS, and Arginase 1, along with downregulation of CD86 and CD206, setting it apart from the M1 and M2 phenotypes. The activation effect of Ficolin-A on macrophages deteriorated the symptoms of CIA and DSS mouse models, and the deletion of Fcna significantly alleviated the severity of diseases in mice. CONCLUSION: Our work used transcriptomic analysis by RNA-Seq to investigate the impact of Ficolin-A on macrophage polarization. Our findings demonstrate that Ficolin-A induces a novel pro-inflammatory phenotype distinct to the phenotypes activated by LPS, IFN-γ and IFN-γ + LPS on macrophages.


Assuntos
Ficolinas , Inflamação , Lectinas , Macrófagos , Camundongos Endogâmicos C57BL , Fenótipo , Animais , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Lectinas/genética , Lectinas/metabolismo , Camundongos , Inflamação/genética , Inflamação/patologia , Ativação de Macrófagos/efeitos dos fármacos , Colite/induzido quimicamente , Colite/patologia , Colite/genética , Polaridade Celular/efeitos dos fármacos , Artrite Experimental/genética , Artrite Experimental/patologia , Transdução de Sinais/efeitos dos fármacos
13.
Cells ; 13(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38667316

RESUMO

Macrophage polarization to the M1 spectrum is induced by bacterial cell wall components through stimulation of Toll-like family (TLR) receptors. By orchestrating the expression of relevant mediators of the TLR cascade, as well as associated pathways and feedback loops, macrophage polarization is coordinated to ensure an appropriate immune response. This is central to the successful control of pathogens and the maintenance of health. Macrophage polarization is known to be modulated at both the transcriptional and post-transcriptional levels. In recent years, the miRNA-based post-transcriptional regulation of M1 polarization has received increasing attention from the scientific community. Comparative studies have shown that TLR stimulation alters the miRNA profile of macrophages and that macrophages from the M1 or the M2 spectrum differ in terms of miRNAs expressed. Simultaneously, miRNAs are considered critical post-transcriptional regulators of macrophage polarization. In particular, miRNAs are thought to play a regulatory role in the switch between the early proinflammatory response and the resolution phase. In this review, we will discuss the current state of knowledge on the complex interaction of transcriptional and post-transcriptional regulatory mechanisms that ultimately determine the functionality of macrophages.


Assuntos
Macrófagos , MicroRNAs , Receptores Toll-Like , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Receptores Toll-Like/metabolismo , Macrófagos/metabolismo , Macrófagos/imunologia , Animais , Regulação da Expressão Gênica , Polaridade Celular/genética , Ativação de Macrófagos , Transdução de Sinais
15.
Anal Methods ; 16(18): 2850-2856, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38644726

RESUMO

Early diagnostics and therapies for diseases such as cancer are limited by the fact that the inducing factors for the development of cytopathies are not clear. The stable polarity of lipid droplets is a potential biomarker for tumor cells; however, the complex intracellular biological environment poses great difficulties for specific detection of the polarity. Therefore, to meet this pressing challenge, we designed a highly selective fluorescent probe, DCI-Cou-polar, which used the ICT mechanism to differentiate normal cells and tumor cells in tissue sections by detecting changes in the polarities of intracellular lipid droplets. The introduction of a cyclic amine at the 7-position of coumarin (benzoquinolizine coumarin) reduced its ability to donate electrons compared with the diethylamino group, which increased the probe selectivity while retaining the sensitivity to polarity. With NIR emission and large Stokes shifts, DCI-Cou-polar has high sensitivity to polarity, excellent photostability, and biocompatibility, and it tracks lipid droplets with high fidelity. Therefore, we believe that this polarity-sensitive probe provides information on the connection between the polarity of lipid droplets and tumors while improving the development of highly selective polarity probes.


Assuntos
Cumarínicos , Corantes Fluorescentes , Corantes Fluorescentes/química , Humanos , Cumarínicos/química , Animais , Gotículas Lipídicas/química , Neoplasias/patologia , Camundongos , Polaridade Celular , Linhagem Celular Tumoral
16.
J Radiat Res ; 65(3): 291-302, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38588586

RESUMO

This study was aimed to investigate the effect of hydrogen-rich solution (HRS) on acute radiation pneumonitis (ARP) in rats. The ARP model was induced by X-ray irradiation. Histopathological changes were assessed using HE and Masson stains. Inflammatory cytokines were detected by ELISA. Immunohistochemistry and flow cytometry were performed to quantify macrophage (CD68) levels and the M2/M1 ratio. Western blot analysis, RT-qPCR, ELISA and flow cytometry were used to evaluate mitochondrial oxidative stress injury indicators. Immunofluorescence double staining was performed to colocalize CD68/LC3B and p-AMPK-α/CD68. The relative expression of proteins associated with autophagy activation and the adenosine 5'-monophosphate-activated protein kinase/mammalian target of rapamycin/Unc-51-like kinase 1 (AMPK/mTOR/ULK1) signaling pathway were detected by western blotting. ARP decreased body weight, increased the lung coefficient, collagen deposition and macrophage infiltration and promoted M1 polarization in rats. After HRS treatment, pathological damage was alleviated, and M1 polarization was inhibited. Furthermore, HRS treatment reversed the ARP-induced high levels of mitochondrial oxidative stress injury and autophagy inhibition. Importantly, the phosphorylation of AMPK-α was inhibited, the phosphorylation of mTOR and ULK1 was activated in ARP rats and this effect was reversed by HRS treatment. HRS inhibited M1 polarization and alleviated oxidative stress to activate autophagy in ARP rats by regulating the AMPK/mTOR/ULK1 signaling pathway.


Assuntos
Autofagia , Hidrogênio , Macrófagos , Estresse Oxidativo , Pneumonite por Radiação , Ratos Sprague-Dawley , Animais , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Hidrogênio/farmacologia , Hidrogênio/uso terapêutico , Autofagia/efeitos dos fármacos , Autofagia/efeitos da radiação , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/efeitos da radiação , Pneumonite por Radiação/tratamento farmacológico , Pneumonite por Radiação/patologia , Pneumonite por Radiação/metabolismo , Masculino , Ratos , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Polaridade Celular/efeitos dos fármacos , Polaridade Celular/efeitos da radiação , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/efeitos da radiação , Doença Aguda
17.
J Immunol ; 212(11): 1766-1781, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38683120

RESUMO

Better understanding of the host responses to Mycobacterium tuberculosis infections is required to prevent tuberculosis and develop new therapeutic interventions. The host transcription factor BHLHE40 is essential for controlling M. tuberculosis infection, in part by repressing Il10 expression, where excess IL-10 contributes to the early susceptibility of Bhlhe40-/- mice to M. tuberculosis infection. Deletion of Bhlhe40 in lung macrophages and dendritic cells is sufficient to increase the susceptibility of mice to M. tuberculosis infection, but how BHLHE40 impacts macrophage and dendritic cell responses to M. tuberculosis is unknown. In this study, we report that BHLHE40 is required in myeloid cells exposed to GM-CSF, an abundant cytokine in the lung, to promote the expression of genes associated with a proinflammatory state and better control of M. tuberculosis infection. Loss of Bhlhe40 expression in murine bone marrow-derived myeloid cells cultured in the presence of GM-CSF results in lower levels of proinflammatory associated signaling molecules IL-1ß, IL-6, IL-12, TNF-α, inducible NO synthase, IL-2, KC, and RANTES, as well as higher levels of the anti-inflammatory-associated molecules MCP-1 and IL-10 following exposure to heat-killed M. tuberculosis. Deletion of Il10 in Bhlhe40-/- myeloid cells restored some, but not all, proinflammatory signals, demonstrating that BHLHE40 promotes proinflammatory responses via both IL-10-dependent and -independent mechanisms. In addition, we show that macrophages and neutrophils within the lungs of M. tuberculosis-infected Bhlhe40-/- mice exhibit defects in inducible NO synthase production compared with infected wild-type mice, supporting that BHLHE40 promotes proinflammatory responses in innate immune cells, which may contribute to the essential role for BHLHE40 during M. tuberculosis infection in vivo.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Interleucina-10 , Camundongos Knockout , Células Mieloides , Animais , Camundongos , Interleucina-10/imunologia , Interleucina-10/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/imunologia , Células Mieloides/imunologia , Mycobacterium tuberculosis/imunologia , Macrófagos/imunologia , Proteínas de Homeodomínio/genética , Camundongos Endogâmicos C57BL , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Células Dendríticas/imunologia , Pulmão/imunologia , Tuberculose/imunologia , Polaridade Celular , Células Cultivadas
18.
Eur J Pharmacol ; 974: 176602, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38677538

RESUMO

BACKGROUND: The interleukin (IL) -12 p40 subunit is the common subunit of IL-12 and IL-23. It affects the immune inflammatory response, which may be closely related to cardiac remodeling. In this study, the regulatory effect of IL-12p40 knockout (KO) on cardiac remodeling was investigated, and the underlying mechanism was explored. METHODS AND RESULTS: Mice were subjected to transverse aortic constriction (TAC) to establish a model of cardiac remodeling. First, IL-12p40 was deleted to observe its effects on cardiac remodeling and cardiac inflammation, and the results showed that IL-12p40 deletion reduced both T helper 17 (Th17) and γδT17 cell differentiation, decreased proinflammatory macrophage differentiation, alleviated cardiac remodeling, and relieved cardiac dysfunction in TAC mice. Next, we explored whether IL-17 regulated TAC-induced cardiac remodeling, and the results showed that IL-17 neutralization alleviated proinflammatory macrophage differentiation and cardiac remodeling in IL-12p40 knockout mice and WT mice. Neutralization with cluster of differentiation 4 receptor (CD4) and γδ T-cell receptor (γδTCR) antibodies inhibited pro-inflammatory macrophage polarization and improved cardiac remodeling, and CD4 neutralizing antibody (NAb) had more significant effects. Finally, adoptive transfer of Th17 cells aggravated proinflammatory macrophage differentiation and cardiac remodeling in TAC-treated CD4 KO mice, while neutralization with the IL-12p40 antibody alleviated these pathological changes. CONCLUSION: Mainly Th17 cells but not γδT17 cells secrete IL-17, which mediates IL-12p40, promotes the polarization of proinflammatory macrophages, and exacerbates cardiac remodeling in TAC mice. IL-12p40 may be a potential target for the prevention and treatment of cardiac remodeling.


Assuntos
Diferenciação Celular , Subunidade p40 da Interleucina-12 , Macrófagos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Th17 , Remodelação Ventricular , Animais , Células Th17/imunologia , Subunidade p40 da Interleucina-12/metabolismo , Subunidade p40 da Interleucina-12/genética , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Masculino , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/genética , Interleucina-17/metabolismo , Deleção de Genes , Polaridade Celular/efeitos dos fármacos
19.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167141, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38565385

RESUMO

Spinal cord injury (SCI) induces severe neuroinflammation, and subsequently neurological dysfunction. Activated microglia are critical for modulation of neuroinflammation. Protein tyrosine phosphatase receptor type O (PTPRO), a member of protein tyrosine phosphatases (PTPs), exerts a pro-inflammatory role in multiple human diseases; however, its role in SCI remains unclarified. Here, a T7 spinal cord compression injury model was established in Sprague-Dawley (SD) rats, and PTPRO expression was upregulated in injured spinal cord and microglia after SCI. Microglia M1 and M2 polarization in vitro were induced using LPS/IFN-γ and IL-4, respectively. PTPRO expression was elevated in M1-polarized microglia, and PTPRO downregulation mediated by PTPRO shRNA (shPTPRO) decreased CD86+ cell proportion, iNOS, TNF-α, IL-1ß, and IL-6 levels, and p65 phosphorylation. PTPRO was downregulated in M2 microglia, and PTPRO upregulation by PTPRO overexpression plasmid (OE-PTPRO) reduced CD206+ cell percentage, Arg-1, IL-10, and TGF-ß1 levels and STAT6 phosphorylation. Mechanistically, the transcription factor SOX4 elevated PTPRO expression and its promoter activity. SOX4 overexpression enhanced M1 polarization and p65 phosphorylation, while its knockdown promoted M2 polarization and STAT6 phosphorylation. PTPRO might mediate the function of SOX4 in BV2 microglia polarization. Furthermore, lentivirus-mediated downregulation of PTPRO following SCI improved locomotor functional recovery, demonstrated by elevated BBB scores, incline angle, consistent hindlimb coordination, and reduced lesion area and neuronal apoptosis. PTPRO downregulation promoted microglia M2 polarization, NF-κB inactivation and STAT6 activation after injury. In conclusion, PTPRO inhibition improves spinal cord injury through facilitating M2 microglia polarization via the NF-κB/STAT6 signaling pathway, which is probably controlled by SOX4.


Assuntos
Microglia , NF-kappa B , Ratos Sprague-Dawley , Fator de Transcrição STAT6 , Transdução de Sinais , Traumatismos da Medula Espinal , Animais , Microglia/metabolismo , Microglia/patologia , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/genética , Fator de Transcrição STAT6/metabolismo , Fator de Transcrição STAT6/genética , Transdução de Sinais/efeitos dos fármacos , Ratos , NF-kappa B/metabolismo , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/metabolismo , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/genética , Masculino , Modelos Animais de Doenças , Polaridade Celular/efeitos dos fármacos
20.
Nat Comput Sci ; 4(4): 299-309, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38594592

RESUMO

The three-dimensional (3D) organization of cells determines tissue function and integrity, and changes markedly in development and disease. Cell-based simulations have long been used to define the underlying mechanical principles. However, high computational costs have so far limited simulations to either simplified cell geometries or small tissue patches. Here, we present SimuCell3D, an efficient open-source program to simulate large tissues in three dimensions with subcellular resolution, growth, proliferation, extracellular matrix, fluid cavities, nuclei and non-uniform mechanical properties, as found in polarized epithelia. Spheroids, vesicles, sheets, tubes and other tissue geometries can readily be imported from microscopy images and simulated to infer biomechanical parameters. Doing so, we show that 3D cell shapes in layered and pseudostratified epithelia are largely governed by a competition between surface tension and intercellular adhesion. SimuCell3D enables the large-scale in silico study of 3D tissue organization in development and disease at a great level of detail.


Assuntos
Polaridade Celular , Simulação por Computador , Modelos Biológicos , Fenômenos Biomecânicos/fisiologia , Adesão Celular/fisiologia , Polaridade Celular/fisiologia , Forma Celular/fisiologia , Células Epiteliais/fisiologia , Células Epiteliais/citologia , Matriz Extracelular/fisiologia , Matriz Extracelular/química , Imageamento Tridimensional/métodos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA