Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
Biochemistry ; 62(17): 2677-2688, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37556730

RESUMO

Polyketide synthases (PKSs) are megaenzymes that form chemically diverse polyketides and are found within the genomes of nearly all classes of life. We recently discovered the type I PKS from the apicomplexan parasite Toxoplasma gondii, TgPKS2, which contains a unique putative chain release mechanism that includes ketosynthase (KS) and thioester reductase (TR) domains. Our bioinformatic analysis of the thioester reductase of TgPKS2, TgTR, suggests differences compared to other systems and hints at a possibly conserved release mechanism within the apicomplexan subclass Coccidia. To evaluate this release module, we first isolated TgTR and observed that it is capable of 4 electron (4e-) reduction of octanoyl-CoA to the primary alcohol, octanol, utilizing NADH. TgTR was also capable of generating octanol in the presence of octanal and NADH, but no reactions were observed when NADPH was supplied as a cofactor. To biochemically characterize the protein, we measured the catalytic efficiency of TgTR using a fluorescence assay and determined the TgTR binding affinity for cofactor and substrates using isothermal titration calorimetry (ITC). We additionally show that TgTR is capable of reducing an acyl carrier protein (ACP)-tethered substrate by liquid chromatography mass spectrometry and determine that TgTR binds to holo-TgACP4, its predicted cognate ACP, with a KD of 5.75 ± 0.77 µM. Finally, our transcriptional analysis shows that TgPKS2 is upregulated ∼4-fold in the parasite's cyst-forming bradyzoite stage compared to tachyzoites. Our study identifies features that distinguish TgPKS2 from well-characterized systems in bacteria and fungi and suggests it aids the T. gondii cyst stage.


Assuntos
NAD , Policetídeo Sintases , Policetídeo Sintases/química , NAD/metabolismo , Proteína de Transporte de Acila , Oxirredutases/metabolismo
2.
Structure ; 31(9): 1109-1120.e3, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37348494

RESUMO

The chemical scaffolds of numerous therapeutics are polyketide natural products, many formed by bacterial modular polyketide synthases (PKS). The large and flexible dimeric PKS modules have distinct extension and reducing regions. Structures are known for all individual enzyme domains and several extension regions. Here, we report the structure of the full reducing region from a modular PKS, the ketoreductase (KR), dehydratase (DH), and enoylreductase (ER) domains of module 5 of the juvenimicin PKS. The modular PKS-reducing region has a different architecture than the homologous fatty acid synthase (FAS) and iterative PKS systems in its arrangement of domains and dimer interface. The structure reveals a critical role for linker peptides in the domain interfaces, leading to discovery of key differences in KR domains dependent on module composition. Finally, our studies provide insight into the mechanism underlying modular PKS intermediate shuttling by carrier protein (ACP) domains.


Assuntos
Peptídeos , Policetídeo Sintases , Policetídeo Sintases/química
3.
Structure ; 31(6): 700-712.e4, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37059096

RESUMO

The genotoxin colibactin produced by Escherichia coli is involved in the development of colorectal cancers. This secondary metabolite is synthesized by a multi-protein machinery, mainly composed of non-ribosomal peptide synthetase (NRPS)/polyketide synthase (PKS) enzymes. In order to decipher the function of a PKS-NRPS hybrid enzyme implicated in a key step of colibactin biosynthesis, we conducted an extensive structural characterization of the ClbK megaenzyme. Here we present the crystal structure of the complete trans-AT PKS module of ClbK showing structural specificities of hybrid enzymes. In addition, we report the SAXS solution structure of the full-length ClbK hybrid that reveals a dimeric organization as well as several catalytic chambers. These results provide a structural framework for the transfer of a colibactin precursor through a PKS-NRPS hybrid enzyme and can pave the way for re-engineering PKS-NRPS hybrid megaenzymes to generate diverse metabolites with many applications.


Assuntos
Escherichia coli , Policetídeo Sintases , Policetídeo Sintases/química , Espalhamento a Baixo Ângulo , Difração de Raios X , Escherichia coli/genética , Escherichia coli/metabolismo
4.
Microb Genom ; 9(3)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36951894

RESUMO

Nature serves as a rich source of molecules with immense chemical diversity. Aptly named, these 'natural products' boast a wide variety of environmental, medicinal and industrial applications. Type II polyketides, in particular, confer substantial medicinal benefits, including antibacterial, antifungal, anticancer and anti-inflammatory properties. These molecules are produced by enzyme assemblies known as type II polyketide synthases (PKSs), which use domains such as the ketosynthase chain-length factor and acyl carrier protein to produce polyketides with varying lengths, cyclization patterns and oxidation states. In this work, we use a novel bioinformatic workflow to identify biosynthetic gene clusters (BGCs) that code for the core type II PKS enzymes. This method does not rely on annotation and thus was able to unearth previously 'hidden' type II PKS BGCs. This work led us to identify over 6000 putative type II PKS BGCs spanning a diverse set of microbial phyla, nearly double those found in most recent studies. Notably, many of these newly identified BGCs were found in non-actinobacteria, which are relatively underexplored as sources of type II polyketides. Results from this work lay an important foundation for future bioprospecting and engineering efforts that will enable sustainable access to diverse and structurally complex molecules with medicinally relevant properties.


Assuntos
Policetídeo Sintases , Policetídeos , Policetídeo Sintases/genética , Policetídeo Sintases/química , Policetídeo Sintases/metabolismo , Nucleotídeos , Policetídeos/metabolismo , Família Multigênica
5.
Proc Natl Acad Sci U S A ; 120(9): e2220468120, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36802426

RESUMO

The enediynes are structurally characterized by a 1,5-diyne-3-ene motif within a 9- or 10-membered enediyne core. The anthraquinone-fused enediynes (AFEs) are a subclass of 10-membered enediynes that contain an anthraquinone moiety fused to the enediyne core as exemplified by dynemicins and tiancimycins. A conserved iterative type I polyketide synthase (PKSE) is known to initiate the biosynthesis of all enediyne cores, and evidence has recently been reported to suggest that the anthraquinone moiety also originates from the PKSE product. However, the identity of the PKSE product that is converted to the enediyne core or anthraquinone moiety has not been established. Here, we report the utilization of recombinant E. coli coexpressing various combinations of genes that encode a PKSE and a thioesterase (TE) from either 9- or 10-membered enediyne biosynthetic gene clusters to chemically complement ΔPKSE mutant strains of the producers of dynemicins and tiancimycins. Additionally, 13C-labeling experiments were performed to track the fate of the PKSE/TE product in the ΔPKSE mutants. These studies reveal that 1,3,5,7,9,11,13-pentadecaheptaene is the nascent, discrete product of the PKSE/TE that is converted to the enediyne core. Furthermore, a second molecule of 1,3,5,7,9,11,13-pentadecaheptaene is demonstrated to serve as the precursor of the anthraquinone moiety. The results establish a unified biosynthetic paradigm for AFEs, solidify an unprecedented biosynthetic logic for aromatic polyketides, and have implications for the biosynthesis of not only AFEs but all enediynes.


Assuntos
Produtos Biológicos , Escherichia coli , Escherichia coli/genética , Antraquinonas/química , Policetídeo Sintases/genética , Policetídeo Sintases/química , Enedi-Inos/química , Antibióticos Antineoplásicos
6.
J Am Chem Soc ; 144(42): 19225-19230, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36223511

RESUMO

Depsides are polyphenolic molecules comprising two or more phenolic acid derivatives linked by an ester bond, which is called a depside bond in these molecules. Despite more than a century of intensive research on depsides, the biosynthetic mechanism of depside bond formation remains unclear. In this study, we discovered a polyketide synthase, DrcA, from the fungus Aspergillus duricaulis CBS 481.65 and found that DrcA synthesizes CJ-20,557 (1), a heterodimeric depside composed of 3-methylorsellinic acid and 3,5-dimethylorsellinic acid. Moreover, we determined that depside bond formation is catalyzed by the starter-unit acyltransferase (SAT) domain of DrcA. Remarkably, this is a previously undescribed form of SAT domain chemistry. Further investigation revealed that 1 is transformed into duricamidepside (2), a depside-amino acid conjugate, by the single-module nonribosomal peptide synthetase DrcB.


Assuntos
Depsídeos , Policetídeo Sintases , Policetídeo Sintases/química , Aciltransferases , Aminoácidos , Ésteres
7.
J Am Chem Soc ; 144(22): 9554-9558, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35639490

RESUMO

Oxidative coupling and oxidative rearrangement are two of the most common biosynthetic strategies to form diaryl ethers. In contrast, enzymatic diaryl ether generation that proceeds in a nonoxidative manner has not been characterized thus far. Here, we discovered a versatile thioesterase (TE) domain from the nonreducing polyketide synthase (nrPKS) AN7909, which catalyzes diaryl ether formation through a series of successive steps involving esterification, a Smiles rearrangement, and hydrolysis. Further mutations and biochemical analyses with synthetic mimic substrates provide insight into the proposed catalytic process of the TE domain.


Assuntos
Éter , Policetídeo Sintases , Policetídeo Sintases/química , Policetídeo Sintases/genética , Tioléster Hidrolases/química
8.
Microb Cell Fact ; 20(1): 86, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33882930

RESUMO

BACKGROUND: Polyketide synthases (PKSs) include ketone synthase (KS), acyltransferase (AT) and acyl carrier protein (ACP) domains to catalyse the elongation of polyketide chains. Some PKSs also contain ketoreductase (KR), dehydratase (DH) and enoylreductase (ER) domains as modification domains. Insertion, deletion or substitution of the catalytic domains may lead to the production of novel polyketide derivatives or to the accumulation of desired products. Epothilones are 16-membered macrolides that have been used as anticancer drugs. The substrate promiscuity of the module 4 AT domain of the epothilone PKS (EPOAT4) results in production of epothilone mixtures; substitution of this domain may change the ratios of epothilones. In addition, there are two dormant domains in module 9 of the epothilone PKS. Removing these redundant domains to generate a simpler and more efficient assembly line is a desirable goal. RESULTS: The substitution of module 4 drastically diminished the activity of epothilone PKS. However, with careful design of the KS-AT linker and the post-AT linker, replacing EPOAT4 with EPOAT2, EPOAT6, EPOAT7 or EPOAT8 (specifically incorporating methylmalonyl-CoA (MMCoA)) significantly increased the ratio of epothilone D (4) to epothilone C (3) (the highest ratio of 4:3 = 4.6:1), whereas the ratio of 4:3 in the parental strain Schlegelella brevitalea 104-1 was 1.4:1. We also obtained three strains by swapping EPOAT4 with EPOAT3, EPOAT5, or EPOAT9, which specifically incorporate malonyl-CoA (MCoA). These strains produced only epothilone C, and the yield was increased by a factor of 1.8 compared to that of parental strain 104-1. Furthermore, mutations of five residues in the AT domain identified Ser310 as the critical factor for MMCoA recognition in EPOAT4. Then, the mutation of His308 to valine or tyrosine combined with the mutation of Phe310 to serine further altered the product ratios. At the same time, we successfully deleted the inactive module 9 DH and ER domains and fused the ΨKR domain with the KR domain through an ~ 25-residue linker to generate a productive and simplified epothilone PKS. CONCLUSIONS: These results suggested that the substitution and deletion of catalytic domains effectively produces desirable compounds and that selection of the linkers between domains is crucial for maintaining intact PKS catalytic activity.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/química , Policetídeo Sintases/química , Engenharia de Proteínas/métodos , Domínio Catalítico , Policetídeo Sintases/genética , Estrutura Terciária de Proteína , Especificidade por Substrato
9.
FEBS Lett ; 595(1): 133-144, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33043457

RESUMO

Menisporopsin A is a fungal bioactive macrocyclic polylactone, the biosynthesis of which requires only reducing (R) and nonreducing (NR) polyketide synthases (PKSs) to guide a series of esterification and cyclolactonization reactions. There is no structural information pertaining to these PKSs. Here, we report the solution characterization of singlet and doublet acyl carrier protein (ACP2 and ACP1 -ACP2 )-thioesterase (TE) domains from NR-PKS involved in menisporopsin A biosynthesis. Small-angle X-ray scattering (SAXS) studies in combination with homology modelling reveal that these polypeptides adopt a distinctive beads-on-a-string configuration, characterized by the presence of highly flexible interdomain linkers. These models provide a platform for studying domain organization and interdomain interactions in fungal NR-PKSs, which may be of value in directing the design of functionally optimized polyketide scaffolds.


Assuntos
Proteína de Transporte de Acila/química , Fungos/enzimologia , Policetídeo Sintases/química , Tioléster Hidrolases/química , Dicroísmo Circular , Macrolídeos/química , Simulação de Dinâmica Molecular , Domínios Proteicos , Estrutura Secundária de Proteína , Espalhamento a Baixo Ângulo , Difração de Raios X
10.
Chembiochem ; 22(7): 1122-1150, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33185924

RESUMO

Bacterial modular type I polyketide synthases (PKSs) are complex multidomain assembly line proteins that produce a range of pharmaceutically relevant molecules with a high degree of stereochemical control. Due to their colinear properties, they have been considerable targets for rational biosynthetic pathway engineering. Among the domains harbored within these complex assembly lines, ketoreductase (KR) domains have been extensively studied with the goal of altering their stereoselectivity by site-directed mutagenesis, as they confer much of the stereochemical complexity present in pharmaceutically active reduced polyketide scaffolds. Here we review all efforts to date to perform site-directed mutagenesis on PKS KRs, most of which have been done in the context of excised KR domains on model diffusible substrates such as ß-keto N-acetyl cysteamine thioesters. We also discuss the challenges around translating the findings of these studies to alter stereocontrol in the context of a complex multidomain enzymatic assembly line.


Assuntos
Proteínas de Bactérias/metabolismo , Policetídeo Sintases/metabolismo , Bactérias/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cinética , Mutagênese Sítio-Dirigida , NADP/química , NADP/metabolismo , Policetídeo Sintases/química , Policetídeo Sintases/genética , Policetídeos/química , Policetídeos/metabolismo , Domínios Proteicos , Especificidade por Substrato
11.
Angew Chem Int Ed Engl ; 59(51): 23145-23153, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-32918852

RESUMO

A gene cluster encoding a cryptic trans-acyl transferase polyketide synthase (PKS) was identified in the genomes of Burkholderia gladioli BCC0238 and BCC1622, both isolated from the lungs of cystic fibrosis patients. Bioinfomatics analyses indicated the PKS assembles a novel member of the glutarimide class of antibiotics, hitherto only isolated from Streptomyces species. Screening of a range of growth parameters led to the identification of gladiostatin, the metabolic product of the PKS. NMR spectroscopic analysis revealed that gladiostatin, which has promising activity against several human cancer cell lines and inhibits tumor cell migration, contains an unusual 2-acyl-4-hydroxy-3-methylbutenolide in addition to the glutarimide pharmacophore. An AfsA-like domain at the C-terminus of the PKS was shown to catalyze condensation of 3-ketothioesters with dihydroxyacetone phosphate, thus indicating it plays a key role in polyketide chain release and butenolide formation.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Burkholderia gladioli/química , Piperidonas/farmacologia , Policetídeo Sintases/química , Antibacterianos/química , Antibacterianos/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Burkholderia gladioli/genética , Burkholderia gladioli/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Família Multigênica , Piperidonas/química , Piperidonas/metabolismo , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo
12.
ACS Chem Biol ; 15(9): 2507-2515, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32852937

RESUMO

A new linear type-1 polyketide, ionostatin (1), has been fully defined using a combined genomic and bioinformatics approach coupled with confirmatory chemical analyses. The 41 carbon-containing polyether is the product of the 101 kbp ion biosynthetic cluster containing seven modular type-1 polyketide synthases. Ionostatin is composed of 15 chiral centers that were proposed using the stereospecificities installed by the different classes of ketoreductases and enoylreductases and confirmed by rigorous NMR analyses. Incorporated into the structure are two tetrahydrofuran rings that appear to be the product of stereospecific epoxidation, followed by stereospecific ring opening and cyclization. These transformations are proposed to be catalyzed by conserved enzymes analogous to those found in other bacterial-derived polyether biosynthetic clusters. Ionostatin shows moderate cancer cell cytotoxicity against U87 glioblastoma and SKOV3 ovarian carcinoma at 7.4 µg/mL.


Assuntos
Antineoplásicos/química , Policetídeos/química , Sequência de Aminoácidos , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Linhagem Celular Tumoral , Biologia Computacional , Ensaios de Seleção de Medicamentos Antitumorais , Genômica , Humanos , Família Multigênica , Policetídeo Sintases/química , Policetídeo Sintases/genética , Policetídeos/isolamento & purificação , Policetídeos/farmacologia , Domínios Proteicos , Estereoisomerismo , Streptomycetaceae/química
13.
Chemistry ; 26(58): 13147-13151, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32597507

RESUMO

Anaerobic bacteria have only recently been recognized as a source of antibiotics; yet, the metabolic potential of Negativicutes (Gram-negative staining Firmicutes) such as the oak-associated Dendrosporobacter quercicolus has remained unknown. Genome mining of D. quercicolus and phylogenetic analyses revealed a gene cluster for a type II polyketide synthase (PKS) complex that belongs to the most ancestral enzyme systems of this type. Metabolic profiling, NMR analyses, and stable-isotope labeling led to the discovery of a new family of anthraquinone-type polyphenols, the dendrubins, which are diversified by acylation, methylation, and dimerization. Dendrubin A and B were identified as strong antibiotics against a range of clinically relevant, human-pathogenic mycobacteria.


Assuntos
Policetídeo Sintases , Quercus , Antibacterianos/química , Antibacterianos/farmacologia , Firmicutes , Humanos , Família Multigênica , Filogenia , Policetídeo Sintases/química , Policetídeo Sintases/genética
14.
Nat Commun ; 11(1): 80, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31900404

RESUMO

To harness the synthetic power of modular polyketide synthases (PKSs), many aspects of their biochemistry must be elucidated. A robust platform to study these megadalton assembly lines has not yet been described. Here, we in vitro reconstitute the venemycin PKS, a short assembly line that generates an aromatic product. Incubating its polypeptides, VemG and VemH, with 3,5-dihydroxybenzoic acid, ATP, malonate, coenzyme A, and the malonyl-CoA ligase MatB, venemycin production can be monitored by HPLC and NMR. Multi-milligram quantities of venemycin are isolable from dialysis-based reactors without chromatography, and the enzymes can be recycled. Assembly line engineering is performed using pikromycin modules, with synthases designed using the updated module boundaries outperforming those using the traditional module boundaries by over an order of magnitude. Using combinations of VemG, VemH, and their engineered derivatives, as well as the alternate starter unit 3-hydroxybenzoic acid, a combinatorial library of six polyketide products is readily accessed.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Policetídeo Sintases/química , Policetídeo Sintases/genética , Streptomyces/enzimologia , Proteínas de Bactérias/metabolismo , Macrolídeos/química , Policetídeo Sintases/metabolismo , Policetídeos/química , Engenharia de Proteínas , Streptomyces/química , Streptomyces/genética , Especificidade por Substrato
15.
Biochemistry ; 58(48): 4799-4803, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31721563

RESUMO

In the biosynthesis of the macrolactam antibiotic cremimycin, the 3-aminononanoic acid starter unit is formed via a non-2-enoyl acyl carrier protein thioester intermediate, which is presumed to be constructed by cis-acyltransferase (AT) polyketide synthases (PKSs) CmiP2, CmiP3, and CmiP4. While canonical cis-AT PKS modules are comprised of a single polypeptide, the PKS module formed by CmiP2 and CmiP3 is split within the dehydratase (DH) domain. Here, we report the enzymatic function and the structural features of this split-DH domain. In vitro analysis showed that the split-DH domain catalyzes the dehydration reaction of (R)-3-hydroxynonanoyl N-acetylcysteamine thioester (SNAC) to form (E)-non-2-enoyl-SNAC, suggesting that the split-DH domain is catalytically active in cremimycin biosynthesis. In addition, structural analysis revealed that the CmiP2 and CmiP3 subunits of the split-DH domain form a tightly associated heterodimer through several hydrogen bonding and hydrophobic interactions, which are similar to those of canonical DH domains of other cis-AT PKSs. These results indicate that the split-DH domain has the same function and structure as common cis-AT PKS DH domains.


Assuntos
Aciltransferases/química , Aciltransferases/metabolismo , Antibacterianos/biossíntese , Lactamas/metabolismo , Policetídeo Sintases/química , Policetídeo Sintases/metabolismo , Streptomyces/enzimologia , Aciltransferases/genética , Antibacterianos/química , Lactamas/química , Policetídeo Sintases/genética , Domínios Proteicos , Streptomyces/genética , Streptomyces/metabolismo , Especificidade por Substrato
16.
ACS Chem Biol ; 14(10): 2115-2126, 2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31508935

RESUMO

Declining rates of novel natural product discovery and exponential rates of rediscovery heralded the end of the 1940s to 1960s "golden era" of antibiotic discovery. Fifty years later, the implementation of molecular screening methodologies revealed that standard culture-based screening approaches had failed to capture the vast majority of environmental bacteria and that even for the cultivable isolates only a small fraction of the biosynthetic potential had been tapped. A diversity of metagenomic screening and synthetic biology approaches have been developed to address these issues. The nonribosomal peptides have received particular focus, owing to their high levels of bioactivity and the predictability of the biosynthetic logic of the genetically encoded assembly lines that produce them. By uniting advances in next-generation sequencing and bioinformatic analysis with a diversity of traditional disciplines, several pioneering teams have proven that this previously inaccessible resource is no longer out of reach.


Assuntos
Metagenoma , Peptídeos/química , Animais , Bactérias/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biologia Computacional , DNA Bacteriano/química , Genes Bacterianos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Metagenômica/métodos , Família Multigênica , Peptídeos/genética , Policetídeo Sintases/química , Policetídeo Sintases/genética
17.
ACS Synth Biol ; 8(9): 2017-2024, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31469555

RESUMO

The proteins of trans-acyltransferase modular polyketide synthases (PKSs) self-organize into assembly lines, enabling the multienzyme biosynthesis of complex organic molecules. Docking domains comprised of ∼25 residues at the C- and N-termini of these polypeptides (CDDs and NDDs) help drive this association through the formation of four-helix bundles. Molecular connectors like these are desired in synthetic contexts, such as artificial biocatalytic systems and biomaterials, to orthogonally join proteins. Here, the ability of six CDD/NDD pairs to link non-PKS proteins is examined using green fluorescent protein (GFP) variants. As observed through size-exclusion chromatography and Förster resonance energy transfer (FRET), matched but not mismatched pairs of Venus+CDD and NDD+mTurquoise2 fusion proteins associate with low micromolar affinities.


Assuntos
Simulação de Acoplamento Molecular , Policetídeo Sintases/metabolismo , Sequência de Aminoácidos , Cromatografia em Gel , Transferência Ressonante de Energia de Fluorescência , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Mutagênese , Peptídeos/química , Peptídeos/metabolismo , Policetídeo Sintases/química
18.
PLoS Biol ; 17(7): e3000347, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31318855

RESUMO

Polyketides are a class of specialised metabolites synthesised by both eukaryotes and prokaryotes. These chemically and structurally diverse molecules are heavily used in the clinic and include frontline antimicrobial and anticancer drugs such as erythromycin and doxorubicin. To replenish the clinicians' diminishing arsenal of bioactive molecules, a promising strategy aims at transferring polyketide biosynthetic pathways from their native producers into the biotechnologically desirable host Escherichia coli. This approach has been successful for type I modular polyketide synthases (PKSs); however, despite more than 3 decades of research, the large and important group of type II PKSs has until now been elusive in E. coli. Here, we report on a versatile polyketide biosynthesis pipeline, based on identification of E. coli-compatible type II PKSs. We successfully express 5 ketosynthase (KS) and chain length factor (CLF) pairs-e.g., from Photorhabdus luminescens TT01, Streptomyces resistomycificus, Streptoccocus sp. GMD2S, Pseudoalteromonas luteoviolacea, and Ktedonobacter racemifer-as soluble heterodimeric recombinant proteins in E. coli for the first time. We define the anthraquinone minimal PKS components and utilise this biosynthetic system to synthesise anthraquinones, dianthrones, and benzoisochromanequinones (BIQs). Furthermore, we demonstrate the tolerance and promiscuity of the anthraquinone heterologous biosynthetic pathway in E. coli to act as genetically applicable plug-and-play scaffold, showing it to function successfully when combined with enzymes from phylogenetically distant species, endophytic fungi and plants, which resulted in 2 new-to-nature compounds, neomedicamycin and neochaetomycin. This work enables plug-and-play combinatorial biosynthesis of aromatic polyketides using bacterial type II PKSs in E. coli, providing full access to its many advantages in terms of easy and fast genetic manipulation, accessibility for high-throughput robotics, and convenient biotechnological scale-up. Using the synthetic and systems biology toolbox, this plug-and-play biosynthetic platform can serve as an engine for the production of new and diversified bioactive polyketides in an automated, rapid, and versatile fashion.


Assuntos
Antraquinonas/metabolismo , Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Policetídeo Sintases/metabolismo , Policetídeos/metabolismo , Proteínas Recombinantes/metabolismo , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/classificação , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/genética , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/metabolismo , Antraquinonas/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Vias Biossintéticas , Escherichia coli/genética , Modelos Químicos , Estrutura Molecular , Filogenia , Hidrocarbonetos Policíclicos Aromáticos/química , Policetídeo Sintases/química , Policetídeo Sintases/genética , Policetídeos/química , Proteínas Recombinantes/química
19.
PLoS One ; 14(7): e0219435, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31291335

RESUMO

Carrier proteins are four-helix bundles that covalently hold metabolites and secondary metabolites, such as fatty acids, polyketides and non-ribosomal peptides. These proteins mediate the production of many pharmaceutically important compounds including antibiotics and anticancer agents. Acyl carrier proteins (ACPs) can be found as part of a multi-domain polypeptide (Type I ACPs), or as part of a multiprotein complex (Type II). Here, the main focus is on ACP2 and ACP3, domains from the type I trans-AT polyketide synthase MmpA, which is a core component of the biosynthetic pathway of the antibiotic mupirocin. During molecular dynamics simulations of their apo, holo and acyl forms ACP2 and ACP3 both form a substrate-binding surface-groove. The substrates bound to this surface-groove have polar groups on their acyl chain exposed and forming hydrogen bonds with the solvent. Bulky hydrophobic residues in the GXDS motif common to all ACPs, and similar residues on helix III, appear to prohibit the formation of a deep tunnel in type I ACPs and type II ACPs from polyketide synthases. In contrast, the equivalent positions in ACPs from type II fatty acid synthases, which do form a deep solvent-excluded substrate-binding tunnel, have the small residue alanine. During simulation, ACP3 with mutations I61A L36A W44L forms a deep tunnel that can fully bury a saturated substrate in the core of the ACP, in contrast to the surface groove of the wild type ACP3. Similarly, in the ACP from E. coli fatty acid synthase, a type II ACP, mutations can change ligand binding from being inside a deep tunnel to being in a surface groove, thus demonstrating how changing a few residues can modify the possibilities for ligand binding.


Assuntos
Proteína de Transporte de Acila/química , Complexos Multiproteicos/química , Peptídeos/química , Policetídeo Sintases/química , Acinetobacter baumannii/química , Acinetobacter baumannii/genética , Proteína de Transporte de Acila/genética , Proteína de Transporte de Acila/metabolismo , Motivos de Aminoácidos/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Vias Biossintéticas/genética , Sequestro de Carbono/genética , Escherichia coli/genética , Ácido Graxo Sintase Tipo II/química , Ácido Graxo Sintase Tipo II/genética , Ácido Graxo Sintase Tipo II/metabolismo , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Simulação de Dinâmica Molecular , Complexos Multiproteicos/genética , Mupirocina/biossíntese , Mupirocina/metabolismo , Peptídeos/genética , Mutação Puntual/genética , Policetídeo Sintases/genética , Ligação Proteica
20.
J Am Chem Soc ; 141(20): 8198-8206, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-31051070

RESUMO

Fungal highly reducing polyketide synthases (HRPKSs) biosynthesize polyketides using a single set of domains iteratively. Product release is a critical step in HRPKS function to ensure timely termination and enzyme turnover. Nearly all of the HRPKSs characterized to date employ a separate thioesterase (TE) or acyltransferase enzyme for product release. In this study, we characterized two fungal HRPKSs that have fused C-terminal TE domains, a new domain architecture for fungal HRPKSs. We showed that both HRPKS-TEs synthesize aminoacylated polyketides in an ATP-independent fashion. The KU42 TE domain selects cysteine and homocysteine and catalyzes transthioesterification using the side-chain thiol group as the nucleophile. In contrast, the KU43 TE domain selects leucine methyl ester and performs a direct amidation of the polyketide, a reaction typically catalyzed by nonribosomal peptide synthetase (NRPS) domains. The characterization of these HRPKS-TE enzymes showcases the functional diversity of HRPKS enzymes and provides potential TE domains as biocatalytic tools to diversify HRPKS structures.


Assuntos
Basidiomycota/metabolismo , Policetídeos/metabolismo , Tioléster Hidrolases/metabolismo , Aminoacilação , Basidiomycota/enzimologia , Policetídeo Sintases/química , Policetídeo Sintases/metabolismo , Policetídeos/química , Domínios Proteicos , Estereoisomerismo , Tioléster Hidrolases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA