Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28.516
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Vis Exp ; (207)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38767370

RESUMO

Preclinical gene therapy research, particularly in rodent and large animal models, necessitates the production of AAV vectors with high yield and purity. Traditional approaches in research laboratories often involve extensive use of cell culture dishes to cultivate HEK293T cells, a process that can be both laborious and problematic. Here, a unique in-house method is presented, which simplifies this process with a specific cell factory (or cell stacks, CF10) platform. An integration of polyethylene glycol/aqueous two-phase partitioning with iodixanol gradient ultracentrifugation improves both the yield and purity of the generated AAV vectors. The purity of the AAV vectors is verified through SDS-PAGE and silver staining, while the ratio of full to empty particles is determined using transmission electron microscopy (TEM). This approach offers an efficient cell factory platform for the production of AAV vectors at high yields, coupled with an improved purification method to meet the quality demands for in vivo studies.


Assuntos
Dependovirus , Vetores Genéticos , Dependovirus/genética , Humanos , Vetores Genéticos/química , Células HEK293 , Ácidos Tri-Iodobenzoicos/química , Polietilenoglicóis/química , Microscopia Eletrônica de Transmissão
2.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732121

RESUMO

Today a lot of attention is paid to the formation of thermosensitive systems for biomedical and industrial applications. The development of new methods for synthesis of such systems is a dynamically developing direction in chemistry and materials science. In this regard, this paper presents results of the studies of a new synthesized supramolecular polymer system based on polyethylene glycol and tetrafluoroethylene telomers. The films formed from the polymer substance have the property of switching wettability depending on temperature after heating activation. It has been established that the wettability changes at 60 °C. The contact angle of activated hydrophobic polymer film reaches 143°. Additionally, the system exhibits its properties regardless of the pH of the environment. Based on data obtained by the methods of infrared and x-ray photoelectron spectroscopy, differential thermal analysis and thermal analysis in conjunction with wettability and morphology, a model of the behavior of molecules in a polymer system was built that ensures switching of the hydrophilic/hydrophobic surface state. The resulting polymer system, as well as films based on it, can be used in targeted drug delivery, implantation surgery, as sensors, etc.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Polietilenoglicóis , Molhabilidade , Polietilenoglicóis/química , Polímeros/química , Temperatura , Espectroscopia Fotoeletrônica
3.
Int J Mol Sci ; 25(9)2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38732235

RESUMO

The formulation of novel delivery protocols for the targeted delivery of genes into hepatocytes by receptor mediation is important for the treatment of liver-specific disorders, including cancer. Non-viral delivery methods have been extensively studied for gene therapy. Gold nanoparticles (AuNPs) have gained attention in nanomedicine due to their biocompatibility. In this study, AuNPs were synthesized and coated with polymers: chitosan (CS), and polyethylene glycol (PEG). The targeting moiety, lactobionic acid (LA), was added for hepatocyte-specific delivery. Physicochemical characterization revealed that all nano-formulations were spherical and monodispersed, with hydrodynamic sizes between 70 and 250 nm. Nanocomplexes with pCMV-Luc DNA (pDNA) confirmed that the NPs could bind, compact, and protect the pDNA from nuclease degradation. Cytotoxicity studies revealed that the AuNPs were well tolerated (cell viabilities > 70%) in human hepatocellular carcinoma (HepG2), embryonic kidney (HEK293), and colorectal adenocarcinoma (Caco-2) cells, with enhanced transgene activity in all cells. The inclusion of LA in the NP formulation was notable in the HepG2 cells, which overexpress the asialoglycoprotein receptor on their cell surface. A five-fold increase in luciferase gene expression was evident for the LA-targeted AuNPs compared to the non-targeted AuNPs. These AuNPs have shown potential as safe and suitable targeted delivery vehicles for liver-directed gene therapy.


Assuntos
Quitosana , Técnicas de Transferência de Genes , Ouro , Neoplasias Hepáticas , Nanopartículas Metálicas , Humanos , Ouro/química , Nanopartículas Metálicas/química , Células Hep G2 , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/genética , Quitosana/química , Células HEK293 , Receptor de Asialoglicoproteína/metabolismo , Receptor de Asialoglicoproteína/genética , Células CACO-2 , Luciferases/genética , Luciferases/metabolismo , Polietilenoglicóis/química , Plasmídeos/genética , Dissacarídeos/química , Terapia Genética/métodos , Polímeros/química , Sobrevivência Celular/efeitos dos fármacos
4.
Int J Nanomedicine ; 19: 4217-4234, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38766660

RESUMO

Introduction: Rheumatoid arthritis (RA) is an inflammatory immune-mediated disease that involves synovitis, cartilage destruction, and even joint damage. Traditional agents used for RA therapy remain unsatisfactory because of their low efficiency and obvious adverse effects. Therefore, we here established RA microenvironment-responsive targeted micelles that can respond to the increase in reactive oxygen species (ROS) levels in the joint and improve macrophage-specific targeting of loaded drugs. Methods: We here prepared ROS-responsive folate-modified curcumin micelles (TK-FA-Cur-Ms) in which thioketal (TK) was used as a ROS-responsive linker for modifying polyethylene glycol 5000 (PEG5000) on the micellar surface. When micelles were in the ROS-overexpressing inflammatory microenvironment, the PEG5000 hydration layer was shed, and the targeting ligand FA was exposed, thereby enhancing cellular uptake by macrophages through active targeting. The targeting, ROS sensitivity and anti-inflammatory properties of the micelles were assessed in vitro. Collagen-induced arthritis (CIA) rats model was utilized to investigate the targeting, expression of serum inflammatory factors and histology change of the articular cartilage by micelles in vivo. Results: TK-FA-Cur-Ms had a particle size of 90.07 ± 3.44 nm, which decreased to 78.87 ± 2.41 nm after incubation with H2O2. The micelles exhibited in vitro targeting of RAW264.7 cells and significantly inhibited inflammatory cytokine levels. Pharmacodynamic studies have revealed that TK-FA-Cur-Ms prolonged the drug circulation and exhibited augmented cartilage-protective and anti-inflammatory effects in vivo. Conclusion: The unique ROS-responsive targeted micelles with targeting, ROS sensitivity and anti-inflammatory properties were successfully prepared and may offer an effective therapeutic strategy against RA.


Assuntos
Artrite Experimental , Artrite Reumatoide , Curcumina , Ácido Fólico , Micelas , Espécies Reativas de Oxigênio , Animais , Curcumina/farmacologia , Curcumina/química , Curcumina/farmacocinética , Curcumina/administração & dosagem , Espécies Reativas de Oxigênio/metabolismo , Ratos , Artrite Reumatoide/tratamento farmacológico , Células RAW 264.7 , Camundongos , Ácido Fólico/química , Ácido Fólico/farmacologia , Artrite Experimental/tratamento farmacológico , Polietilenoglicóis/química , Portadores de Fármacos/química , Receptores de Folato com Âncoras de GPI/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Tamanho da Partícula , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/farmacocinética , Modelos Animais de Doenças
5.
Sci Rep ; 14(1): 11570, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773189

RESUMO

Pre-clinical and clinical studies have shown that PEGPH20 depletes intratumoral hyaluronic acid (HA), which is linked to high interstitial fluid pressures and poor distribution of chemotherapies. 29 patients with metastatic advanced solid tumors received quantitative magnetic resonance imaging (qMRI) in 3 prospective clinical trials of PEGPH20: HALO-109-101 (NCT00834704), HALO-109-102 (NCT01170897), and HALO-109-201 (NCT01453153). Apparent Diffusion Coefficient of water (ADC), T1, ktrans, vp, ve, and iAUC maps were computed from qMRI acquired at baseline and ≥ 1 time point post-PEGPH20. Tumor ADC and T1 decreased, while iAUC, ktrans, vp, and ve increased, on day 1 post-PEGPH20 relative to baseline values. This is consistent with HA depletion leading to a decrease in tumor extracellular water content and an increase in perfusion, permeability, extracellular matrix space, and vascularity. Baseline parameter values predictive of pharmacodynamic responses were: ADC > 1.46 × 10-3 mm2/s (Balanced Accuracy (BA) = 72%, p < 0.01), T1 > 0.54 s (BA = 82%, p < 0.01), iAUC < 9.2 mM-s (BA = 76%, p < 0.05), ktrans < 0.07 min-1 (BA = 72%, p = 0.2), ve < 0.17 (BA = 68%, p < 0.01), and vp < 0.02 (BA = 60%, p < 0.01). A low ve at baseline was moderately predictive of response in any parameter (BA = 65.6%, p < 0.01 averaged across patients). These qMRI biomarkers are potentially useful for guiding patient pre-selection and post-treatment follow-up in future clinical studies of PEGPH20 and other tumor stroma-modifying anti-cancer therapies.


Assuntos
Ácido Hialurônico , Hialuronoglucosaminidase , Imageamento por Ressonância Magnética , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/diagnóstico por imagem , Neoplasias/patologia , Imageamento por Ressonância Magnética/métodos , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Idoso , Estudos Prospectivos , Polietilenoglicóis/uso terapêutico
6.
J Am Chem Soc ; 146(20): 13836-13845, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38717976

RESUMO

Hydrogels hold significant promise as drug delivery systems due to their distinct advantage of sustained localized drug release. However, the challenge of regulating the initial burst release while achieving precise control over degradation and drug-release kinetics persists. Herein, we present an ABA-type triblock copolymer-based hydrogel system with precisely programmable degradation and release kinetics. The resulting hydrogels were designed with a hydrophilic poly(ethylene oxide) midblock and a hydrophobic end-block composed of polyethers with varying ratios of ethoxyethyl glycidyl ether and tetrahydropyranyl glycidyl ether acetal pendant possessing different hydrolysis kinetics. This unique side-chain strategy enabled us to achieve a broad spectrum of precise degradation and drug-release profiles under mildly acidic conditions while maintaining the cross-linking density and viscoelastic modulus, which is unlike the conventional polyester-based backbone degradation system. Furthermore, programmable degradation of the hydrogels and release of active therapeutic agent paclitaxel loaded therein are demonstrated in an in vivo mouse model by suppressing tumor recurrence following surgical resection. Tuning of the fraction of two acetal pendants in the end-block provided delicate tailoring of hydrogel degradation and the drug release capability to achieve the desired therapeutic efficacy. This study not only affords a facile means to design hydrogels with precisely programmable degradation and release profiles but also highlights the critical importance of aligning the drug release profile with the target disease.


Assuntos
Liberação Controlada de Fármacos , Hidrogéis , Hidrogéis/química , Hidrogéis/síntese química , Animais , Camundongos , Acetais/química , Paclitaxel/química , Paclitaxel/farmacocinética , Éteres/química , Polietilenoglicóis/química , Polímeros/química , Polímeros/síntese química , Portadores de Fármacos/química
7.
Bull Exp Biol Med ; 176(5): 626-630, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38730109

RESUMO

We studied the antitumor activity of the combined use of local proton irradiation in two modes (10 and 31 Gy) with preliminary intra-tumoral injection of two types of bismuth nanoparticles differing in surface coating: coated with the amphiphilic molecule Pluronic-F127 or Silane-PEG (5 kDa)-COOH polymer. Nanoparticles were used in doses of 0.75 and 1.5 mg/mouse. In two independent series on experimental tumor model (solid Ehrlich carcinoma), bismuth nanoparticles of both modifications injected directly into the tumor enhanced the antitumor effects of proton therapy. Moreover, the radiosensitizing effect of bismuth nanoparticles administered via this route increased with the increasing the doses of nanoparticles and the doses of radiation exposure. In our opinion, these promising data obtained for the first time extend the possibilities of treating malignant neoplasms.


Assuntos
Bismuto , Carcinoma de Ehrlich , Poloxâmero , Terapia com Prótons , Carcinoma de Ehrlich/radioterapia , Carcinoma de Ehrlich/tratamento farmacológico , Carcinoma de Ehrlich/patologia , Animais , Bismuto/uso terapêutico , Bismuto/química , Camundongos , Terapia com Prótons/métodos , Poloxâmero/química , Radiossensibilizantes/uso terapêutico , Radiossensibilizantes/química , Radiossensibilizantes/farmacologia , Polietilenoglicóis/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Nanopartículas/química , Feminino
8.
ACS Appl Bio Mater ; 7(5): 2836-2850, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38717017

RESUMO

High-altitude regions, cold deserts, permafrost regions, and the polar region have some of the severest cold conditions on earth and pose immense perils of cold injuries to exposed individuals. Accidental and unintended exposures to severe cold, either unintentionally or due to occupational risks, can greatly increase the risk of serious conditions including hypothermia, trench foot, and cold injuries like frostbite. Cold-induced vasoconstriction and intracellular/intravascular ice crystal formation lead to hypoxic conditions at the cellular level. The condition is exacerbated in individuals having inadequate and proper covering and layering, particularly when large area of the body are exposed to extremely cold environments. There is a paucity of preventive and therapeutic pharmacological modalities that have been explored for managing and treating cold injuries. Given this, an efficient modality that can potentiate the healing of frostbite was investigated by studying various complex pathophysiological changes that occur during severe cold injuries. In the current research, we report the effectiveness and healing properties of a standardized formulation, i.e., a herbosomal-loaded PEG-poloxamer topical formulation (n-HPTF), on frostbite. The intricate mechanistic pathways modulated by the novel formulation have been elucidated by studying the pathophysiological sequelae that occur following severe cold exposures leading to frostbite. The results indicate that n-HPTF ameliorates the outcome of frostbite, as it activates positive sensory nerves widely distributed in the epidermis transient receptor potential vanilloid 1 (TRPV1), significantly (p < 0.05) upregulates cytokeratin-14, promotes angiogenesis (VEGF-A), prominently represses the expression of thromboxane formation (TXA2), and significantly (p < 0.05) restores levels of enzymatic (glutathione reductase, superoxide dismutase, and catalase) and nonenzymatic antioxidants (glutathione). Additionally, n-HPTF attenuates oxidative stress and the expression of inflammatory proteins PGF-2α, NFκB-p65, TNF-α, IL-6, IL-1ß, malondialdehyde (MDA), advanced oxidative protein products (AOPP), and protein carbonylation (PCO). Masson's Trichrome staining showed that n-HPTF stimulates cellular proliferation, and increases collagen fiber deposition, which significantly (p < 0.05) promotes the healing of frostbitten tissue, as compared to control. We conclude that protection against severe cold injuries by n-HPTF is mediated via modulation of pathways involving TRPV1, VEGF-A, TXA2, redox homeostasis, and inflammatory cascades. The study is likely to have widespread implications for the prophylaxis and management of moderate-to-severe frostbite conditions.


Assuntos
Homeostase , Poloxâmero , Polietilenoglicóis , Canais de Cátion TRPV , Fator A de Crescimento do Endotélio Vascular , Fator A de Crescimento do Endotélio Vascular/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Poloxâmero/química , Poloxâmero/farmacologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Homeostase/efeitos dos fármacos , Oxirredução , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Ratos , Teste de Materiais , Lesão por Frio/metabolismo , Lesão por Frio/tratamento farmacológico , Tamanho da Partícula , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Masculino , Lipossomos/química , Humanos , Administração Tópica , Congelamento das Extremidades/metabolismo , Congelamento das Extremidades/tratamento farmacológico
9.
ACS Nano ; 18(20): 12716-12736, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38718220

RESUMO

Mesoporous silica nanoparticles (MSNs) represent a promising avenue for targeted brain tumor therapy. However, the blood-brain barrier (BBB) often presents a formidable obstacle to efficient drug delivery. This study introduces a ligand-free PEGylated MSN variant (RMSN25-PEG-TA) with a 25 nm size and a slight positive charge, which exhibits superior BBB penetration. Utilizing two-photon imaging, RMSN25-PEG-TA particles remained in circulation for over 24 h, indicating significant traversal beyond the cerebrovascular realm. Importantly, DOX@RMSN25-PEG-TA, our MSN loaded with doxorubicin (DOX), harnessed the enhanced permeability and retention (EPR) effect to achieve a 6-fold increase in brain accumulation compared to free DOX. In vivo evaluations confirmed the potent inhibition of orthotopic glioma growth by DOX@RMSN25-PEG-TA, extending survival rates in spontaneous brain tumor models by over 28% and offering an improved biosafety profile. Advanced LC-MS/MS investigations unveiled a distinctive protein corona surrounding RMSN25-PEG-TA, suggesting proteins such as apolipoprotein E and albumin could play pivotal roles in enabling its BBB penetration. Our results underscore the potential of ligand-free MSNs in treating brain tumors, which supports the development of future drug-nanoparticle design paradigms.


Assuntos
Barreira Hematoencefálica , Doxorrubicina , Sistemas de Liberação de Medicamentos , Nanopartículas , Dióxido de Silício , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Dióxido de Silício/química , Doxorrubicina/farmacologia , Doxorrubicina/química , Nanopartículas/química , Animais , Porosidade , Camundongos , Humanos , Polietilenoglicóis/química , Portadores de Fármacos/química , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Tamanho da Partícula , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Glioma/metabolismo , Glioma/patologia , Ligantes , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/administração & dosagem
10.
AAPS PharmSciTech ; 25(5): 93, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693316

RESUMO

Tolterodine tartrate (TOTA) is associated with adverse effect, high hepatic access, varied bioavailability, slight aqueous solubility, and short half-life after oral delivery. Hansen solubility parameters (HSP, HSPiP program), experimental solubility (T = 298.2 to 318.2 K and p = 0.1 MPa), computational (van't Hoff and Apelblat models), and thermodynamic models were used to the select solvent(s). HSPiP predicted PEG400 as the most suitable co-solvent based on HSP values (δd = 17.88, δp = 4.0, and δh = 8.8 of PEG400) and comparable to the drug (δd = 17.6, δp = 2.4, and δh = 4.6 of TOTA). The experimental mole fraction solubility of TOTA was maximum (xe = 0.0852) in PEG400 confirming the best fit of the prediction. The observed highest solubility was attributed to the δp and δh interacting forces. The activity coefficient (ϒi) was found to be increased with temperature. The higher values of r2 (linear regression coefficient) and low RMSD (root mean square deviation) indicated a good correlation between the generated "xe" data for crystalline TOTA and the explored models (modified Apelblat and van't Hoff models). TOTA solubility in "PEG400 + water mixture" was endothermic and entropy-driven. IR (immediate release product) formulation can be tailored using 60% PEG400 in buffer solution for 2 mg of TOTA in 0.25 mL (dosing volume). The isotonic binary solution was associated with a pH of 7.2 suitable for sub-Q delivery. The approach would be a promising alternative with ease of delivery to children and aged patients.


Assuntos
Solubilidade , Solventes , Termodinâmica , Tartarato de Tolterodina , Humanos , Tartarato de Tolterodina/administração & dosagem , Tartarato de Tolterodina/química , Tartarato de Tolterodina/farmacocinética , Solventes/química , Polietilenoglicóis/química , Disponibilidade Biológica , Química Farmacêutica/métodos , Injeções Subcutâneas , Sistemas de Liberação de Medicamentos/métodos
11.
J Nanobiotechnology ; 22(1): 216, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698399

RESUMO

The enhanced permeability and retention (EPR) effect has become the guiding principle for nanomedicine against cancer for a long time. However, several biological barriers severely resist therapeutic agents' penetration and retention into the deep tumor tissues, resulting in poor EPR effect and high tumor mortality. Inspired by lava, we proposed a proteolytic enzyme therapy to improve the tumor distribution and penetration of nanomedicine. A trypsin-crosslinked hydrogel (Trypsin@PSA Gel) was developed to maintain trypsin's activity. The hydrogel postponed trypsin's self-degradation and sustained the release. Trypsin promoted the cellular uptake of nanoformulations in breast cancer cells, enhanced the penetration through endothelial cells, and degraded total and membrane proteins. Proteomic analysis reveals that trypsin affected ECM components and down-regulated multiple pathways associated with cancer progression. Intratumoral injection of Trypsin@PSA Gel significantly increased the distribution of liposomes in tumors and reduced tumor vasculature. Combination treatment with intravenous injection of gambogic acid-loaded liposomes and intratumoral injection of Trypsin@PSA Gel inhibited tumor growth. The current study provides one of the first investigations into the enhanced tumor distribution of liposomes induced by a novel proteolytic enzyme therapy.


Assuntos
Hidrogéis , Lipossomos , Polietilenoglicóis , Tripsina , Xantonas , Lipossomos/química , Animais , Polietilenoglicóis/química , Hidrogéis/química , Humanos , Tripsina/metabolismo , Tripsina/química , Feminino , Camundongos , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Neoplasias da Mama/tratamento farmacológico , Proteólise
12.
Int J Nanomedicine ; 19: 3737-3751, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38699684

RESUMO

Background: Chemo-photodynamic combination therapy has demonstrated significant potential in the treatment of cancer. Triptolide (TPL), a naturally derived anticancer agent, when combined with the photosensitizer Chlorin e6 (Ce6), has shown to provide enhanced anti-tumor benefits. However, the development of stimuli-responsive nanovehicles for the co-delivery of TPL and Ce6 could further enhance the efficacy of this combination therapy. Methods: In this study, we synthesized a pH/ROS dual-responsive mPEG-TK-PBAE copolymer, which contains a pH-sensitive PBAE moiety and a ROS-sensitive thioketal (TK) linkage. Through a self-assembly process, TPL and Ce6 were successfully co-loaded into mPEG-TK-PBAE nanoparticles, hereafter referred to as TPL/Ce6 NPs. We evaluated the pH- and ROS-sensitive drug release and particle size changes. Furthermore, we investigated both the in vitro suppression of cellular proliferation and induction of apoptosis in HepG2 cells, as well as the in vivo anti-tumor efficacy of TPL/Ce6 NPs in H22 xenograft nude mice. Results: The mPEG-TK-PBAE copolymer was synthesized through a one-pot Michael-addition reaction and successfully co-encapsulated both TPL and Ce6 by self-assembly. Upon exposure to acid pH values and high ROS levels, the payloads in TPL/Ce6 NPs were rapidly released. Notably, the abundant ROS generated by the released Ce6 under laser irradiation further accelerated the degradation of the nanosystem, thereby amplifying the tumor microenvironment-responsive drug release and enhancing anticancer efficacy. Consequently, TPL/Ce6 NPs significantly increased PDT-induced oxidative stress and augmented TPL-induced apoptosis in HepG2 cells, leading to synergistic anticancer effects in vitro. Moreover, administering TPL/Ce6 NPs (containing 0.3 mg/kg of TPL and 4 mg/kg of Ce6) seven times, accompanied by 650 nm laser irradiation, efficiently inhibited tumor growth in H22 tumor-bearing mice, while exhibiting lower systemic toxicity. Conclusion: Overall, we have developed a tumor microenvironment-responsive nanosystem for the co-delivery of TPL and Ce6, demonstrating amplified synergistic effects of chemo-photodynamic therapy (chemo-PDT) for hepatocellular carcinoma (HCC) treatment.


Assuntos
Apoptose , Clorofilídeos , Diterpenos , Neoplasias Hepáticas , Camundongos Nus , Fenantrenos , Fotoquimioterapia , Fármacos Fotossensibilizantes , Porfirinas , Espécies Reativas de Oxigênio , Animais , Humanos , Fotoquimioterapia/métodos , Espécies Reativas de Oxigênio/metabolismo , Células Hep G2 , Neoplasias Hepáticas/tratamento farmacológico , Porfirinas/química , Porfirinas/farmacologia , Porfirinas/administração & dosagem , Porfirinas/farmacocinética , Diterpenos/química , Diterpenos/farmacologia , Diterpenos/farmacocinética , Diterpenos/administração & dosagem , Concentração de Íons de Hidrogênio , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/administração & dosagem , Apoptose/efeitos dos fármacos , Camundongos , Carcinoma Hepatocelular/tratamento farmacológico , Compostos de Epóxi/química , Compostos de Epóxi/farmacologia , Compostos de Epóxi/administração & dosagem , Nanopartículas/química , Ensaios Antitumorais Modelo de Xenoenxerto , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Liberação Controlada de Fármacos , Proliferação de Células/efeitos dos fármacos , Polietilenoglicóis/química , Terapia Combinada
13.
AAPS PharmSciTech ; 25(5): 103, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714634

RESUMO

Crystallization of amorphous pharmaceutical solids are widely reported to be affected by the addition of polymer, while the underlying mechanism require deep study. Herein, crystal growth behaviors of glassy griseofulvin (GSF) doped with various 1% w/w polymer were systematically studied. From the molecular structure, GSF cannot form the hydrogen bonding interactions with the selected polymer poly(vinyl acetate), polyvinyl pyrrolidone (PVP), 60:40 vinyl pyrrolidone-vinyl acetate copolymer (PVP/VA 64), and poly(ethylene oxide) (PEO). 1% w/w polymer exhibited weak or no detectable effects on the glass transition temperature (Tg) of GSF. However, crystal growth rates of GSF was altered from 4.27-fold increase to 2.57-fold decrease at 8 ℃ below Tg of GSF. Interestingly, the ability to accelerate and inhibit the growth rates of GSF crystals correlated well with Tg of polymer, indicating the controlling role of segmental mobility of polymer. Moreover, ring-banded growth of GSF was observed in the polymer-doped systems. Normal compact bulk and ring-banded crystals of GSF were both characterized as the thermodynamically stable form I. More importantly, formation of ring-banded crystals of GSF can significantly weaken the inhibitory effects of polymer on the crystallization of glassy GSF.


Assuntos
Cristalização , Griseofulvina , Polímeros , Temperatura de Transição , Griseofulvina/química , Cristalização/métodos , Polímeros/química , Estabilidade de Medicamentos , Ligação de Hidrogênio , Polivinil/química , Polietilenoglicóis/química , Povidona/química , Vidro/química
14.
AAPS PharmSciTech ; 25(5): 97, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710894

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the highly fatal types of cancer with high mortality/incidence. Considering the crucial role of vascular endothelial growth factor (VEGF) in PDAC progression, its inhibition can be a viable strategy for the treatment. Pazopanib, a second-generation VEGF inhibitor, is approved for the treatment of various oncological conditions. However, due to associated limitations like low oral bioavailability (14-39%), high inter/intra-subject variability, stability issues, etc., high doses (800 mg) are required, which further lead to non-specific toxicities and also contribute toward cancer resistance. Thus, to overcome these challenges, pazopanib-loaded PEGylated nanoliposomes were developed and evaluated against pancreatic cancer cell lines. The nanoliposomes were prepared by thin-film hydration method, followed by characterization and stability studies. This QbD-enabled process design successfully led to the development of a suitable pazopanib liposomal formulation with desirable properties. The % entrapment of PZP-loaded non-PEGylated and PEGylated nanoliposomes was found to be 75.2% and 84.9%, respectively, whereas their particle size was found to be 129.7 nm and 182.0 nm, respectively. The developed liposomal formulations exhibited a prolonged release and showed desirable physicochemical properties. Furthermore, these liposomal formulations were also assessed for in vitro cell lines, such as cell cytotoxicity assay and cell uptake. These studies confirm the effectiveness of developed liposomal formulations against pancreatic cancer cell lines. The outcomes of this work provide encouraging results and a way forward to thoroughly investigate its potential for PDAC treatment.


Assuntos
Carcinoma Ductal Pancreático , Indazóis , Lipossomos , Nanopartículas , Neoplasias Pancreáticas , Tamanho da Partícula , Pirimidinas , Sulfonamidas , Indazóis/administração & dosagem , Indazóis/farmacologia , Humanos , Sulfonamidas/administração & dosagem , Sulfonamidas/farmacologia , Sulfonamidas/química , Pirimidinas/administração & dosagem , Pirimidinas/farmacologia , Pirimidinas/química , Pirimidinas/farmacocinética , Linhagem Celular Tumoral , Neoplasias Pancreáticas/tratamento farmacológico , Carcinoma Ductal Pancreático/tratamento farmacológico , Nanopartículas/química , Polietilenoglicóis/química , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Antineoplásicos/química , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Química Farmacêutica/métodos
15.
J Nanobiotechnology ; 22(1): 253, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755600

RESUMO

Improving cancer therapy by targeting the adverse tumor microenvironment (TME) rather than the cancer cells presents a novel and potentially effective strategy. In this study, we introduced FexMoyS nanoparticles (NPs), which act as sequential bioreactors to manipulate the TME. FexMoyS NPs were synthesized using thermal decomposition and modified with polyethylene glycol (PEG). Their morphology, chemical composition, and photothermal properties were characterized. The capability to produce ROS and deplete GSH was evaluated. Effects on CRC cells, including cell viability, apoptosis, and glycolysis, were tested through various in vitro assays. In vivo efficacy was determined using CRC-bearing mouse models and patient-derived xenograft (PDX) models. The impact on the MAPK signaling pathway and tumor metabolism was also examined. The FexMoyS NPs showed efficient catalytic activity, leading to increased ROS production and GSH depletion, inducing ferroptosis, and suppressing glycolysis in CRC cells. In vivo, the NPs significantly inhibited tumor growth, particularly when combined with NIR light therapy, indicating a synergistic effect of photothermal therapy and chemodynamic therapy. Biosafety assessments revealed no significant toxicity in treated mice. RNA sequencing suggested that the NPs impact metabolism and potentially immune processes within CRC cells. FexMoyS NPs present a promising multifaceted approach for CRC treatment, effectively targeting tumor cells while maintaining biosafety. The nanoparticles exhibit potential for clinical translation, offering a new avenue for cancer therapy.


Assuntos
Neoplasias Colorretais , Ferroptose , Glicólise , Polietilenoglicóis , Espécies Reativas de Oxigênio , Animais , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Humanos , Camundongos , Polietilenoglicóis/química , Ferroptose/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Linhagem Celular Tumoral , Microambiente Tumoral/efeitos dos fármacos , Nanopartículas/química , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Endogâmicos BALB C , Camundongos Nus , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Glutationa/metabolismo
16.
Einstein (Sao Paulo) ; 22: eAO0764, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38775605

RESUMO

OBJECTIVE: To evaluate the in vitro and in vivo toxicities of polyethylene glycol-coated gold nanoparticles synthesized using a one-step process. METHODS: Gold nanoparticles were prepared via a co-precipitation method using polyethylene glycol, and the synthesis product was characterized. For the in vitro evaluation, a flow cytometry analysis with Annexin V and iodide propidium staining was used to assess cytotoxicity in MG-63 cells labeled with 10, 50, and 100µg/mL of nanoparticle concentration. For the in vivo evaluation, nanoparticles were administered intraperitoneally at a dose of 10mg/kg dose in 10-week-old mice. Toxicity was assessed 24 hours and 7 days after administration via histopathological analysis of various tissues, as well as through renal, hepatic, and hematopoietic evaluations. RESULTS: Synthesized nanoparticles exhibited different hydrodynamic sizes depending on the medium: 51.27±1.62nm in water and 268.12±28.45nm (0 hour) in culture medium. They demonstrated a maximum absorbance at 520nm and a zeta potential of -8.419mV. Cellular viability exceeded 90%, with less than 3% early apoptosis, 6% late apoptosis, and 1% necrosis across all labeling conditions, indicating minimal cytotoxicity differences. Histopathological analysis highlighted the accumulation of nanoparticles in the mesentery; however, no lesions or visible agglomeration was observed in the remaining tissues. Renal, hepatic, and hematopoietic analyses showed no significant differences at any time point. CONCLUSION: Polyethylene glycol-coated gold nanoparticles exhibit extremely low toxicity and high biocompatibility, showing promise for future studies.


Assuntos
Ouro , Nanopartículas Metálicas , Polietilenoglicóis , Polietilenoglicóis/toxicidade , Polietilenoglicóis/química , Ouro/toxicidade , Ouro/química , Animais , Nanopartículas Metálicas/toxicidade , Camundongos , Sobrevivência Celular/efeitos dos fármacos , Citometria de Fluxo , Apoptose/efeitos dos fármacos , Humanos , Tamanho da Partícula , Masculino , Rim/efeitos dos fármacos , Rim/patologia , Fatores de Tempo
17.
BMC Vet Res ; 20(1): 127, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561720

RESUMO

BACKGROUND: Pseudomonas putida is a pathogenic bacterium that induces great losses in fishes, including Nile tilapia (Oreochromis niloticus). Currently, the application of nanomaterials in aquaculture practices has gained more success as it endows promising results in therapies compared to traditional protocols. OBJECTIVE: Therefore, the current perspective is considered the first report to assess the anti-bacterial efficacy of titanium dioxide nanogel (TDNG) against Pseudomonas putida (P. putida) in Nile tilapia. METHODS: The fish (n = 200; average body weight: 47.50±1.32 g) were allocated into four random groups (control, TDNG, P. putida, and TDNG + P. putida), where 0.9 mg/L of TDNG was applied as bath treatment for ten days. RESULTS: Outcomes revealed that P. putida infection caused ethological alterations (surfacing, abnormal movement, and aggression) and depression of immune-antioxidant variables (complement 3, lysozyme activity, total antioxidant capacity, superoxide dismutase, and reduced glutathione content). Additionally, a substantial elevation in hepatorenal biomarkers (aspartate and alanine aminotransferases and creatinine) with clear histopathological changes and immuno-histochemical alterations (very weak BCL-2 and potent caspase-3 immuno-expressions) were seen. Surprisingly, treating P. putida-infected fish with TDNG improved these variables and obvious restoration of the tissue architectures. CONCLUSION: Overall, this report encompasses the key role of TDNG as an anti-bacterial agent for controlling P. putida infection and improving the health status of Nile tilapia.


Assuntos
Ciclídeos , Doenças dos Peixes , Polietilenoglicóis , Polietilenoimina , Pseudomonas putida , Titânio , Animais , Antioxidantes , Nanogéis , Dieta , Suplementos Nutricionais , Ração Animal/análise , Doenças dos Peixes/tratamento farmacológico , Doenças dos Peixes/microbiologia
18.
Eur Rev Med Pharmacol Sci ; 28(6): 2272-2287, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38567590

RESUMO

OBJECTIVE: This study aimed to systematically evaluate the efficacy, safety and optimal dose of polyethylene glycol loxenatide (PEX168) for treating type 2 diabetes mellitus (T2DM). MATERIALS AND METHODS: Clinical trials of PEX168 for T2DM were identified in 8 databases, with a build time limit of January 2023. Included studies were subjected to meta-analysis and trial sequential analysis (TSA). RESULTS: On the efficacy endpoint, the meta-analysis showed that PEX168 100 µg significantly reduced 0.86% glycated hemoglobin type A1c (HbA1c) (MD -0.86, 95% CI -1.02 - -0.70,  p<0.00001), 1.11 mmol/L fasting plasma glucose (FPG) (MD -1.11, 95% CI -1.49 - -0.74, p<0.00001) and 1.91 mmol/L 2h postprandial glucose (PPG) (MD -1.91, 95% CI -3.35 - -0.46, p=0.01) compared with placebo. The TSA showed that all these benefits were conclusive. On safety endpoints, total adverse events (AEs), gastrointestinal (GI) AEs, serious AEs, and hypoglycemia were comparable to placebo for PEX168 100 µg (p>0.05). In the dose comparison, the HbA1c, FPG, and 2h PPG of PEX168 200 µg were comparable to 100 µg (p>0.05), while GI AEs were significantly higher than 100 µg (RR=2.84, 95% CI 1.64-4.93,  p=0.0002). CONCLUSIONS: PEX168 100 µg can significantly lower blood glucose and does not increase the risk of total AEs, GI AEs, and hypoglycemia, which may be a preferred glucagon-like peptide-1 receptor agonist for type 2 diabetes mellitus.


Assuntos
Diabetes Mellitus Tipo 2 , Hipoglicemia , Peptídeos , Polietilenoglicóis , Humanos , Hipoglicemiantes , Hemoglobinas Glicadas , Agonistas do Receptor do Peptídeo 1 Semelhante ao Glucagon , Glicemia , Hipoglicemia/induzido quimicamente , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas
19.
ACS Appl Mater Interfaces ; 16(15): 19472-19479, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38572784

RESUMO

Nanomedicine-enhanced immunogenic cell death (ICD) has attracted considerable attention for its great potential in cancer treatment. Even though polyethylene glycol (PEG) is widely recognized as the gold standard for surface modification of nanomedicines, some shortcomings associated with this PEGylation, such as hindered cell endocytosis and accelerated blood clearance phenomenon, have been revealed in recent years. Notably, polysarcosine (PSar) as a highly biocompatible polymer can be finely synthesized by mild ring-opening polymerization (ROP) of sarcosine N-carboxyanhydrides (Sar-NCAs) and exhibit great potential as an alternative to PEG. In this article, PSar-b-polycamptothecin block copolymers are synthesized by sequential ROP of camptothecin-based NCAs (CPT-NCAs) and Sar-NCAs. Then, the detailed and systematic comparison between PEGylation and PSarylation against the 4T1 tumor model indicates that PSar decoration can facilitate the cell endocytosis, greatly enhancing the ICD effects and antitumor efficacy. Therefore, it is believed that this well-developed PSarylation technique will achieve effective and precise cancer treatment in the near future.


Assuntos
Neoplasias , Peptídeos , Polietilenoglicóis , Sarcosina/análogos & derivados , Humanos , Camptotecina , Morte Celular Imunogênica , Polímeros
20.
ACS Appl Mater Interfaces ; 16(15): 18252-18267, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38581365

RESUMO

Nitric oxide (NO) intervenes, that is, a potential treatment strategy, and has attracted wide attention in the field of tumor therapy. However, the therapeutic effect of NO is still poor, due to its short half-life and instability. Therapeutic concentration ranges of NO should be delivered to the target tissue sites, cell, and even subcellular organelles and to control NO generation. Mitochondria have been considered a major target in cancer therapy for their essential roles in cancer cell metabolism and apoptosis. In this study, mesoporous silicon-coated gold nanorods encapsulated with a mitochondria targeted and the thermosensitive lipid layer (AuNR@MSN-lipid-DOX) served as the carrier to load NO prodrug (BNN6) to build the near-infrared-triggered synergetic photothermal NO-chemotherapy platform (AuNR@MSN(BNN6)-lipid-DOX). The core of AuNR@MSN exhibited excellent photothermal conversion capability and high loading efficiency in terms of BNN6, reaching a high value of 220 mg/g (w/w), which achieved near-infrared-triggered precise release of NO. The outer biocompatible lipid layer, comprising thermosensitive phospholipid DPPC and mitochondrial-targeted DSPE-PEG2000-DOX, guided the whole nanoparticle to the mitochondria of 4T1 cells observed through confocal microscopy. In the mitochondria, the nanoparticles increased the local temperature over 42 °C under NIR irradiation, and a high NO concentration from BNN6 detected by the NO probe and DSPE-PEG2000-DOX significantly inhibited 4T1 cancer cells in vitro and in vivo under the synergetic photothermal therapy (PTT)-NO therapy-chemotherapy modes. The built NIR-triggered combination therapy nanoplatform can serve as a strategy for multimodal collaboration.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas , Fosfatidiletanolaminas , Polietilenoglicóis , Doxorrubicina/farmacologia , Óxido Nítrico , Fototerapia , Nanopartículas/uso terapêutico , Mitocôndrias , Lipídeos , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA